A PINCHING THEOREM FOR CONFORMAL CLASSES OF WILLMORE SURFACES IN THE UNIT n-SPHERE

BY

YU-CHUNG CHANG AND YI-JUNG HSU

Abstract

Let $x: M \rightarrow S^{n}$ be a compact immersed Willmore surface in the n-dimensional unit sphere. In this paper, we consider the case of $n \geq 4$. We prove that if $\inf _{g \in G} \max _{g \circ x(M)}\left(\Phi_{g}-\frac{1}{8} H_{g}^{2}-\right.$ $\left.\sqrt{\frac{4}{9}+\frac{1}{6} H_{g}^{2}+\frac{1}{96} H_{g}^{4}}\right) \leq \frac{2}{3}$, where G is the conformal group of the ambient space S^{n}, Φ_{g} and H_{g} are the square of the length of the trace free part of the second fundamental form and the length of the mean curvature vector of the immersion $g \circ x$ respectively, then $x(M)$ is either a totally umbilical sphere or a conformal Veronese surface.

1. Introduction

Let $x: M \rightarrow S^{n}$ be a compact immersed surface in the n-dimensional unit sphere S^{n}. We denote as usual by $\left(h_{i j}^{\alpha}\right)$ the second fundamental form of M, by $H^{\alpha}=\sum h_{i i}^{\alpha}$ the α-component of the mean curvature vector \mathbb{H}, by H the length of the mean curvature vector, and by $\phi_{i j}^{\alpha}=h_{i j}^{\alpha}-\frac{H^{\alpha}}{2} \delta_{i j}$ the trace free part of the second fundamental form. Let $\Phi=\sum\left(\phi_{i j}^{\alpha}\right)^{2}$. Then the Willmore functional is defined by

$$
W(x)=\int_{M} \Phi
$$

Received December 13, 2004.
AMS 2000 Subject Classification: 53A10, 32J15.
Key words and phrases: Willmore surface, totally umbilical, sphere.
This research was supported by the National Science Council of Republic of China under grant NSC 92-2115-M-009-015.
where the integration is with respect to the area measure of M. This functional is preserved if we move M via conformal transformations of S^{n}. The critical points of W are called Willmore surfaces. They satisfy the EulerLagrange equation

$$
\Delta^{\perp} H^{\alpha}+\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} H^{\beta}=0
$$

where Δ^{\perp} is the Laplacian in the normal bundle $N M$ (see [15]). Thus any minimal surface in S^{n} is a Willmore surface. The set of Willmore surfaces turns out to be larger than that of minimal surfaces.

For M being a minimal submanifold in the n-dimensional unit sphere S^{n}, there are vast estimates for the square of the length of the second fundamental form. Significant works in this direction have been obtained by Simons (see [14]), Chern, do Carmo and Kobayashi (see [3]), Peng and Terng (see [12]) and the references cited therein. One expects that similar results are also valid for Willmore surfaces (see [9]). Based on this idea, Li proved that if M is a compact Willmore surface in the n-dimensional unit sphere S^{n} satisfying $0 \leq \Phi \leq 2$ when $n=3,0 \leq \Phi \leq \frac{4}{3}$ when $n \geq 4$, then M is the totally umbilical sphere or the Clifford torus or the Veronese surface (see [8] and [9]). This result is analogous to that of Chern, do Carmo and Kobayashi in the case of minimal surfaces, they proved that if $H=0$ and $0 \leq \Phi \leq \frac{2 n-4}{2 n-5}$, then M is the equatorial sphere or the Clifford torus or the Veronese surface (see [3]).

For M being a hypersurface with constant mean curvature in the n dimensional unit sphere S^{n}, Alencar and do Carmo obtained a pinching constant which depends on the mean curvature (see [1]). For submanifolds with parallel mean curvature vector in spheres, the above theorem was extended to higher codimension by Santos and Fontenele (see [13] and [6]).

Because in general a Willmore surface is not minimal, it is interesting to find an upper estimate for Φ including the mean curvature. Our starting point is to improve an upper estimate for Φ which was given previously by the authors (see [5]). It is surprised that this improvement is not so formal. The proof involves some new tricks.

Theorem 1.1. Let M be a compact immersed Willmore surface in the n-dimensional unit sphere $S^{n}, n \geq 4$. If

$$
0 \leq \Phi \leq \frac{2}{3}+\frac{1}{8} H^{2}+\sqrt{\frac{4}{9}+\frac{1}{6} H^{2}+\frac{1}{96} H^{4}}
$$

then either $\Phi=0$ and M is totally umbilical or $\Phi=\frac{2}{3}+\frac{1}{8} H^{2}+\left(\frac{4}{9}+\frac{1}{6} H^{2}\right.$ $\left.+\frac{1}{96} H^{4}\right)^{1 / 2}$. In the latter case, $n=4$ and M is the Veronese surface.

It is remarkable that the Veronese surface is the minimal surface in the 4-dimensional unit sphere S^{4} satisfying $\Phi=\frac{4}{3}$ (see [3]). Just as the result of Li , Theorem 1.1 does not characterize any non-minimal Willmore surface except the totally umbilical spheres. However, the estimate is sharp in the sense that for every given positive ϵ, there is a compact Willmore surface M in S^{4} satisfying $0<\Phi \leq \frac{2}{3}+\frac{1}{8} H^{2}+\sqrt{\frac{4}{9}+\frac{1}{6} H^{2}+\frac{1}{96} H^{4}}+\epsilon$ but which is not the Veronese surface.

For characterizing non-minimal Willmore surfaces, for each immersion x of M into the unit n-sphere S^{n}, we consider the infimum of maximum values of

$$
\Phi-\frac{1}{8} H^{2}-\sqrt{\frac{4}{9}+\frac{1}{6} H^{2}+\frac{1}{96} H^{4}}
$$

obtained by composition of x with g, where g ranges over all conformal mappings of S^{n}. This conformal invariant depends on the immersion x. We show that this conformal invariant characterizes the totally umbilical sphere and the conformal class of the Veronese surface. Since the conformal group G of the ambient space S^{n} is not compact, we need to handle the estimates more carefully, and carry limit procedure out at a right time. The following is the main result of the paper.

Theorem 1.2. Let M be a compact immersed Willmore surface in the n-dimensional unit sphere $S^{n}, n \geq 4$. If

$$
\inf _{g \in G} \max _{g \circ x(M)}\left(\Phi_{g}-\frac{1}{8} H_{g}^{2}-\sqrt{\frac{4}{9}+\frac{1}{6} H_{g}^{2}+\frac{1}{96} H_{g}^{4}}\right) \leq \frac{2}{3},
$$

where G is the conformal group of the ambient space S^{n}, Φ_{g} and H_{g} are the square of the length of the trace free part of the second fundamental form
and the mean curvature of the immersion $g \circ x$ respectively, then $x(M)$ is either a totally umbilical sphere or a conformal Veronese surface.

As an immediate consequence of Theorem 1.2, the pinching condition can be simplified as follows.

Corollary 1.3. Let M be a compact immersed Willmore surface in the n-dimensional unit sphere $S^{n}, n \geq 4$. If

$$
\inf _{g \in G} \max _{g \circ x(M)}\left(\Phi_{g}-\frac{1}{6} H_{g}^{2}\right) \leq \frac{4}{3}
$$

then $x(M)$ is either a totally umbilical sphere or a conformal Veronese surface.

For codimension one, there is an analogue result. If $x: M \rightarrow S^{3}$ is a compact immersed Willmore surface satisfying $\inf _{g \in G} \max _{g \circ x(M)}\left(\Phi_{g}-\frac{1}{4} H_{g}^{2}\right) \leq 2$, then $x(M)$ is either a totally umbilical sphere or a conformal Clifford torus.

The paper is organized as follows. In Section 2 we recall some basic facts and inequalities about Willmore surfaces. In Section 3 we characterize the totally umbilical spheres and the Veronese surface by use of an integral inequality in terms of Φ and H (see Theorem 1.1). Finally, the conformal estimate is dealt in Section 4. The main idea in the proof of Theorem 1.2 is to consider a minimizing sequence g_{m} in G. If this minimizing sequence is convergent in G, the assertion follows from Theorem 1.1. Otherwise, we will show that M must be totally umbilical. The proof requires additional techniques in progress.

2. Preliminaries

Let $x: M \rightarrow S^{n}$ be an immersed surface in the n-dimensional unit sphere S^{n}. We choose a local orthonormal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ in S^{n}, so that when restricted to $x(M)$ the vectors e_{1}, e_{2} are tangent to $x(M)$, and $\left\{e_{3}, \ldots, e_{n}\right\}$ is a local frame field in the normal bundle $N M$ of M. Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ denote the dual coframe field in S^{n}. We shall use the following ranges of indices

$$
1 \leq i, j, k, \cdots \leq 2 ; \quad 3 \leq \alpha, \beta, \gamma, \cdots \leq n
$$

Then the structure equations are given by

$$
\begin{aligned}
d x & =\sum \omega_{i} e_{i} \\
d e_{i} & =\sum \omega_{i j} e_{j}+\sum h_{i j}^{\alpha} \omega_{j} e_{\alpha}-\omega_{i} x \\
d e_{\alpha} & =-\sum h_{i j}^{\alpha} \omega_{j} e_{i}+\sum \omega_{\alpha \beta} e_{\beta},
\end{aligned}
$$

where $\omega_{i j}$ and $\omega_{\alpha \beta}$ are the connection forms and $\left(h_{i j}^{\alpha}\right), h_{i j}^{\alpha}=h_{j i}^{\alpha}$, is the second fundamental form of M. From the structure equations of M, the Gauss equations are then given by

$$
\begin{align*}
R_{i j k l} & =\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{2.1}\\
R_{i k} & =\delta_{i k}+\sum H^{\alpha} h_{i k}^{\alpha}-\sum h_{i j}^{\alpha} h_{j k}^{\alpha} \tag{2.2}\\
2 K & =2+H^{2}-S \tag{2.3}\\
R_{\alpha \beta i j} & =\sum\left(h_{i k}^{\alpha} h_{k j}^{\beta}-h_{j k}^{\alpha} h_{k i}^{\beta}\right) \tag{2.4}
\end{align*}
$$

were K is the Gaussian curvature of $M, S=\sum\left(h_{i j}^{\alpha}\right)^{2}$ is the square of the length of the second fundamental form, $\mathbb{H}=\sum H^{\alpha} e_{\alpha}=\sum h_{i i}^{\alpha} e_{\alpha}$ is the mean curvature vector, and $H=\sqrt{\sum\left(h_{i i}^{\alpha}\right)^{2}}$ is the length of the mean curvature vector of M.

