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A PINCHING THEOREM FOR CONFORMAL

CLASSES OF WILLMORE SURFACES

IN THE UNIT n-SPHERE

BY

YU-CHUNG CHANG AND YI-JUNG HSU

Abstract

Let x : M →Sn be a compact immersed Willmore surface

in the n-dimensional unit sphere. In this paper, we consider the

case of n ≥ 4. We prove that if infg∈G maxg◦x(M)(Φg −
1
8
H2

g −
√

4
9
+ 1

6
H2

g + 1
96
H4

g ) ≤ 2
3
, where G is the conformal group of the

ambient space Sn, Φg and Hg are the square of the length of the

trace free part of the second fundamental form and the length of

the mean curvature vector of the immersion g◦x respectively, then

x(M) is either a totally umbilical sphere or a conformal Veronese

surface.

1. Introduction

Let x : M → Sn be a compact immersed surface in the n-dimensional

unit sphere Sn. We denote as usual by (hαij) the second fundamental form of

M, by Hα =
∑

hαii the α−component of the mean curvature vector H, by

H the length of the mean curvature vector, and by φαij = hαij − Hα

2 δij the

trace free part of the second fundamental form. Let Φ =
∑

(φαij)
2. Then the

Willmore functional is defined by

W (x) =

∫

M
Φ,
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where the integration is with respect to the area measure of M . This func-

tional is preserved if we move M via conformal transformations of Sn. The

critical points of W are called Willmore surfaces. They satisfy the Euler-

Lagrange equation

∆⊥Hα +
∑

φαijφ
β
ijH

β = 0,

where ∆⊥ is the Laplacian in the normal bundle NM (see [15]). Thus any

minimal surface in Sn is a Willmore surface. The set of Willmore surfaces

turns out to be larger than that of minimal surfaces.

ForM being a minimal submanifold in the n-dimensional unit sphere Sn,

there are vast estimates for the square of the length of the second fundamen-

tal form. Significant works in this direction have been obtained by Simons

(see [14]), Chern, do Carmo and Kobayashi (see [3]), Peng and Terng (see

[12]) and the references cited therein. One expects that similar results are

also valid for Willmore surfaces (see [9]). Based on this idea, Li proved that

if M is a compact Willmore surface in the n-dimensional unit sphere Sn sat-

isfying 0 ≤ Φ ≤ 2 when n = 3, 0 ≤ Φ ≤ 4
3 when n ≥ 4, then M is the totally

umbilical sphere or the Clifford torus or the Veronese surface (see [8] and

[9]). This result is analogous to that of Chern, do Carmo and Kobayashi in

the case of minimal surfaces, they proved that if H = 0 and 0 ≤ Φ ≤ 2n−4
2n−5 ,

then M is the equatorial sphere or the Clifford torus or the Veronese surface

(see [3]).

For M being a hypersurface with constant mean curvature in the n-

dimensional unit sphere Sn, Alencar and do Carmo obtained a pinching

constant which depends on the mean curvature (see [1]). For submanifolds

with parallel mean curvature vector in spheres, the above theorem was ex-

tended to higher codimension by Santos and Fontenele (see [13] and [6]).

Because in general a Willmore surface is not minimal, it is interesting

to find an upper estimate for Φ including the mean curvature. Our starting

point is to improve an upper estimate for Φ which was given previously by

the authors (see [5]). It is surprised that this improvement is not so formal.

The proof involves some new tricks.
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Theorem 1.1. Let M be a compact immersed Willmore surface in the

n-dimensional unit sphere Sn, n ≥ 4. If

0 ≤ Φ ≤ 2

3
+

1

8
H2 +

√

4

9
+

1

6
H2 +

1

96
H4 ,

then either Φ = 0 and M is totally umbilical or Φ = 2
3 + 1

8H
2 + (49 + 1

6H
2

+ 1
96H

4)1/2. In the latter case, n = 4 and M is the Veronese surface.