The covariant derivative $\nabla h_{i j}^{\alpha}$ of the second fundamental form $h_{i j}^{\alpha}$ of M with components $h_{i j k}^{\alpha}$ is defined by

$$
\sum h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\sum h_{k j}^{\alpha} \omega_{k i}+\sum h_{i k}^{\alpha} \omega_{k j}+\sum h_{i j}^{\beta} \omega_{\beta \alpha}
$$

and the covariant derivative $\nabla^{2} h_{i j}^{\alpha}$ of $\nabla h_{i j}^{\alpha}$ with components $h_{i j k l}^{\alpha}$ is defined by

$$
\sum h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}+\sum h_{l j k}^{\alpha} \omega_{l i}+\sum h_{i l k}^{\alpha} \omega_{l j}+\sum h_{i j l}^{\alpha} \omega_{l k}+\sum h_{i j k}^{\beta} \omega_{\beta \alpha}
$$

Then the Codazzi equation and the Ricci formula are given by

$$
\begin{gather*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=0 \tag{2.5}\\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum h_{m j}^{\alpha} R_{m i k l}+\sum h_{i m}^{\alpha} R_{m j k l}+\sum h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{2.6}
\end{gather*}
$$

Let $\phi_{i j}^{\alpha}$ denote the tensor $h_{i j}^{\alpha}-\frac{H^{\alpha}}{2} \delta_{i j}$, and $\Phi=\sum\left(\phi_{i j}^{\alpha}\right)^{2}$ the square of the length of the trace free tensor $\phi_{i j}^{\alpha}$. These relations now imply the Simons' identity, Lemmas 2.2 and 2.3. See also [5] for a simple derivation.

Lemma 2.1. $\frac{1}{2} \Delta \Phi=\sum\left(\phi_{i j k}^{\alpha}\right)^{2}+\sum \phi_{i j}^{\alpha} H_{i j}^{\alpha}+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\sum R_{\alpha \beta 12}^{2}$.
Lemma 2.2. $\sum \phi_{i j j}^{\alpha} H_{i}^{\alpha}=\frac{1}{2} \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}$, where $\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}=\sum\left(H_{i}^{\alpha}\right)^{2}$.
Lemma 2.3. $\sum\left(\phi_{i j k}^{\alpha}\right)^{2} \geq \frac{1}{4} \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}$. The equality holds if and only if $\phi_{111}^{\alpha}=\phi_{122}^{\alpha}=\frac{H_{1}^{\alpha}}{4}$ and $\phi_{211}^{\alpha}=\phi_{222}^{\alpha}=\frac{H_{2}^{\alpha}}{4}$, for all α.

By use of the Willmore surface equation and Stokes' theorem, we have
Lemma 2.4. Let M be a compact Willmore surface in the unit sphere S^{n}. Then

$$
\int_{M} \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}=\int_{M} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}
$$

In the proofs of Theorems 1.1 and 1.2, we need the following estimate.
Lemma 2.5. If $\sum\left(x^{\alpha}\right)^{2}+\left(y^{\alpha}\right)^{2}=\frac{\Phi}{2}, \sum\left(z^{\alpha}\right)^{2}=z^{2}$ and c is a nonnegative constant, then $\left(\sum x^{\alpha} z^{\alpha}\right)^{2}+\left(\sum y^{\alpha} z^{\alpha}\right)^{2}+16 c \sum\left(x^{\alpha}\right)^{2} \sum\left(y^{\alpha}\right)^{2}-16 c\left(\sum x^{\alpha} y^{\alpha}\right)^{2} \leq$ $f(\Phi, z)$, where $f(\Phi, z)=c\left(\Phi+\frac{z^{2}}{8 c}\right)^{2}$, if c is positive and $\Phi>\frac{z^{2}}{8 c} ; f(\Phi, z)=$ $\frac{1}{2} \Phi z^{2}$, otherwise. The equality of the first case holds if and only if one of the following three cases holds
(1) $A=0, B^{2}=\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right), \xi=\frac{1}{4}\left(\Phi-\frac{z^{2}}{8 c}\right), \eta=\frac{1}{4}\left(\Phi+\frac{z^{2}}{8 c}\right), \zeta=0$ and $z^{\alpha}=4 \frac{B y^{\alpha}}{\Phi+\frac{z^{2}}{8 c}}$,
(2) $A^{2}=\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right), B=0, \xi=\frac{1}{4}\left(\Phi+\frac{z^{2}}{8 c}\right), \eta=\frac{1}{4}\left(\Phi-\frac{z^{2}}{8 c}\right), \zeta=0$ and $z^{\alpha}=4 \frac{A x^{\alpha}}{\Phi+\frac{z^{2}}{8 c}}$,
(3) $A^{2}+B^{2}=\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right), A^{2}-B^{2}=4 c\left(\Phi+\frac{z^{2}}{8 c}\right)(\xi-\eta), A B=4 c\left(\Phi+\frac{z^{2}}{8 c}\right) \zeta$, $\xi \eta-\zeta^{2}=\frac{1}{16}\left(\Phi+\frac{z^{2}}{8 c}\right)\left(\Phi-\frac{z^{2}}{8 c}\right)$ and $z^{\alpha}=4 \frac{A x^{\alpha}+B y^{\alpha}}{\Phi+\frac{z^{2}}{8 c}}$, where $A=\sum x^{\alpha} z^{\alpha}$, $B=\sum y^{\alpha} z^{\alpha}, \xi=\sum\left(x^{\alpha}\right)^{2}, \eta=\sum\left(y^{\alpha}\right)^{2}$ and $\zeta \stackrel{\text { 8c }}{=} \sum x^{\alpha} y^{\alpha}$.

Proof. We first observe that the result follows by direct estimate for the cases of $c=0, z=0, \Phi=0$ and $\xi \eta-\zeta^{2}=0$. Without loss of generality, we may assume that c, z, Φ and $\xi \eta-\zeta^{2}$ are positive. By using the Lagrange
multiplier technique, we get that

$$
\begin{aligned}
A z^{\alpha}+16 c \eta x^{\alpha}-16 c \zeta y^{\alpha}+\mu x^{\alpha} & =0 \\
B z^{\alpha}+16 c \xi y^{\alpha}-16 c \zeta x^{\alpha}+\mu y^{\alpha} & =0 \\
A x^{\alpha}+B y^{\alpha}+\nu z^{\alpha} & =0,
\end{aligned}
$$

for all α. Multiplying the these equations by x^{β}, y^{β} and z^{β}, respectively, we find that

$$
\begin{aligned}
A^{2}+16 c\left(\xi \eta-\zeta^{2}\right)+\mu \xi & =0, \\
B^{2}+16 c\left(\xi \eta-\zeta^{2}\right)+\mu \eta & =0, \\
A B+\mu \zeta & =0, \\
A z^{2}+16 c A \eta-16 c B \zeta+\mu A & =0, \\
B z^{2}+16 c B \xi-16 c A \zeta+\mu B & =0, \\
A \xi+B \zeta+\nu A & =0, \\
A \zeta+B \eta+\nu B & =0, \\
A^{2}+B^{2}+\nu z^{2} & =0,
\end{aligned}
$$

and thus

$$
\mu=-\frac{2}{\Phi}\left[A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right]
$$

and

$$
\nu=-\frac{A^{2}+B^{2}}{z^{2}} .
$$

After making the substitutions of μ and ν, the Lagrange conditions can be rewritten as

$$
\begin{aligned}
A^{2}+16 c\left(\xi \eta-\zeta^{2}\right) & =\frac{2 \xi}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right) \\
B^{2}+16 c\left(\xi \eta-\zeta^{2}\right) & =\frac{2 \eta}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right), \\
A B & =\frac{2 \zeta}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right) \\
A z^{2}+16 c A \eta-16 c B \zeta & =\frac{2 A}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
B z^{2}+16 c B \xi-16 c A \zeta & =\frac{2 B}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right) \\
z^{2}(A \xi+B \zeta) & =A\left(A^{2}+B^{2}\right) \\
z^{2}(A \zeta+B \eta) & =B\left(A^{2}+B^{2}\right)
\end{aligned}
$$

Case 1. $A=B=0$. The only points that can give rise to a local maximum value $c \Phi^{2}$ are $\xi=\eta=\frac{\Phi}{4}$ and $\zeta=0$. We note that $c \Phi^{2} \leq \frac{1}{2} \Phi z^{2}$ if $\Phi \leq \frac{z^{2}}{8 c}$.

Case 2. $A=0$ but $B \neq 0$. In this case the third equation gives $\zeta=0$. If $\xi \neq 0$, then the side condition $\xi+\eta=\frac{\Phi}{2}$, the first and fifth equations imply $\xi=\frac{1}{2}\left(\frac{\Phi}{2}-\frac{z^{2}}{16 c}\right)$ and $\eta=\frac{1}{2}\left(\frac{\Phi}{2}+\frac{z^{2}}{16 c}\right)$. This case occurs only when $\Phi>\frac{z^{2}}{8 c}$. It follows from the last equation that $B^{2}=\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right)$, and therefore that the function takes on the value $c\left(\Phi+\frac{z^{2}}{8 c}\right)^{2}$. If $\xi=0$, then the assertion follows from the simple case of $\xi \eta-\zeta^{2}=0$.

Case 3. $A \neq 0$ but $B=0$. The argument is similar to Case 2 .
Case 4. $A \neq 0$ and $B \neq 0$. It follows from the sixth and seventh equations that

$$
\begin{aligned}
\xi & =\frac{1}{z^{2}}\left(A^{2}+B^{2}\right)-\frac{B}{A} \zeta \\
\eta & =\frac{1}{z^{2}}\left(A^{2}+B^{2}\right)-\frac{A}{B} \zeta .
\end{aligned}
$$

The side condition $\xi+\eta=\frac{\Phi}{2}$ then gives

$$
\frac{\zeta}{A B}=\frac{2}{z^{2}}-\frac{\Phi}{2\left(A^{2}+B^{2}\right)}
$$

On the other hand, we know from the third, fourth and sixth equations that

$$
\frac{A B}{\zeta}=z^{2}+8 c \Phi-\frac{16 c}{z^{2}}\left(A^{2}+B^{2}\right)
$$

Comparing these two equations, we find that $A^{2}+B^{2}$ satisfies a quadratic equation, and by solving it, we obtain $A^{2}+B^{2}=\frac{1}{2} \Phi z^{2}$ or $\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right)$. To find the value of $\xi \eta-\zeta^{2}$, the third equation gives

$$
\frac{2}{\Phi}\left(A^{2}+B^{2}+32 c\left(\xi \eta-\zeta^{2}\right)\right)=z^{2}+8 c \Phi-\frac{16 c}{z^{2}}\left(A^{2}+B^{2}\right)
$$

If $A^{2}+B^{2}=\frac{1}{2} \Phi z^{2}$, then $c\left(\xi \eta-\zeta^{2}\right)=0$. There are nothing to prove. Thus we may assume $A^{2}+B^{2}=\frac{z^{2}}{4}\left(\Phi+\frac{z^{2}}{8 c}\right)$. In this case, we have $c\left(\xi \eta-\zeta^{2}\right)=$ $\frac{c}{16}\left(\Phi+\frac{z^{2}}{8 c}\right)\left(\Phi-\frac{z^{2}}{8 c}\right)$. This case occurs only when $\Phi>\frac{z^{2}}{8 c}$. Combining with the first and second equations, we then obtain $A^{2}-B^{2}=4 c\left(\Phi+\frac{z^{2}}{8 c}\right)(\xi-\eta)$. The third equation implies $A B=4 c\left(\Phi+\frac{z^{2}}{8 c}\right) \zeta$. Equalities cases are then clear from the above argument.

Let $D_{n+1}=\left\{x \in \mathbb{R}^{n+1}:|x|<1\right\}$ be the open unit ball in \mathbb{R}^{n+1} and G the conformal group of S^{n}. For each $g \in D_{n+1}$, we introduce the mapping, also denote by $g, g: S^{n} \rightarrow S^{n}$ given by

$$
g(x)=\frac{x+(\lambda+\mu<x, g>) g}{\lambda(1+<x, g>)}
$$

where $\lambda=\frac{1}{\sqrt{1-|g|^{2}}}$ and $\mu=\frac{\lambda^{2}}{\lambda+1}$. We know that each conformal transformation of S^{n} can be expressed by $T \circ g$, where T is an orthogonal transformation of S^{n} and $g \in D_{n+1}$ (see [10] and [11]).

Let $x: M \rightarrow S^{n}$ be a compact Willmore surface. It follows that for each $g \in D_{n+1}, \bar{x}=g \circ x$ is also a compact Willmore surface. The new induced first fundamental form of \bar{x} may be written in terms of the original induced first fundamental form as

$$
d \bar{s}^{2}=\frac{1}{\lambda^{2}(1+<x, g>)^{2}} d s^{2}
$$

Furthermore, the second fundamental forms of \bar{x} and x are related by

$$
\bar{h}_{i j}^{\alpha}=\lambda\left[(1+<x, g>) h_{i j}^{\alpha}+<e_{\alpha}, g>\delta_{i j}\right] .
$$

We recite some relationships of corresponding quantities between \bar{x} and x as follows

Lemma 2.6. The new $\bar{H}, \bar{\Phi}$ and its derivatives can be expressed in terms of that of original as follows
(1) $\bar{H}^{\alpha}=\lambda\left[(1+<x, g>) H^{\alpha}+2<e_{\alpha}, g>\right]$.
(2) $\bar{H}_{i}^{\alpha}=\lambda^{2}(1+<x, g>)\left[(1+<x, g>) H_{i}^{\alpha}-2 \sum \phi_{i j}^{\alpha}<e_{j}, g>\right]$.
(3) $\bar{\phi}_{i j}^{\alpha}=\lambda(1+<x, g>) \phi_{i j}^{\alpha}$.
(4) $\bar{\Phi}=\lambda^{2}(1+<x, g>)^{2} \Phi$.
(5) $\bar{\phi}_{i j k}^{\alpha}=\lambda^{2}(1+<x, g>)\left[(1+<x, g>) \phi_{i j k}^{\alpha}+\phi_{i j}^{\alpha}<e_{k}, g>+\phi_{j k}^{\alpha}\right.$ $\left.<e_{i}, g>+\phi_{k i}^{\alpha}<e_{j}, g>-\phi_{l j}^{\alpha}<e_{l}, g>\delta_{k i}-\phi_{i l}^{\alpha}<e_{l}, g>\delta_{j k}\right]$.

For any given constant vector $g \in \mathbb{R}^{n+1}$, let $F^{\alpha}(x)=(1+\langle x, g\rangle$ $) H^{\alpha}+2<e_{\alpha}, g>$. Then F^{α} satisfies the following equation

Lemma 2.7. $\Delta^{\perp} F^{\alpha}+\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} F^{\beta}=0$.
Proof. It follows from the structure equations that

$$
\begin{aligned}
<x, g>_{i}= & <e_{i}, g> \\
<x, g>_{i j}= & \phi_{i j}^{\alpha}<e_{\alpha}, g>+\delta_{i j} \frac{H^{\alpha}}{2}<e_{\alpha}, g>-\delta_{i j}<x, g> \\
<e_{\alpha}, g>_{i}= & -\phi_{i j}^{\alpha}<e_{j}, g>-\frac{H^{\alpha}}{2}<e_{i}, g> \\
\Delta^{\perp}<e_{\alpha}, g>= & -\sum H_{i}^{\alpha}<e_{i}, g>-\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta}<e_{\beta}, g> \\
& -\sum \frac{H^{\alpha} H^{\beta}}{2}<e_{\beta}, g>+H^{\alpha}<x, g>.
\end{aligned}
$$

We then have

$$
F_{i}^{\alpha}=(1+<x, g>) H_{i}^{\alpha}-2 \sum \phi_{i j}^{\alpha}<e_{j}, g>
$$

and

$$
\begin{aligned}
\Delta^{\perp} F^{\alpha}= & H^{\alpha} \Delta<x, g>+2 \sum<e_{i}, g>H_{i}^{\alpha}+(1+<x, g>) \Delta^{\perp} H^{\alpha} \\
& +2 \Delta^{\perp}<e_{\alpha}, g> \\
= & \sum H^{\alpha} H^{\beta}<e_{\beta}, g>-2 H^{\alpha}<x, g>+2 \sum<e_{i}, g>H_{i}^{\alpha} \\
& -(1+<x, g>) \sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} H^{\beta}-2 \sum H_{i}^{\alpha}<e_{i}, g> \\
& -2 \sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta}<e_{\beta}, g>-\sum H^{\alpha} H^{\beta}<e_{\beta}, g>+2 H^{\alpha}<x, g> \\
= & -\sum\left[(1+<x, g>) H^{\beta}+2<e_{\beta}, g>\right] \phi_{i j}^{\alpha} \phi_{i j}^{\beta} \\
= & -\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} F^{\beta} .
\end{aligned}
$$

Finally, for any given constant vector $g \in \mathbb{R}^{n+1}$, let

$$
\begin{aligned}
\psi_{i j k}^{\alpha}= & (1+<x, g>) \phi_{i j k}^{\alpha}+\phi_{i j}^{\alpha}<e_{k}, g>+\phi_{j k}^{\alpha}<e_{i}, g>+\phi_{k i}^{\alpha}<e_{j}, g> \\
& -\sum \phi_{l j}^{\alpha}<e_{l}, g>\delta_{k i}-\sum \phi_{i l}^{\alpha}<e_{l}, g>\delta_{j k}
\end{aligned}
$$

for all α, i, j, k. We will use the following properties.
Lemma 2.8. $\psi_{i j k}^{\alpha}$ satisfies the following equations:
(1) $\psi_{i j k}^{\alpha}=\psi_{j i k}^{\alpha}$, for all α, i, j, k.
(2) $\Sigma \psi_{j j i}^{\alpha}=0$, for all α, i.
(3) $\Sigma \psi_{i j j}^{\alpha}=\frac{F_{i}^{\alpha}}{2}$, for all α, i.

3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. For simplicity, from now on in this section, let $r(H)=\sqrt{\frac{4}{9}+\frac{1}{6} H^{2}+\frac{1}{96} H^{4}}$. First, we wish to show that Φ is equal to either 0 or $\frac{2}{3}+\frac{H^{2}}{8}+r(H)$.

Integrating both sides of the Lemma 2.1 over M, we have

$$
\begin{aligned}
0 & =\int_{M}\left[\sum\left(\phi_{i j k}^{\alpha}\right)^{2}+\sum \phi_{i j}^{\alpha} H_{i j}^{\alpha}+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\sum R_{\alpha \beta 12}^{2}\right] \\
& =\int_{M}\left[\sum\left(\phi_{i j k}^{\alpha}\right)^{2}-\sum \phi_{i j j}^{\alpha} H_{i}^{\alpha}+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\sum R_{\alpha \beta 12}^{2}\right]
\end{aligned}
$$

It follows from Lemmas 2.2 and 2.3 that

$$
0 \geq \int_{M}\left[-\frac{1}{4} \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\sum R_{\alpha \beta 12}^{2}\right]
$$

Since

$$
\begin{aligned}
\sum\left(R_{\alpha \beta 12}\right)^{2} & =4 \sum\left(\phi_{11}^{\alpha} \phi_{12}^{\beta}-\phi_{11}^{\beta} \phi_{12}^{\alpha}\right)^{2} \\
& =8 \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}-8\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2},
\end{aligned}
$$

by Lemmas 2.4 and 2.5 with $c=1$, we get

$$
\begin{aligned}
0 \geq & \int_{M}\left[-\frac{1}{4} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}-8 \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}+8\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right. \\
& \left.+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)\right] \\
= & \int_{M}\left\{-\frac{1}{2}\left[\left(\sum \phi_{11}^{\alpha} H^{\alpha}\right)^{2}+\left(\sum \phi_{12}^{\alpha} H^{\alpha}\right)^{2}+16 \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}\right.\right. \\
& \left.\left.\quad-16\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right]+\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)\right\} \\
\geq & \int_{M} u(\Phi, H)
\end{aligned}
$$

where u is the continuous function given by $u(\Phi, H)=-\frac{3}{2}\left[\Phi^{2}-\left(\frac{4}{3}+\frac{H^{2}}{4}\right) \Phi+\right.$ $\left.\frac{H^{4}}{192}\right]$, if $\Phi>\frac{H^{2}}{8} ; u(\Phi, H)=\Phi\left(2+\frac{H^{2}}{4}-\Phi\right)$, if $\Phi \leq \frac{H^{2}}{8}$.

Notice that u is nonnegative. In fact, if $\frac{2}{3}+\frac{H^{2}}{8}+r(H) \geq \Phi>\frac{H^{2}}{8}$, then

$$
u(\Phi, H) \geq-\frac{3}{2}\left[\Phi-\left(\frac{2}{3}+\frac{H^{2}}{8}+r(H)\right)\right]\left[-\frac{2}{3}+r(H)\right] \geq 0
$$

and if $\Phi \leq \frac{H^{2}}{8}$, then

$$
u(\Phi, H) \geq \Phi\left(2+\frac{H^{2}}{8}\right) \geq 0
$$

The preceding integral inequality then implies that if $0 \leq \Phi \leq \frac{2}{3}+\frac{H^{2}}{8}+$ $r(H)$, then either $\Phi=0$ and M is totally umbilical, or $\Phi=\frac{2}{3}+\frac{H^{2}}{8}+r(H)$. In the latter case we show below that M is minimal.

Now we shall simply assume that $\Phi=\frac{2}{3}+\frac{H^{2}}{8}+r(H)$. In this case, all the integral inequalities of previous argument become equalities. The proof of M is minimal is broken up into four steps.

Step 1. We establish the following two equations for later use:

$$
|\nabla \Phi|^{2}=\sum \phi_{i j}^{\alpha} \Phi_{j} H_{i}^{\alpha}
$$

and

$$
\int_{M} \frac{\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{4 \Phi}=\int_{M} \frac{r(H)}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}} \frac{|\nabla \Phi|^{2}}{\Phi^{2}}+\int_{M} \frac{1}{4 \Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2} .
$$

Because $\Phi=\frac{2}{3}+\frac{H^{2}}{8}+r(H)$, by Lemma 2.3, $\phi_{111}^{\alpha}=\phi_{122}^{\alpha}=\phi_{212}^{\alpha}=$ $-\phi_{221}^{\alpha}=\frac{H_{1}^{\alpha}}{4}$ and $\phi_{211}^{\alpha}=\phi_{222}^{\alpha}=\phi_{121}^{\alpha}=-\phi_{112}^{\alpha}=\frac{H_{2}^{\alpha}}{4}$, it follows from a straight computation that
$|\nabla \Phi|^{2}=\sum \phi_{i j}^{\alpha} \Phi_{j} H_{i}^{\alpha}=\left(\sum \phi_{11}^{\alpha} H_{1}^{\alpha}+\sum \phi_{12}^{\alpha} H_{2}^{\alpha}\right)^{2}+\left(\sum \phi_{12}^{\alpha} H_{1}^{\alpha}+\sum \phi_{22}^{\alpha} H_{2}^{\alpha}\right)^{2}$.