It is remarkable that the Veronese surface is the minimal surface in the

4-dimensional unit sphere S4 satisfying Φ = 4
3 (see [3]). Just as the result

of Li, Theorem 1.1 does not characterize any non-minimal Willmore surface

except the totally umbilical spheres. However, the estimate is sharp in the

sense that for every given positive ǫ, there is a compact Willmore surface M

in S4 satisfying 0 < Φ ≤ 2
3 +

1
8H

2 +
√

4
9 + 1

6H
2 + 1

96H
4 + ǫ but which is not

the Veronese surface.

For characterizing non-minimal Willmore surfaces, for each immersion x

ofM into the unit n-sphere Sn, we consider the infimum of maximum values

of

Φ− 1

8
H2 −

√

4

9
+

1

6
H2 +

1

96
H4

obtained by composition of x with g, where g ranges over all conformal

mappings of Sn. This conformal invariant depends on the immersion x. We

show that this conformal invariant characterizes the totally umbilical sphere

and the conformal class of the Veronese surface. Since the conformal group

G of the ambient space Sn is not compact, we need to handle the estimates

more carefully, and carry limit procedure out at a right time. The following

is the main result of the paper.

Theorem 1.2. Let M be a compact immersed Willmore surface in the

n-dimensional unit sphere Sn, n ≥ 4. If

inf
g∈G

max
g◦x(M)

(Φg −
1

8
H2

g −
√

4

9
+

1

6
H2

g +
1

96
H4

g ) ≤ 2

3
,

where G is the conformal group of the ambient space Sn, Φg and Hg are the

square of the length of the trace free part of the second fundamental form
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and the mean curvature of the immersion g ◦ x respectively, then x(M) is

either a totally umbilical sphere or a conformal Veronese surface.

As an immediate consequence of Theorem 1.2, the pinching condition

can be simplified as follows.

Corollary 1.3. Let M be a compact immersed Willmore surface in the

n-dimensional unit sphere Sn, n ≥ 4. If

inf
g∈G

max
g◦x(M)

(Φg −
1

6
H2

g ) ≤
4

3
,

then x(M) is either a totally umbilical sphere or a conformal Veronese sur-

face.

For codimension one, there is an analogue result. If x :M → S3 is a com-

pact immersed Willmore surface satisfying infg∈G maxg◦x(M)(Φg− 1
4H

2
g ) ≤ 2,

then x(M) is either a totally umbilical sphere or a conformal Clifford torus.

The paper is organized as follows. In Section 2 we recall some basic

facts and inequalities about Willmore surfaces. In Section 3 we characterize

the totally umbilical spheres and the Veronese surface by use of an integral

inequality in terms of Φ and H (see Theorem 1.1). Finally, the conformal

estimate is dealt in Section 4. The main idea in the proof of Theorem 1.2

is to consider a minimizing sequence gm in G. If this minimizing sequence

is convergent in G, the assertion follows from Theorem 1.1. Otherwise, we

will show that M must be totally umbilical. The proof requires additional

techniques in progress.

2. Preliminaries

Let x : M → Sn be an immersed surface in the n-dimensional unit

sphere Sn. We choose a local orthonormal frame field {e1, . . . , en} in Sn,

so that when restricted to x(M) the vectors e1, e2 are tangent to x(M),

and {e3, . . . , en} is a local frame field in the normal bundle NM of M. Let

{ω1, . . . , ωn} denote the dual coframe field in Sn. We shall use the following

ranges of indices

1 ≤ i, j, k, · · · ≤ 2; 3 ≤ α, β, γ, · · · ≤ n.
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Then the structure equations are given by

dx =
∑

ωiei,

dei =
∑

ωijej +
∑

hαijωjeα − ωix,

deα = −
∑

hαijωjei +
∑

ωαβeβ,

where ωij and ωαβ are the connection forms and (hαij), h
α
ij = hαji, is the

second fundamental form of M. From the structure equations of M, the

Gauss equations are then given by

Rijkl = (δikδjl − δilδjk) +
∑

(hαikh
α
jl − hαilh

α
jk), (2.1)

Rik = δik +
∑

Hαhαik −
∑

hαijh
α
jk, (2.2)

2K = 2 +H2 − S, (2.3)

Rαβij =
∑

(hαikh
β
kj − hαjkh

β
ki), (2.4)

were K is the Gaussian curvature of M , S =
∑

(hαij)
2 is the square of the

length of the second fundamental form, H =
∑

Hαeα =
∑

hαiieα is the mean

curvature vector, and H =
√

∑

(hαii)
2 is the length of the mean curvature

vector of M .