We obtain the first equation.
Since $\Phi=\frac{2}{3}+\frac{H^{2}}{8}+r(H)$, we have

$$
\Phi_{i}=\left(\frac{1}{4}+\frac{\frac{1}{6}+\frac{H^{2}}{48}}{r(H)}\right) \sum H^{\alpha} H_{i}^{\alpha}
$$

and hence

$$
\sum H^{\alpha} H_{i}^{\alpha} \Phi_{i}=\frac{r(H)|\nabla \Phi|^{2}}{\frac{r(H)}{4}+\frac{1}{6}+\frac{H^{2}}{48}}
$$

Multiplying by H^{α}, dividing by Φ and integrating over M, the equation $\Delta H^{\alpha}+\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} H^{\beta}=0$ implies that

$$
\begin{aligned}
0 & =\int_{M}\left(\frac{\sum H^{\alpha} \Delta^{\perp} H^{\alpha}}{\Phi}+\frac{\sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} H^{\alpha} H^{\beta}}{\Phi}\right) \\
& =\int_{M}\left[-\sum\left(\frac{H^{\alpha}}{\Phi}\right)_{i} H_{i}^{\alpha}+\frac{1}{\Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}\right] \\
& =\int_{M}\left[-\sum\left(\frac{\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{\Phi}+\frac{\Phi_{i} H^{\alpha} H_{i}^{\alpha}}{\Phi^{2}}\right)+\frac{1}{\Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}\right] \\
& =\int_{M}\left[-\sum \frac{\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{\Phi}+\frac{r(H)}{\frac{r(H)}{4}+\frac{1}{6}+\frac{H^{2}}{48}} \frac{|\nabla \Phi|^{2}}{\Phi^{2}}+\frac{1}{\Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}\right] .
\end{aligned}
$$

This gives the second equation.

Step 2. We shall show that H^{2} and Φ are constants. Dividing the
equation of Lemma 1 by Φ and integrating over M, we get

$$
\int_{M} \frac{\Delta \Phi}{2 \Phi}=\int_{M}\left[\frac{\sum\left(\phi_{i j k}^{\alpha}\right)^{2}}{\Phi}+\frac{\sum \phi_{i j}^{\alpha} H_{i j}^{\alpha}}{\Phi}+\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{\sum R_{\alpha \beta 12}^{2}}{\Phi}\right] .
$$

By applying Stokes' theorem, we obtain

$$
\begin{aligned}
\int_{M} \frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}= & \int_{M}\left[\frac{\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{4 \Phi}-\sum \frac{\Phi \phi_{i j j}^{\alpha}-\phi_{i j}^{\alpha} \Phi_{j}}{\Phi^{2}} H_{i}^{\alpha}+\left(2+\frac{H^{2}}{2}-\Phi\right)\right. \\
& \left.-\frac{\sum R_{\alpha \beta 12}^{2}}{\Phi}\right] \\
= & \int_{M}\left[\frac{\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{4 \Phi}-\frac{\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{2 \Phi}+\frac{\sum \phi_{i j}^{\alpha} \Phi_{j} H_{i}^{\alpha}}{\Phi^{2}}\right. \\
& \left.+\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{\sum R_{\alpha \beta 12}^{2}}{\Phi}\right]
\end{aligned}
$$

where we have used $\sum\left(\phi_{i j k}^{\alpha}\right)^{2}=\frac{1}{4} \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}$ and $\sum \phi_{i j j}^{\alpha}=\frac{H_{i}^{\alpha}}{2}$ for all i. Consequently, we obtain from the equations of step 1 that

$$
\begin{aligned}
& 0= \int_{M}\left[-\frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}-\frac{\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}}{4 \Phi}+\frac{\sum \phi_{i j}^{\alpha} \Phi_{j} H_{i}^{\alpha}}{\Phi^{2}}+\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{\sum R_{\alpha \beta 12}^{2}}{\Phi}\right] \\
&=\int_{M}\left[-\frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}-\frac{r(H)}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}} \frac{|\nabla \Phi|^{2}}{\Phi^{2}}-\frac{1}{4 \Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}+\frac{|\nabla \Phi|^{2}}{\Phi^{2}}\right. \\
&\left.+\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{\sum R_{\alpha \beta 12}^{2}}{\Phi}\right] \\
&=\int_{M}\left[\frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}\left(1-\frac{2 r(H)}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}}\right)-\frac{1}{4 \Phi} \sum\left(\sum \phi_{i j}^{\alpha} H^{\alpha}\right)^{2}+\left(2+\frac{H^{2}}{2}-\Phi\right)\right. \\
&\left.\quad-\frac{8}{\Phi} \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}+\frac{8}{\Phi}\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right] \\
&= \int_{M}\left\{\frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}\left(1-\frac{2 r(H)}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}}\right)+\frac{1}{\Phi}\left[\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{1}{2}\left(\left(\sum \phi_{11}^{\alpha} H^{\alpha}\right)^{2}\right.\right.\right. \\
&\left.\left.\left.+\left(\sum \phi_{12}^{\alpha} H^{\alpha}\right)^{2}+16 \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}-16\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right)\right]\right\} \\
&\left.2 \Phi^{2}\left(1-\frac{|\nabla \Phi|^{2}}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}}\right)+\frac{1}{\Phi}\left[\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right)^{2}\right]\right\} .
\end{aligned}
$$

Since the last term of the integrand vanishes,

$$
\Phi\left(2+\frac{H^{2}}{2}-\Phi\right)-\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right)^{2}=-\frac{3}{2}\left[\Phi^{2}-\left(\frac{4}{3}+\frac{H^{2}}{4}\right) \Phi+\frac{H^{4}}{192}\right]=0
$$

we have

$$
\int_{M} \frac{|\nabla \Phi|^{2}}{2 \Phi^{2}}\left(1-\frac{2 r(H)}{r(H)+\frac{2}{3}+\frac{H^{2}}{12}}\right)=0
$$

We note that the integrand is non-positive. In fact, let

$$
f(x)=\frac{1}{2}+\frac{\frac{1}{3}+\frac{x}{24}}{\sqrt{\frac{4}{9}+\frac{1}{6} x+\frac{1}{96} x^{2}}} .
$$

Then

$$
f^{\prime}(x)=-\frac{1}{108\left(\frac{4}{9}+\frac{1}{6} x+\frac{1}{96} x^{2}\right)^{\frac{3}{2}}}<0
$$

for all $x>0, f$ is decreasing for all $x \geq 0$, and $f(x)<f(0)=1$ for all $x>0$.
We then have $|\nabla \Phi|=0$ or $H=0$, thus Φ is constant on each connected component of the set where $H \neq 0$. Since H^{2} satisfies the quadratic equation $\Phi^{2}-\left(\frac{4}{3}+\frac{H^{2}}{4}\right) \Phi+\frac{H^{4}}{192}=0, H^{2}$ is also constant on each connected component of the set where $H \neq 0$. We conclude that, whether H is zero or not, H^{2} and Φ are constants.

Step 3. Assume that H^{2} is a positive constant. We establish the following five equations:

$$
\begin{gathered}
\Delta^{\perp} H^{\alpha}+\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{\alpha}=0, \\
\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}=\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{2}, \\
\sum \phi_{11}^{\alpha} H_{1}^{\alpha}=\sum \phi_{12}^{\alpha} H_{1}^{\alpha}=\sum \phi_{11}^{\alpha} H_{2}^{\alpha}=\sum \phi_{12}^{\alpha} H_{2}^{\alpha}=0, \\
\sum\left(H_{1}^{\alpha}\right)^{2}-\left(H_{2}^{\alpha}\right)^{2}=2\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{11}^{\alpha} H^{\alpha}
\end{gathered}
$$

and

$$
\sum H_{1}^{\alpha} H_{2}^{\alpha}=\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{12}^{\alpha} H^{\alpha} .
$$

Since the equality in Lemma 2.5 with $c=1$ holds, applying

$$
H^{\alpha}=\frac{4}{\Phi+\frac{H^{2}}{8}}\left(\sum \phi_{11}^{\beta} H^{\beta} \phi_{11}^{\alpha}+\sum \phi_{12}^{\beta} H^{\beta} \phi_{12}^{\alpha}\right)
$$

twice, we have

$$
\begin{aligned}
\phi_{i j}^{\alpha} \phi_{i j}^{\beta} H^{\beta}= & \frac{8}{\Phi+\frac{H^{2}}{8}}\left[\left(\sum\left(\phi_{11}^{\beta}\right)^{2} \sum \phi_{11}^{\beta} H^{\beta}+\sum \phi_{11}^{\beta} \phi_{12}^{\beta} \sum \phi_{12}^{\beta} H^{\beta}\right) \phi_{11}^{\alpha}\right. \\
& \left.+\left(\sum \phi_{11}^{\beta} \phi_{12}^{\beta} \sum \phi_{11}^{\beta} H^{\beta}+\sum\left(\phi_{12}^{\beta}\right)^{2} \sum \phi_{12}^{\beta} H^{\beta}\right) \phi_{12}^{\alpha}\right] \\
= & \frac{8}{\Phi+\frac{H^{2}}{8}}\left[\frac{1}{4}\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{11}^{\beta} H^{\beta} \phi_{11}^{\alpha}+\frac{1}{4}\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{12}^{\beta} H^{\beta} \phi_{12}^{\alpha}\right] \\
= & \frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{\alpha} .
\end{aligned}
$$

Thus

$$
\Delta^{\perp} H^{\alpha}+\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{\alpha}=0
$$

as desired. We obtain the first equation.
Since H^{2} is a constant, the first equation gives

$$
\begin{aligned}
0 & =\frac{1}{2} \Delta H^{2} \\
& =\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}+\sum H^{\alpha} \Delta^{\perp} H^{\alpha} \\
& =\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}-\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{2}
\end{aligned}
$$

This is the second equation.
Now we show the third equation. Because the equality in Lemma 2.5 with $c=1$ holds, we have

$$
\begin{aligned}
A^{2}+B^{2} & =\frac{H^{2}}{4}\left(\Phi+\frac{H^{2}}{8}\right), \\
A^{2}-B^{2} & =4\left(\Phi+\frac{H^{2}}{8}\right)\left[\sum\left(\phi_{11}^{\alpha}\right)^{2}-\sum\left(\phi_{12}^{\alpha}\right)^{2}\right] \\
A B & =4\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{11}^{\alpha} \phi_{12}^{\alpha},
\end{aligned}
$$

where $A=\sum \phi_{11}^{\alpha} H^{\alpha}$ and $B=\sum \phi_{12}^{\alpha} H^{\alpha}$.

Since $A^{2}+B^{2}$ and H^{2} are constants,

$$
\begin{aligned}
0 & =2 A\left(\sum \phi_{111}^{\alpha} H^{\alpha}+\sum \phi_{11}^{\alpha} H_{1}^{\alpha}\right)+2 B\left(\sum \phi_{121}^{\alpha} H^{\alpha}+\sum \phi_{12}^{\alpha} H_{1}^{\alpha}\right) \\
& =2 A \sum \phi_{11}^{\alpha} H_{1}^{\alpha}+2 B \sum \phi_{12}^{\alpha} H_{1}^{\alpha}
\end{aligned}
$$

we have

$$
A \sum \phi_{11}^{\alpha} H_{1}^{\alpha}+B \sum \phi_{12}^{\alpha} H_{1}^{\alpha}=0
$$

we make use here of the facts that $\phi_{111}^{\alpha}=\frac{H_{1}^{\alpha}}{4}$ and $\phi_{121}=\frac{H_{2}^{\alpha}}{4}$. Similarly, we also have

$$
A \sum \phi_{11}^{\beta} H_{2}^{\beta}+B \sum \phi_{12}^{\beta} H_{2}^{\beta}=0 .
$$

Since $A^{2}+B^{2}$ is a positive constant, $\sum \phi_{11}^{\alpha} H_{1}^{\alpha}=-t B, \sum \phi_{12}^{\alpha} H_{1}^{\alpha}=t A$, $\sum \phi_{11}^{\alpha} H_{2}^{\alpha}=-s B$ and $\sum \phi_{12}^{\alpha} H_{2}^{\alpha}=s A$, for some functions t and s.