The covariant derivative ∇hαij of the second fundamental form hαij of M

with components hαijk is defined by

∑

hαijkωk = dhαij +
∑

hαkjωki +
∑

hαikωkj +
∑

h
β
ijωβα,

and the covariant derivative ∇2hαij of ∇hαij with components hαijkl is defined

by

∑

hαijklωl = dhαijk +
∑

hαljkωli +
∑

hαilkωlj +
∑

hαijlωlk +
∑

h
β
ijkωβα.

Then the Codazzi equation and the Ricci formula are given by

hαijk − hαikj = 0, (2.5)

hαijkl − hαijlk =
∑

hαmjRmikl +
∑

hαimRmjkl +
∑

h
β
ijRβαkl. (2.6)
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Let φαij denote the tensor h
α
ij−Hα

2 δij , and Φ =
∑

(φαij)
2 the square of the

length of the trace free tensor φαij. These relations now imply the Simons’

identity, Lemmas 2.2 and 2.3. See also [5] for a simple derivation.

Lemma 2.1. 1
2∆Φ =

∑

(φαijk)
2+

∑

φαijH
α
ij +Φ(2+ H2

2 −Φ)−∑

R2
αβ12.

Lemma 2.2.
∑

φαijjH
α
i = 1

2

∑ |∇⊥Hα|2, where ∑ |∇⊥Hα|2=∑

(Hα
i )

2.

Lemma 2.3.
∑

(φαijk)
2 ≥ 1

4

∑ |∇⊥Hα|2. The equality holds if and only

if φα111 = φα122 =
Hα

1
4 and φα211 = φα222 =

Hα
2
4 , for all α.

By use of the Willmore surface equation and Stokes’ theorem, we have

Lemma 2.4. Let M be a compact Willmore surface in the unit sphere

Sn. Then
∫

M

∑

|∇⊥Hα|2 =
∫

M

∑

(
∑

φαijH
α)2.

In the proofs of Theorems 1.1 and 1.2, we need the following estimate.

Lemma 2.5. If
∑

(xα)2+(yα)2= Φ
2 ,

∑

(zα)2 = z2 and c is a nonnegative

constant, then (
∑

xαzα)2+(
∑

yαzα)2+16c
∑

(xα)2
∑

(yα)2−16c(∑ xαyα)2 ≤
f(Φ, z), where f(Φ, z) = c(Φ + z2

8c )
2, if c is positive and Φ > z2

8c ; f(Φ, z) =
1
2Φz

2, otherwise. The equality of the first case holds if and only if one of the

following three cases holds

(1) A = 0, B2 = z2

4 (Φ + z2

8c ), ξ = 1
4 (Φ − z2

8c ), η = 1
4(Φ + z2

8c ), ζ = 0 and

zα = 4 Byα

Φ+ z2

8c

,

(2) A2 = z2

4 (Φ + z2

8c ), B = 0, ξ = 1
4 (Φ + z2

8c ), η = 1
4(Φ − z2

8c ), ζ = 0 and

zα = 4 Axα

Φ+ z2

8c

,

(3) A2 +B2 = z2

4 (Φ+ z2

8c ), A
2 −B2 = 4c(Φ + z2

8c )(ξ − η), AB = 4c(Φ+ z2

8c )ζ,

ξη − ζ2 = 1
16 (Φ + z2

8c )(Φ − z2

8c ) and z
α = 4Axα+Byα

Φ+ z2

8c

, where A =
∑

xαzα,

B =
∑

yαzα, ξ =
∑

(xα)2, η =
∑

(yα)2 and ζ =
∑

xαyα.