Taking differentiation of equations $A^{2}-B^{2}=4\left(\Phi+\frac{H^{2}}{8}\right)\left[\sum\left(\phi_{11}^{\alpha}\right)^{2}-\right.$ $\left.\sum\left(\phi_{12}^{\alpha}\right)^{2}\right]$ and $A B=4\left(\Phi+\frac{H^{2}}{8}\right) \sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}$, and then substituting $\sum \phi_{11}^{\alpha} H_{1}^{\alpha}=$ $-t B, \sum \phi_{12}^{\alpha} H_{1}^{\alpha}=t A, \sum \phi_{11}^{\alpha} H_{2}^{\alpha}=-s B$ and $\sum \phi_{12}^{\alpha} H_{2}^{\alpha}=s A$, we get

$$
\begin{aligned}
2 t A B & =\left(\Phi+\frac{H^{2}}{8}\right)(s A+t B), \\
2 s A B & =\left(\Phi+\frac{H^{2}}{8}\right)(t A-s B), \\
t\left(A^{2}-B^{2}\right) & =\left(\Phi+\frac{H^{2}}{8}\right)(t A-s B), \\
s\left(A^{2}-B^{2}\right) & =\left(\Phi+\frac{H^{2}}{8}\right)(-s A-t B) .
\end{aligned}
$$

In particular, $t\left(A^{2}-B^{2}\right)=2 s A B, s\left(A^{2}-B^{2}\right)=-2 t A B$, and $s^{2} A B=$ $-t^{2} A B$. Since at least one of A and B is nonzero, there are three cases. If $A=0$, then $-t B^{2}=0,-s B^{2}=0$, so that $t=s=0$. Likewise, if $B=0$, then $t=s=0$. If A and B are nonzero, then $s^{2}=-t^{2}$, and hence $t=s=0$. In each case, $t=s=0$. Therefore we have the third equation.

Taking differentiation of the third equation, and substituting $\phi_{111}^{\alpha}=$ $\phi_{122}^{\alpha}=\phi_{212}^{\alpha}=-\phi_{221}^{\alpha}=\frac{H_{1}^{\alpha}}{4}$ and $\phi_{211}^{\alpha}=\phi_{222}^{\alpha}=\phi_{121}^{\alpha}=-\phi_{112}^{\alpha}=\frac{H_{2}^{\alpha}}{4}$, we find
that

$$
\begin{aligned}
\frac{1}{4} \sum\left[\left(H_{1}^{\alpha}\right)^{2}-\left(H_{2}^{\alpha}\right)^{2}\right]+\sum \phi_{11}^{\alpha} \Delta^{\perp} H^{\alpha} & =0 \\
-\frac{1}{2} \sum H_{1}^{\alpha} H_{2}^{\alpha}+\sum \phi_{11}^{\alpha}\left(H_{12}^{\alpha}-H_{21}^{\alpha}\right) & =0 \\
\frac{1}{2} \sum H_{1}^{\alpha} H_{2}^{\alpha}+\sum \phi_{12}^{\alpha} \Delta^{\perp} H^{\alpha} & =0 \\
\frac{1}{4} \sum\left[\left(H_{1}^{\alpha}\right)^{2}-\left(H_{2}^{\alpha}\right)^{2}\right]+\sum \phi_{12}^{\alpha}\left(H_{12}^{\alpha}-H_{21}^{\alpha}\right) & =0
\end{aligned}
$$

The equations four and five then follow from $\Delta^{\perp} H^{\alpha}+\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) H^{\alpha}=0$ and

$$
H_{12}^{\alpha}-H_{21}^{\alpha}=\sum H^{\beta} R_{\beta \alpha 12}=2 \sum H^{\beta}\left(\phi_{12}^{\alpha} \phi_{11}^{\beta}-\phi_{11}^{\alpha} \phi_{12}^{\beta}\right)
$$

Step 4. The hard part is to show that M is minimal. Suppose, to get a contradiction, that H^{2} is a positive constant. The following computation is straightforward,

$$
\sum H_{i}^{\alpha} H_{j}^{\alpha} R_{i k j k}=\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2} R_{1212}=\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right) \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}
$$

Applying the third equation of step 3, we obtain

$$
\sum H_{i}^{\alpha} H_{j}^{\beta} R_{\beta \alpha i j}=-2 \sum\left(H_{1}^{\alpha} H_{2}^{\beta}-H_{2}^{\alpha} H_{1}^{\beta}\right)\left(\phi_{11}^{\alpha} \phi_{12}^{\beta}-\phi_{12}^{\alpha} \phi_{11}^{\beta}\right)=0
$$

Because $\phi_{111}^{\alpha}=\phi_{122}^{\alpha}=\phi_{212}^{\alpha}=-\phi_{221}^{\alpha}=\frac{H_{1}^{\alpha}}{4}$ and $\phi_{211}^{\alpha}=\phi_{222}^{\alpha}=\phi_{121}^{\alpha}=$ $-\phi_{112}^{\alpha}=\frac{H_{2}^{\alpha}}{4}$,
$\sum H_{i}^{\alpha} H^{\beta} R_{\beta \alpha i j, j}=\frac{1}{2} \sum\left[\left(H_{1}^{\alpha}\right)^{2}-\left(H_{2}^{\alpha}\right)^{2}\right] \sum \phi_{11}^{\alpha} H^{\alpha}+\sum H_{1}^{\alpha} H_{2}^{\alpha} \sum \phi_{12}^{\alpha} H^{\alpha}$.
Applying the fourth and fifth equations of step 3, we obtain

$$
\sum H_{i}^{\alpha} H^{\beta} R_{\beta \alpha i j, j}=\frac{1}{4}\left(\Phi+\frac{H^{2}}{8}\right)^{2} H^{2}
$$

Because H^{2} and Φ are constants, $\sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}$ is also a constant, com-
bining the above equations, we have

$$
\begin{aligned}
0= & \frac{1}{2} \Delta \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}=\sum\left(H_{i j}^{\alpha}\right)^{2}+\sum H_{i}^{\alpha} H_{i j j}^{\alpha} \\
= & \sum\left(H_{i j}^{\alpha}\right)^{2}+\sum H_{i}^{\alpha}\left(H_{j j i}^{\alpha}+H_{k}^{\alpha} R_{k j i j}+2 H_{j}^{\beta} R_{\beta \alpha i j}+H^{\beta} R_{\beta \alpha i j, j}\right) \\
= & \sum\left(H_{i j}^{\alpha}\right)^{2}+\sum H_{i}^{\alpha}\left(\Delta^{\perp} H^{\alpha}\right)_{i}+\sum H_{i}^{\alpha} H_{j}^{\alpha} R_{i k j k}+2 \sum H_{i}^{\alpha} H_{j}^{\beta} R_{\beta \alpha i j} \\
& +\sum H_{i}^{\alpha} H^{\beta} R_{\beta \alpha i j, j} \\
= & \sum\left(H_{i j}^{\alpha}\right)^{2}-\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}+\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right) \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2} \\
& +\sum H_{i}^{\alpha} H^{\beta} R_{\beta \alpha i j, j} \\
\geq & \frac{1}{2} \sum\left(\sum H_{i i}^{\alpha}\right)^{2}-\frac{1}{2}\left(\Phi+\frac{H^{2}}{8}\right) \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2}+\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right) \sum\left|\nabla^{\perp} H^{\alpha}\right|^{2} \\
& +\sum H_{i}^{\alpha} H^{\beta} R_{\beta \alpha i j, j} \\
= & \frac{1}{8}\left(\Phi+\frac{H^{2}}{8}\right) H^{2}\left(\frac{10}{3}+H^{2}-r(H)\right)>0 .
\end{aligned}
$$

We then have a contradiction. This contradiction shows that $H=0$. Then we conclude that M is a minimal surface with $\Phi=\frac{4}{3}$, so that M is the Veronese surface (see [7]). This completes the proof of the Theorem 1.1.

4. Proof of Theorem 1.2

The idea of the proof is to consider a minimizing sequence g_{m} of the conformal group G, such that the sequence g_{m} converges to an element g_{0} of the closure of G. If $g_{0} \in G$, then the result follows immediately from Theorem 1.1. Otherwise we shall show that M is totally umbilical.

By the hypothesis of Theorem 1.2, there is a sequence $g_{m} \in G$ such that $\Phi_{m}-\frac{1}{8} H_{m}^{2}-r\left(H_{m}\right) \leq \frac{2}{3}+\frac{1}{m}$ on M, for all m, where $r(H)=\sqrt{\frac{4}{9}+\frac{1}{6} H^{2}+\frac{1}{96} H^{4}}$, Φ_{m} and H_{m} are the square of the length of the trace free part of the second fundamental form and the mean curvature of the immersion $g_{m} \circ x$, respectively. Without loss of generality, we may assume that $g_{m} \in D_{n+1}$. Since the closure of D_{n+1} in R^{n+1} is compact, there is a subsequence, still denoted by g_{m}, which converges to g_{0}, for some g_{0} in the closed unit disk. If $g_{0} \in D_{n+1}$, then Φ_{m} tends to Φ_{0}, and H_{m}^{2} tends to H_{0}^{2} as m tends to infinity. In this case, we obtain that $\Phi_{0}-\frac{1}{8} H_{0}^{2}-r\left(H_{0}\right) \leq \frac{2}{3}$ on M , and the desired conclusion
follows from Theorem 1.1. Thus from now on, we may assume that g_{0} is a unit vector. In this case we shall show below that M is totally umbilical. There are four steps we want to do at this point.

Step 1. We want to show that $\Phi=0$ or $\left(1+<x, g_{0}>\right)^{2} \Phi=\frac{3+\sqrt{6}}{24} F^{2}$. The proof is an adaptation of the proof of Theorem 1.1. To avoid ambiguity, for each fixed m, let $\bar{x}=g_{m} \circ x$, and we shall now use the notations $d a$ and $d \bar{a}$ for the area measures of x and \bar{x}, respectively. We have to modify our integral inequality in the proof of Theorem 1.1 as follows

$$
\begin{aligned}
0 & =\int_{M}\left[\sum\left(\bar{\phi}_{i j k}^{\alpha}\right)^{2}+\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i j}^{\alpha}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
& =\int_{M}\left[\sum\left(\bar{\phi}_{i j k}^{\alpha}\right)^{2}-\sum \bar{\phi}_{i j j}^{\alpha} \bar{H}_{i}^{\alpha}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
& \geq \int_{M}\left[-\frac{1}{4} \sum\left|\bar{\nabla}^{\perp} \bar{H}^{\alpha}\right|^{2}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
& \geq \int_{M}\left[-\frac{1}{2} f(\bar{\Phi}, \bar{H})+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)\right] d \bar{a} \\
& \geq \int_{M} \bar{\Phi} v(\bar{\Phi}, \bar{H}) d \bar{a} \\
& =\int_{M} \Phi v(\bar{\Phi}, \bar{H}) d a
\end{aligned}
$$

where v is the continuous function defined on $M, v(\Phi, H)=-\frac{3}{2}\left[\Phi-\left(\frac{2}{3}+\right.\right.$ $\left.\left.\frac{H^{2}}{8}+r(H)\right)\right]$, if $\Phi>\frac{2}{3}+\frac{H^{2}}{8}+r(H) ; v(\Phi, H)=-\frac{\sqrt{6}}{2}\left[\Phi-\left(\frac{2}{3}+\frac{H^{2}}{8}+r(H)\right)\right]$, if $\frac{H^{2}}{8} \leq \Phi \leq \frac{2}{3}+\frac{H^{2}}{8}+r(H) ; v(\Phi, H)=\frac{\sqrt{6}}{3}+\frac{H^{2}}{8}+\frac{\sqrt{6}}{2} r(H)-\Phi$, if $\Phi<\frac{H^{2}}{8}$.