Proof. We first observe that the result follows by direct estimate for the

cases of c = 0, z = 0, Φ = 0 and ξη − ζ2 = 0. Without loss of generality, we

may assume that c, z, Φ and ξη − ζ2 are positive. By using the Lagrange
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multiplier technique, we get that

Azα + 16cηxα − 16cζyα + µxα = 0,

Bzα + 16cξyα − 16cζxα + µyα = 0,

Axα +Byα + νzα = 0,

for all α. Multiplying the these equations by xβ, yβ and zβ , respectively, we

find that

A2 + 16c(ξη − ζ2) + µξ = 0,

B2 + 16c(ξη − ζ2) + µη = 0,

AB + µζ = 0,

Az2 + 16cAη − 16cBζ + µA = 0,

Bz2 + 16cBξ − 16cAζ + µB = 0,

Aξ +Bζ + νA = 0,

Aζ +Bη + νB = 0,

A2 +B2 + νz2 = 0,

and thus

µ = − 2

Φ

[

A2 +B2 + 32c(ξη − ζ2)
]

,

and

ν = −A
2 +B2

z2
.

After making the substitutions of µ and ν, the Lagrange conditions can be

rewritten as

A2 + 16c(ξη − ζ2) =
2ξ

Φ
(A2 +B2 + 32c(ξη − ζ2)),

B2 + 16c(ξη − ζ2) =
2η

Φ
(A2 +B2 + 32c(ξη − ζ2)),

AB =
2ζ

Φ
(A2 +B2 + 32c(ξη − ζ2)),

Az2 + 16cAη − 16cBζ =
2A

Φ
(A2 +B2 + 32c(ξη − ζ2)),
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Bz2 + 16cBξ − 16cAζ =
2B

Φ
(A2 +B2 + 32c(ξη − ζ2)),

z2(Aξ +Bζ) = A(A2 +B2),

z2(Aζ +Bη) = B(A2 +B2).

Case 1. A = B = 0. The only points that can give rise to a local maximum

value cΦ2 are ξ = η = Φ
4 and ζ = 0. We note that cΦ2 ≤ 1

2Φz
2 if Φ ≤ z2

8c .

Case 2. A = 0 but B 6= 0. In this case the third equation gives ζ = 0. If

ξ 6= 0, then the side condition ξ + η = Φ
2 , the first and fifth equations imply

ξ = 1
2(

Φ
2 − z2

16c) and η = 1
2 (

Φ
2 + z2

16c). This case occurs only when Φ > z2

8c . It

follows from the last equation that B2 = z2

4 (Φ + z2

8c ), and therefore that the

function takes on the value c(Φ + z2

8c )
2. If ξ = 0, then the assertion follows

from the simple case of ξη − ζ2 = 0.

Case 3. A 6= 0 but B = 0. The argument is similar to Case 2.

Case 4. A 6= 0 and B 6= 0. It follows from the sixth and seventh equations

that

ξ =
1

z2
(A2 +B2)− B

A
ζ,

η =
1

z2
(A2 +B2)− A

B
ζ.

The side condition ξ + η = Φ
2 then gives

ζ

AB
=

2

z2
− Φ

2(A2 +B2)
.

On the other hand, we know from the third, fourth and sixth equations that

AB

ζ
= z2 + 8cΦ− 16c

z2
(A2 +B2).

Comparing these two equations, we find that A2 + B2 satisfies a quadratic

equation, and by solving it, we obtain A2 + B2 = 1
2Φz

2 or z2

4 (Φ + z2

8c ). To

find the value of ξη − ζ2, the third equation gives

2

Φ
(A2 +B2 + 32c(ξη − ζ2)) = z2 + 8cΦ− 16c

z2
(A2 +B2).
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If A2 + B2 = 1
2Φz

2, then c(ξη − ζ2) = 0. There are nothing to prove. Thus

we may assume A2 + B2 = z2

4 (Φ + z2

8c ). In this case, we have c(ξη − ζ2) =
c
16 (Φ+ z2

8c )(Φ− z2

8c ). This case occurs only when Φ > z2

8c . Combining with the

first and second equations, we then obtain A2−B2 = 4c(Φ+ z2

8c )(ξ−η). The
third equation implies AB = 4c(Φ + z2

8c )ζ. Equalities cases are then clear

from the above argument.