Dividing the integral inequality by $\lambda_{m}^{2}=\frac{1}{1-\left|g_{m}\right|^{2}}$ and letting $m \longrightarrow \infty$, Lemma 2.6 gives

$$
0 \geq \int_{M} \Phi L(\Phi, F) d a
$$

where $\mathbb{F}=\sum F^{\alpha} e_{\alpha}, F=|\mathbb{F}|$, was defined at Lemma 2.7 and L is the continuous function given by $L(\Phi, F)=-\frac{3}{2}\left[\left(1+<x, g_{0}>\right)^{2} \Phi-\frac{3+\sqrt{6}}{24} F^{2}\right]$, if $\left(1+<x, g_{0}>\right)^{2} \Phi \geq \frac{3+\sqrt{6}}{24} F^{2} ; L(\Phi, F)=-\frac{\sqrt{6}}{2}\left[\left(1+<x, g_{0}>\right)^{2} \Phi-\frac{3+\sqrt{6}}{24} F^{2}\right]$, if $\frac{F^{2}}{8} \leq\left(1+<x, g_{0}>\right)^{2} \Phi \leq \frac{3+\sqrt{6}}{24} F^{2} ; L(\Phi, F)=\frac{F^{2}}{4}-\left(1+<x, g_{0}>\right)^{2} \Phi$, if $\left(1+<x, g_{0}>\right)^{2} \Phi \leq \frac{F^{2}}{8}$.

On the other hand, since $\Phi_{m}-\frac{1}{8} H_{m}^{2}-\sqrt{\frac{4}{9}+\frac{1}{6} H_{m}^{2}+\frac{1}{96} H_{m}^{4}} \leq \frac{2}{3}+\frac{1}{m}$ on M, taking limits $m \longrightarrow \infty$, we see that

$$
\left(1+<x, g_{0}>\right)^{2} \Phi-\frac{3+\sqrt{6}}{24} F^{2} \leq 0
$$

and thus the integrand ΦL is nonnegative. We conclude that $\Phi=0$ or $L=0$, and hence $\Phi=0$ or $\left(1+<x, g_{0}>\right)^{2} \Phi=\frac{3+\sqrt{6}}{24} F^{2}$. We note that all inequalities become equalities in the procedure for limits, and, in particular, $\psi_{i j j}^{\alpha}=\frac{F_{i}^{\alpha}}{4}$ for all α, i, j.

Step 2. We want to show that either M is totally umbilical or $(1+<$ $\left.x, g_{0}>\right)^{2} \Phi$ and F^{2} are positive constants. Multiplying both sides of the equation for $\bar{\Phi}$ in Lemma 2.1 by $\bar{\Phi}$, integrating over M and applying pointwise estimates of Step 1, we obtain

$$
\begin{aligned}
0= & \int_{M}\left[\frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}+\frac{1}{2} \bar{\Phi} \bar{\Delta} \bar{\Phi}\right] d \bar{a} \\
= & \int_{M} \frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}+\bar{\Phi}\left[\sum\left(\bar{\phi}_{i j k}^{\alpha}\right)^{2}+\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i j}^{\alpha}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
\geq & \int_{M} \frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}-\frac{1}{4} \bar{\Phi} \sum\left|\nabla^{\perp} \bar{H}^{\alpha}\right|^{2}-\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i}^{\alpha} \bar{\Phi}_{j} \\
& +\bar{\Phi}\left[\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
= & \int_{M} \frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}+\frac{1}{4} \sum \bar{\Phi}_{i} \bar{H}^{\alpha} \bar{H}_{i}^{\alpha}-\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i}^{\alpha} \bar{\Phi}_{j} \\
& +\bar{\Phi}\left[-\frac{1}{4} \sum\left(\sum \bar{\phi}_{i j}^{\alpha} \bar{H}^{\alpha}\right)^{2}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a},
\end{aligned}
$$

where in the last step we have used the identity

$$
\int_{M} \bar{\Phi} \sum\left|\bar{\nabla}^{\perp} \bar{H}^{\alpha}\right|^{2} d \bar{a}=\int_{M}\left[-\sum \bar{\Phi}_{i} \bar{H}^{\alpha} \bar{H}_{i}^{\alpha}+\bar{\Phi} \sum\left(\sum \bar{\phi}_{i j}^{\alpha} \bar{H}^{\alpha}\right)^{2}\right] d \bar{a}
$$

In fact, this identity comes from multiplying the equation $\bar{\Delta}{ }^{\perp} \bar{H}^{\alpha}+\sum \bar{\phi}_{i j}^{\alpha} \bar{\phi}_{i j}^{\beta} \bar{H}^{\beta}$ $=0$ by $\bar{\Phi} \bar{H}^{\alpha}$ and then integrating over M.

By using Lemma 2.5 again, we have

$$
\begin{aligned}
0 \geq & \int_{M}\left[\frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}+\frac{1}{4} \sum \bar{\Phi}_{i} \bar{H}^{\alpha} \bar{H}_{i}^{\alpha}-\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i}^{\alpha} \bar{\Phi}_{j}\right] d \bar{a} \\
& +\int_{M} \bar{\Phi}\left[-\frac{1}{2} f(\bar{\Phi}, \bar{H})+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)\right] d \bar{a} \\
\geq & \int_{M}\left[\frac{1}{2}|\bar{\nabla} \bar{\Phi}|^{2}+\frac{1}{4} \sum \bar{\Phi}_{i} \bar{H}^{\alpha} \bar{H}_{i}^{\alpha}-\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i}^{\alpha} \bar{\Phi}_{j}+\bar{\Phi}^{2} v(\bar{\Phi}, \bar{H})\right] d \bar{a}
\end{aligned}
$$

where v was given at Step 1. Substituting the relationships of Lemma 2.6 into this last integral, we get

$$
\begin{aligned}
0 \geq \int_{M}[& 2 \lambda_{m}^{6}\left(1+<x, g_{m}>\right)^{4} \sum\left(\phi_{k l}^{\alpha} \psi_{k l i}^{\alpha}\right)^{2} \\
& -2 \lambda_{m}^{6}\left(1+<x, g_{m}>\right)^{4} \sum \phi_{k l}^{\alpha} \psi_{k l i}^{\alpha} \sum \phi_{i j}^{\alpha} F_{j}^{\alpha} \\
& +\frac{1}{2} \lambda_{m}^{6}\left(1+<x, g_{m}>\right)^{3} \sum \phi_{k l}^{\alpha} \psi_{k l i}^{\alpha} \sum F^{\alpha} F_{i}^{\alpha} \\
& \left.+\lambda_{m}^{4}\left(1+<x, g_{m}>\right)^{4} \Phi^{2} v\left(\lambda_{m}^{2}\left(1+<x, g_{m}>\right)^{2} \Phi, \lambda_{m} F\right)\right] \\
& \times \frac{1}{\lambda_{m}^{2}\left(1+<x, g_{m}>\right)^{2}} d a
\end{aligned}
$$

Dividing the integral inequality by λ_{m}^{4} and letting $m \longrightarrow \infty$, we find that

$$
\begin{aligned}
0 \geq \int_{M}[& {\left[2\left(1+<x, g_{0}>\right)^{2} \sum\left(\phi_{k l}^{\alpha} \psi_{k l i}^{\alpha}\right)^{2}\right.} \\
& -2\left(1+<x, g_{0}>\right)^{2} \sum \phi_{k l}^{\alpha} \psi_{k l i}^{\alpha} \sum \phi_{i j}^{\alpha} F_{j}^{\alpha} \\
& \left.+\frac{1}{2}\left(1+<x, g_{0}>\right) \sum \phi_{k l}^{\alpha} \psi_{k l i}^{\alpha} \sum F^{\alpha} F_{i}^{\alpha}\right] d a
\end{aligned}
$$

this we can do because $\Phi=0$ or $L=0$. We assert that the integrand is nonnegative. Let Ω be a connected component of the set of points where $\Phi>0$, and let $U=c\left(1+<x, g_{0}>\right) \sqrt{\Phi}$ defined on Ω, where $\frac{1}{c^{2}}=\frac{3+\sqrt{6}}{24}$. Then

$$
\begin{aligned}
U_{i}= & c \sqrt{\Phi}<e_{i}, g_{0}>+2 c \sum \frac{\phi_{11}^{\alpha}}{\sqrt{\Phi}}\left(1+<x, g_{0}>\right) \phi_{11 i}^{\alpha} \\
& +2 c \sum \frac{\phi_{12}^{\alpha}}{\sqrt{\Phi}}\left(1+<x, g_{0}>\right) \phi_{12 i}^{\alpha}
\end{aligned}
$$

for all i. Substituting $\left(1+<x, g_{0}>\right) \phi_{i j k}^{\alpha}$ in terms of $\psi_{i j k}^{\alpha}$, Lemma 2.8 gives

$$
U_{i}=\frac{c}{2 \sqrt{\Phi}} \sum \phi_{i j}^{\alpha} F_{j}^{\alpha}=\frac{c}{\sqrt{\Phi}} \sum \phi_{k l}^{\alpha} \psi_{k l i}^{\alpha}
$$

for all i, here we have used the fact that $\psi_{i j j}^{\alpha}=\frac{F_{i}^{\alpha}}{4}$ for all α, i, j. Since $F^{2}=U^{2}$, we find that the integrand is equal to $\left(1+<x, g_{0}>\right)^{2} \Phi\left(\frac{1}{2}-\right.$ $\left.\frac{2}{c^{2}}\right)|\nabla U|^{2}$ on Ω. When $\Phi=0$ the integrand vanishes, when $\Phi>0$, because $\frac{1}{2}-\frac{2}{c^{2}}=\frac{3-\sqrt{6}}{12}>0$, the integrand is also nonnegative, as desired.

Since every immersion is locally an embedding, $1+\left\langle x, g_{0}\right\rangle$ vanishes only at most finite points on M, thus $|\nabla U|^{2}=0$, if $\Phi>0$. Therefore U is constant on each connected component of the set where $\Phi \neq 0$. A consequence of this is that either M is totally umbilical or $\left(1+<x, g_{0}>\right)^{2} \Phi$ and F^{2} are constants.

Step 3. Assume that $\left(1+<x, g_{0}>\right)^{2} \Phi$ and F^{2} are positive constants. It is important now to derive the following four equations which will require in Step 4:

$$
\begin{gathered}
F^{\alpha}=\frac{4}{\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}}\left(\sum \phi_{11}^{\beta} F^{\beta} \phi_{11}^{\alpha}+\sum \phi_{12}^{\beta} F^{\beta} \phi_{12}^{\alpha}\right), \\
\sum \phi_{11}^{\alpha} F_{1}^{\alpha}=\sum \phi_{12}^{\alpha} F_{1}^{\alpha}=\sum \phi_{11}^{\alpha} F_{2}^{\alpha}=\sum \phi_{12}^{\alpha} F_{2}^{\alpha}=0, \\
\left(1+<x, g_{0}>\right)^{2} \sum\left[\left(F_{1}^{\alpha}\right)^{2}-\left(F_{2}^{\alpha}\right)^{2}\right]=2\left[\left(1+<x, g_{0}>\right)^{2} \Phi+\frac{F^{2}}{8}\right] \sum \phi_{11}^{\alpha} F^{\alpha}
\end{gathered}
$$

and

$$
\left(1+<x, g_{0}>\right)^{2} \sum F_{1}^{\alpha} F_{2}^{\alpha}=\left[\left(1+<x, g_{0}>\right)^{2} \Phi+\frac{F^{2}}{8}\right] \sum \phi_{12}^{\alpha} F^{\alpha}
$$

The way of proof is proceeding as the procedure of Step 1, but reverses the order of taking limits and applying Lemma 2.5. Since $g_{m} \circ x$ is a Willmore
immersion, Lemma 2.6 gives

$$
\begin{aligned}
0= & \int_{M}\left[\sum\left(\bar{\phi}_{i j k}^{\alpha}\right)^{2}+\sum \bar{\phi}_{i j}^{\alpha} \bar{H}_{i j}^{\alpha}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
= & \int_{M}\left[\sum\left(\bar{\phi}_{i j k}^{\alpha}\right)^{2}-\sum \bar{\phi}_{i j j}^{\alpha} \bar{H}_{i}^{\alpha}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
\geq & \int_{M}\left[-\frac{1}{4} \sum\left|\bar{\nabla}^{\perp} \bar{H}^{\alpha}\right|^{2}+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)-\sum \bar{R}_{\alpha \beta 12}^{2}\right] d \bar{a} \\
\geq & \int_{M}\left\{-\frac{1}{2}\left[\left(\sum \bar{\phi}_{11}^{\alpha} \bar{H}^{\alpha}\right)^{2}+\left(\sum \bar{\phi}_{12}^{\alpha} \bar{H}^{\alpha}\right)^{2}+16 \sum\left(\bar{\phi}_{11}^{\alpha}\right)^{2} \sum\left(\bar{\phi}_{12}^{\alpha}\right)^{2}\right.\right. \\
= & \int_{M}\left\{-\frac{1}{2} \lambda_{m}^{2}\left[\left(\sum \bar{\phi}_{11}^{\alpha} \bar{\phi}_{12}^{\alpha}\right)^{2}\right]+\bar{\Phi}\left(2+\frac{\bar{H}^{2}}{2}-\bar{\Phi}\right)\right\} d \bar{a} \\
& +16\left(1+<x, g_{m}>\right)^{2} \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2} \\
& \left.-16\left(1+<x, g_{m}>\right)^{2}\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right] \\
& \left.+\Phi\left(2+\frac{\lambda_{m}^{2} F_{m}^{2}}{2}-\lambda_{m}^{2}\left(1+<x, g_{m}>\right)^{2} \Phi\right)\right\} d a,
\end{aligned}
$$

where $\lambda_{m}=\frac{1}{1-\left|g_{m}\right|^{2}}$, and $F_{m}^{2}=\sum\left(F_{m}^{\alpha}\right)^{2}$ was defined at Lemma 2.7 with $g=g_{m}$. Dividing the integral inequality by λ_{m}^{2} and letting $m \longrightarrow \infty$, we get

$$
\begin{aligned}
0 \geq & \int_{M}\left\{-\frac{1}{2}\left[\left(\sum \phi_{11}^{\alpha} F^{\alpha}\right)^{2}+\left(\sum \phi_{12}^{\alpha} F^{\alpha}\right)^{2}+16\left(1+<x, g_{0}>\right)^{2} \sum\left(\phi_{11}^{\alpha}\right)^{2} \sum\left(\phi_{12}^{\alpha}\right)^{2}\right.\right. \\
& \left.\left.-16\left(1+<x, g_{0}>\right)^{2}\left(\sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}\right)^{2}\right]+\Phi\left(\frac{F^{2}}{2}-\left(1+<x, g_{0}>\right)^{2} \Phi\right)\right\} d a,
\end{aligned}
$$

where F denote the function related to g_{0}.

Now, we apply Lemma 2.5 with $c=\left(1+<x, g_{0}>\right)^{2}$ to the first term of the integrand. Since $\left(1+<x, g_{0}>\right)^{2} \Phi$ is a positive constant, $1+<x, g_{0}>$ never vanishes and $\left(1+<x, g_{0}>\right)^{2} \Phi=\frac{3+\sqrt{6}}{24} F^{2}$, Lemma 2.5 gives

$$
\begin{aligned}
0 \geq \int_{M}\{ & -\frac{1}{2}\left(1+<x, g_{0}>\right)^{2}\left[\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right]^{2} \\
+ & \left.\Phi\left[\frac{F^{2}}{2}-\left(1+<x, g_{0}>\right)^{2} \Phi\right]\right\} d a
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{M}-\frac{3}{2}\left[\left(1+<x, g_{0}>\right)^{2} \Phi^{2}-\frac{\Phi F^{2}}{4}+\frac{F^{4}}{192\left(1+<x, g_{0}>\right)^{2}}\right] d a \\
& =0
\end{aligned}
$$

It follows that all the inequalities in the preceding process become equalities. In particular, the equality in Lemma 2.5 with $c=\left(1+<x, g_{0}>\right)^{2}$ holds, and hence the first equation follows immediately.

Applying the first equation twice, we have

$$
\begin{aligned}
& \sum \phi_{i j}^{\alpha} \phi_{i j}^{\beta} F^{\beta} \\
= & \frac{8}{\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}}\left[\left(\sum\left(\phi_{11}^{\beta}\right)^{2} \sum \phi_{11}^{\beta} F^{\beta}+\sum \phi_{11}^{\beta} \phi_{12}^{\beta} \sum \phi_{12}^{\beta} F^{\beta}\right) \phi_{11}^{\alpha}\right. \\
& \left.+\left(\sum \phi_{11}^{\beta} \phi_{12}^{\beta} \sum \phi_{11}^{\beta} F^{\beta}+\sum\left(\phi_{12}^{\beta}\right)^{2} \sum \phi_{12}^{\beta} F^{\beta}\right) \phi_{12}^{\alpha}\right] \\
= & \frac{8}{\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}}\left[\frac{1}{4}\left(\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right) \sum \phi_{11}^{\beta} F^{\beta} \phi_{11}^{\alpha}\right. \\
& \left.\quad+\frac{1}{4}\left(\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right) \sum \phi_{12}^{\beta} F^{\beta} \phi_{12}^{\alpha}\right] \\
= & \frac{1}{2}\left[\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right] F^{\alpha},
\end{aligned}
$$

for all α. Thus F^{α} satifies the following equation

$$
\Delta^{\perp} F^{\alpha}+\frac{1}{2}\left[\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right] F^{\alpha}=0
$$

The scheme of showing others are similar to that of Step 3 in the proof of Theorem 1.1. We made a brief sketch here for clarity and completeness. Let $\varphi_{i j}^{\alpha}=\left(1+<x, g_{0}>\right) \phi_{i j}^{\alpha}$ for all α, i, j. Because $\psi_{i j j}^{\alpha}=\frac{F_{i}^{\alpha}}{4}$, for all α, i, j, Lemma 2.8 gives

$$
\begin{gathered}
\varphi_{111}^{\alpha}=\frac{F_{1}^{\alpha}}{4}+2<e_{2}, g_{0}>\phi_{12}^{\alpha} \\
\varphi_{112}^{\alpha}=-\frac{F_{2}^{\alpha}}{4}-2<e_{1}, g_{0}>\phi_{12}^{\alpha} \\
\varphi_{121}^{\alpha}=\frac{F_{2}^{\alpha}}{4}-2<e_{2}, g_{0}>\phi_{11}^{\alpha}
\end{gathered}
$$

and

$$
\varphi_{122}^{\alpha}=\frac{F_{1}^{\alpha}}{4}+2<e_{1}, g_{0}>\phi_{11}^{\alpha}
$$

Because the equality in Lemma 2.5 with $c=(1+\langle x, g\rangle)^{2}$ holds, we have

$$
\begin{aligned}
A^{2}+B^{2} & =\frac{1}{2} C F^{2} \\
A^{2}-B^{2} & =8 C\left[\sum\left(\phi_{11}^{\alpha}\right)^{2}-\sum\left(\phi_{12}^{\alpha}\right)^{2}\right] \\
A B & =8 C \sum \phi_{11}^{\alpha} \phi_{12}^{\alpha}
\end{aligned}
$$

where $A=\sum \varphi_{11}^{\alpha} F^{\alpha}, B=\sum \varphi_{12}^{\alpha} F^{\alpha}$ and $C=\frac{1}{2}\left(\left(1+<x, g_{0}>\right)^{2} \Phi+\frac{F^{2}}{8}\right)$.
Since $A^{2}+B^{2}$ and F^{2} are constants, differentiating $A^{2}+B^{2}$ and substituting $\varphi_{i j k}^{\alpha}$ in terms of F_{i}^{α} and $\phi_{i j}^{\alpha}$, we obtain

$$
\begin{aligned}
& A \sum \varphi_{11}^{\alpha} F_{1}^{\alpha}+B \sum \varphi_{12}^{\alpha} F_{1}^{\alpha}=0 \\
& A \sum \varphi_{11}^{\alpha} F_{2}^{\alpha}+B \sum \varphi_{12}^{\alpha} F_{2}^{\alpha}=0
\end{aligned}
$$

Since $A^{2}+B^{2}$ is a positive constant, $\sum \varphi_{11}^{\alpha} F_{1}^{\alpha}=-t B, \sum \varphi_{12}^{\alpha} F_{1}^{\alpha}=t A$, $\sum \varphi_{11}^{\alpha} F_{2}^{\alpha}=-s B$ and $\sum \varphi_{12}^{\alpha} F_{2}^{\alpha}=s A$, for some functions t and s.

Next, we differentiate the equations involved $A^{2}-B^{2}$ and $A B$, obtaining

$$
\begin{aligned}
t A B & =C(s A+t B) \\
s A B & =C(t A-s B), \\
t\left(A^{2}-B^{2}\right) & =2 C(t A-s B), \\
s\left(A^{2}-B^{2}\right) & =2 C(-s A-t B) .
\end{aligned}
$$

As before, this implies $s=t=0$, and we get the second equation.
Differentiating the second equation, the proof of remaining part uses exactly the same argument as Theorem 1.1, one just replaces H^{α} by F^{α} throughout.

Step 4. Finally, we assert that M is totally umbilical. Suppose that, to get a contradiction, M is not totally umbilical. It will then follow from Step 2 that both $\left(1+<x, g_{0}>\right)^{2} \Phi$ and F^{2} are positive constants.

Setting $\left.C=\frac{1}{2}\left[\left(1+<x, g_{0}>\right)^{2} \Phi+\frac{F^{2}}{8}\right)\right]$, since F^{2} is a constant function, we have

$$
\begin{aligned}
0 & =\frac{1}{2}\left(1+<x, g_{0}>\right)^{2} \Delta F^{2} \\
& =\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}+\left(1+<x, g_{0}>\right)^{2} \sum F^{\alpha} \Delta^{\perp} F^{\alpha} \\
& =\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}-C F^{2},
\end{aligned}
$$

and hence

$$
\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}=C F^{2}
$$

This means that $\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}$ is also a constant function. Both first derivatives being equal to zeros, we get

$$
\begin{aligned}
& \left(1+<x, g_{0}>\right)^{2} \sum F_{j}^{\alpha} F_{j i}^{\alpha}<e_{i}, g_{0}> \\
= & -\left(1+<x, g_{0}>\right) \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}<e_{i}, g_{0}>^{2} .
\end{aligned}
$$

Once again we use the fact that $\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}$ is a constant, we have

$$
\begin{aligned}
0= & \frac{1}{2}\left(1+<x, g_{0}>\right)^{2} \Delta\left[\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}\right] \\
= & \frac{1}{2}\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2} \Delta\left(1+<x, g_{0}>\right)^{2} \\
& +\frac{1}{2}\left(1+<x, g_{0}>\right)^{4} \Delta \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2} \\
& +\left(1+<x, g_{0}>\right)^{2} \nabla\left(1+<x, g_{0}>\right)^{2} \cdot \nabla \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2} \\
= & C F^{2}\left[-3 \sum<e_{i}, g_{0}>^{2}\right. \\
& \left.+\left(1+<x, g_{0}>\right)\left(\sum H^{\alpha}<e_{\alpha}, g_{0}>-2<x, g_{0}>\right)\right] \\
& +\frac{1}{2}\left(1+<x, g_{0}>\right)^{4} \Delta \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2},
\end{aligned}
$$

here we have used the fact that $\Delta<x, g_{0}>=\sum H^{\alpha}<e_{\alpha}, g_{0}>-2<x, g_{0}>$.

We need to adjust the last term,

$$
\begin{aligned}
& \frac{1}{2}\left(1+<x, g_{0}>\right)^{4} \Delta \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2} \\
= & \left(1+<x, g_{0}>\right)^{4}\left[\sum\left(F_{i j}^{\alpha}\right)^{2}+\sum F_{i}^{\alpha} F_{i j j}^{\alpha}\right] \\
= & \left(1+<x, g_{0}>\right)^{4}\left[\sum\left(F_{i j}^{\alpha}\right)^{2}+\sum F_{i}^{\alpha}\left(\Delta^{\perp} F^{\alpha}\right)_{i}\right. \\
& \left.+\sum F_{i}^{\alpha} F_{j}^{\alpha} R_{i k j k}+2 \sum F_{i}^{\alpha} F_{j}^{\beta} R_{\beta \alpha i j}+\sum F_{i}^{\alpha} F^{\beta} R_{\beta \alpha i j, j}\right] .
\end{aligned}
$$

Now we take care of these terms containing curvature. First, it is straightforward that

$$
\sum F_{i}^{\alpha} F_{j}^{\alpha} R_{i k j k}=R_{1212} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}=\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right) \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}
$$

Next, applying the second equation of Step 3, we obtain

$$
\sum F_{i}^{\alpha} F_{j}^{\beta} R_{\beta \alpha i j}=-2\left(F_{1}^{\alpha} F_{2}^{\beta}-F_{2}^{\alpha} F_{1}^{\beta}\right)\left(\phi_{11}^{\alpha} \phi_{12}^{\beta}-\phi_{11}^{\alpha} \phi_{12}^{\beta}\right)=0
$$

Finally, substituting $\varphi_{i j k}^{\alpha}$ in terms of F_{i}^{α} and $\phi_{i j}^{\alpha}$, the second equation of Step 3 gives

$$
\begin{aligned}
& \left(1+<x, g_{0}>\right)^{2} \sum F_{i}^{\alpha} F^{\beta} R_{\beta \alpha i j, j} \\
= & \frac{1}{2} \sum \varphi_{11}^{\alpha} F^{\alpha} \sum\left[\left(F_{1}^{\alpha}\right)^{2}-\left(F_{2}^{\alpha}\right)^{2}\right]+\sum \varphi_{12}^{\alpha} F^{\alpha} \sum F_{1}^{\alpha} F_{2}^{\alpha} .
\end{aligned}
$$

Then applying the third and fourth equations of Step 3, we have

$$
\sum F_{i}^{\alpha} F^{\beta} R_{\beta \alpha i j, j}=\frac{F^{2}}{4}\left[\Phi+\frac{F^{2}}{8\left(1+<x, g_{0}>\right)^{2}}\right]^{2}
$$

Together these equations imply that

$$
\begin{aligned}
& \frac{1}{2}\left(1+<x, g_{0}>\right)^{4} \Delta \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2} \\
= & \left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}+C F^{2}\left(1+<x, g_{0}>\right)^{2}\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right) .
\end{aligned}
$$

Substituting this into the original equation, it follows that

$$
\begin{aligned}
0= & \left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}+C F^{2}\left[-3 \sum<e_{i}, g_{0}>^{2}\right. \\
& +\left(1+<x, g_{0}>\right)\left(\sum H^{\alpha}<e_{\alpha}, g_{0}>-2<x, g_{0}>\right) \\
& \left.+\left(1+<x, g_{0}>\right)^{2}\left(1+\frac{H^{2}}{4}-\frac{\Phi}{2}\right)\right] .
\end{aligned}
$$

To estimate the first term, let

$$
\begin{aligned}
\tilde{F}_{i j}^{\alpha}= & \left(1+<x, g_{0}>\right)^{2} F_{i j}^{\alpha}+\left(1+<x, g_{0}>\right)\left(F_{i}^{\alpha}<e_{j}, g_{0}>+F_{j}^{\alpha}<e_{i}, g_{0}>\right. \\
& \left.-\sum F_{k}^{\alpha}<e_{k}, g_{0}>\delta_{i j}\right),
\end{aligned}
$$

for all α, i, j. Then

$$
\sum \tilde{F}_{i i}^{\alpha}=\left(1+<x, g_{0}>\right)^{2} \sum F_{i i}^{\alpha}=-C F^{\alpha},
$$

and

$$
\begin{aligned}
& \sum\left(\tilde{F}_{i j}^{\alpha}\right)^{2} \\
= & 2\left(1+<x, g_{0}>\right)^{3}\left(\sum F_{i j}^{\alpha} F_{i}^{\alpha}<e_{j}, g_{0}>+\sum F_{i j}^{\alpha} F_{j}^{\alpha}<e_{i}, g_{0}>\right. \\
& \left.-\sum F_{i i}^{\alpha} F_{k}^{\alpha}<e_{k}, g_{0}>\right) \\
& +\left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}+2\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}<e_{i}, g_{0}>^{2} \\
= & 2\left(1+<x, g_{0}>\right)^{3}\left(2 \sum F_{i j}^{\alpha} F_{i}^{\alpha}<e_{j}, g_{0}>+\sum\left(F_{i j}^{\alpha}-F_{j i}^{\alpha}\right) F_{j}^{\alpha}<e_{i}, g_{0}>\right) \\
& +\left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}+2\left(1+<x, g_{0}>\right) C \sum F^{\alpha} F_{k}^{\alpha}<e_{k}, g_{0}> \\
& +2\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}<e_{i}, g_{0}>^{2} \\
= & 2\left(1+<x, g_{0}>\right)^{3}\left(2 \sum F_{i j}^{\alpha} F_{i}^{\alpha}<e_{j}, g_{0}>+\sum F^{\beta} R_{\beta \alpha i j} F_{j}^{\alpha}<e_{i}, g_{0}>\right) \\
& +\left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}+2\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}<e_{i}, g_{0}>^{2} \\
= & -2\left(1+<x, g_{0}>\right)^{2} \sum\left|\nabla^{\perp} F^{\alpha}\right|^{2}<e_{i}, g_{0}>^{2}+\left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2} .
\end{aligned}
$$

Thus the first term can estimate from below by

$$
\begin{aligned}
& \left(1+<x, g_{0}>\right)^{4} \sum\left(F_{i j}^{\alpha}\right)^{2}=\sum\left(\tilde{F}_{i j}^{\alpha}\right)^{2}+2 C F^{2} \sum<e_{i}, g_{0}>^{2} \\
\geq & \sum\left(\tilde{F}_{i i}^{\alpha}\right)^{2}+2 C F^{2} \sum<e_{i}, g_{0}>^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{1}{2} \sum\left(\sum \tilde{F}_{i i}^{\alpha}\right)^{2}+2 C F^{2} \sum<e_{i}, g_{0}>^{2} \\
& =\frac{1}{2} C^{2} F^{2}+2 C F^{2} \sum<e_{i}, g_{0}>^{2}
\end{aligned}
$$

Because $1=<x, g_{0}>^{2}+\sum<e_{i}, g_{0}>^{2}+\sum<e_{\alpha}, g_{0}>^{2}$, we conclude that

$$
\begin{aligned}
0 \geq & C F^{2}\left[1-\sum<e_{i}, g_{0}>^{2}-<x, g_{0}>^{2}+\frac{1}{4}\left(1+<x, g_{0}>\right)^{2} H^{2}\right. \\
& \left.+\left(1+<x, g_{0}>\right) H^{\alpha}<e_{\alpha}, g_{0}>+\frac{1}{32} F^{2}-\frac{1}{4}\left(1+<x, g_{0}>\right)^{2} \Phi\right] \\
= & C F^{2}\left[\frac{9}{32} F^{2}-\frac{1}{4}\left(1+<x, g_{0}>\right)^{2} \Phi\right]=\frac{24-\sqrt{6}}{96} C F^{4}>0 .
\end{aligned}
$$

This contradiction shows that M is totally umbilical. This completes the proof of Theorem 1.2.

References

1. H. Alencar and M. P. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc., 120 (1994), 1223-1229.
2. R. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom., 20 (1984), 23-53.
3. S. S. Chern, M. P. do Carmo and S. Kobayashi, Minimal submanifold of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 59-75.
4. B. Y. Chen, Some conformal invariants of submanifolds and their applications, Boll. Unione Mat. Ital., 10(1974), 380-385.
5. Y. C. Chang and Y. J. Hsu, Willmore surfaces in the unit n-sphere, Taiwanese J. Math., 8 (2004), 467-476.
6. F. Fontenele, Submanifolds with parallel mean curvature vector in pinched Riemannian manifolds, Pacific J. Math., 177 (1997), 47-70.
7. M. Kozlowski and U. Simon, Minimal immersions of 2-manifolds into spheres, Math. Z., 186 (1984), 377-382.
8. H. Li, Willmore hypersurfaces in a sphere, Asian J. Math., 5(2001), 365-378.
9. H. Li, Willmore surfaces in S^{n}, Ann. Global Anal. Geom., 21(2002), 203-213.
10. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69(1982), 269-291.
11. S. Montiel and A. Ros, Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math., 83 (1985), 153-166.
12. C. K. Peng and C. L. Terng, Minimal hypersurfaces of spheres with constant scalar curvature, Ann. of Math. Stud., 103(1983), 177-198.
13. W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J., 46(1994), 403-415.
14. J. Simons, Minamal varieties in riemannian manifolds, Ann. of Math., 88(1968), 62-105.
15. J. L. Weiner, On a problem of Chen, Willmore et al., Indiana Univ. Math. J., 27(1978), 19-35.

Department of Finance, Hsing Wu College, Linkou, Taiwan.
E-mail: 087003@mail.hwc.edu.tw
Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan.
E-mail: yjhsu@math.nctu.edu.tw