Let Dn+1 = {x ∈ R
n+1 : |x| < 1} be the open unit ball in R

n+1 and G

the conformal group of Sn. For each g ∈ Dn+1, we introduce the mapping,

also denote by g, g : Sn → Sn given by

g(x) =
x+ (λ+ µ < x, g >)g

λ(1+ < x, g >)
,

where λ = 1√
1−|g|2

and µ = λ2

λ+1 . We know that each conformal transforma-

tion of Sn can be expressed by T ◦g, where T is an orthogonal transformation

of Sn and g ∈ Dn+1 (see [10] and [11]).

Let x :M → Sn be a compact Willmore surface. It follows that for each

g ∈ Dn+1, x̄ = g ◦ x is also a compact Willmore surface. The new induced

first fundamental form of x̄ may be written in terms of the original induced

first fundamental form as

ds̄2 =
1

λ2(1+ < x, g >)2
ds2.

Furthermore, the second fundamental forms of x̄ and x are related by

h̄αij = λ[(1+ < x, g >)hαij+ < eα, g > δij ].

We recite some relationships of corresponding quantities between x̄ and

x as follows �

Lemma 2.6. The new H̄, Φ̄ and its derivatives can be expressed in

terms of that of original as follows

(1) H̄α = λ[(1+ < x, g >)Hα + 2 < eα, g >].

(2) H̄α
i = λ2(1+ < x, g >)[(1+ < x, g >)Hα

i − 2
∑

φαij < ej , g >].

(3) φ̄αij = λ(1+ < x, g >)φαij .
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(4) Φ̄ = λ2(1+ < x, g >)2Φ.

(5) φ̄αijk = λ2(1+ < x, g >)[(1+ < x, g >)φαijk + φαij < ek, g > +φαjk

< ei, g > +φαki < ej , g > −φαlj < el, g > δki − φαil < el, g > δjk].

For any given constant vector g ∈ R
n+1, let Fα(x) = (1+ < x, g >

)Hα + 2 < eα, g >. Then F
α satisfies the following equation

Lemma 2.7. ∆⊥Fα +
∑

φαijφ
β
ijF

β = 0.

Proof. It follows from the structure equations that

< x, g >i = < ei, g >,

< x, g >ij = φαij < eα, g > +δij
Hα

2
< eα, g > −δij < x, g >,

< eα, g >i = −φαij < ej , g > −H
α

2
< ei, g >,

∆⊥ < eα, g > = −
∑

Hα
i < ei, g > −

∑

φαijφ
β
ij < eβ , g >

−
∑ HαHβ

2
< eβ, g > +Hα < x, g > .

We then have

Fα
i = (1+ < x, g >)Hα

i − 2
∑

φαij < ej , g >,

and

∆⊥Fα = Hα∆ < x, g > +2
∑

< ei, g > Hα
i + (1+ < x, g >)∆⊥Hα

+2∆⊥ < eα, g >

=
∑

HαHβ < eβ, g > −2Hα < x, g > +2
∑

< ei, g > Hα
i

−(1+ < x, g >)
∑

φαijφ
β
ijH

β − 2
∑

Hα
i < ei, g >

−2
∑

φαijφ
β
ij < eβ, g > −

∑

HαHβ < eβ, g > +2Hα < x, g >

= −
∑

[

(1+ < x, g >)Hβ + 2 < eβ, g >
]

φαijφ
β
ij

= −
∑

φαijφ
β
ijF

β .
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Finally, for any given constant vector g ∈ R
n+1, let

ψα
ijk = (1+< x, g >)φαijk+φ

α
ij < ek, g >+φαjk < ei, g >+φαki < ej , g >

−
∑

φαlj < el, g > δki −
∑

φαil < el, g > δjk,

for all α, i, j, k. We will use the following properties. �

Lemma 2.8. ψα
ijk satisfies the following equations:

(1) ψα
ijk = ψα

jik, for all α, i, j, k.

(2) Σψα
jji = 0, for all α, i.

(3) Σψα
ijj =

Fα
i

2 , for all α, i.

3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. For simplicity,

from now on in this section, let r(H) =
√

4
9 +

1
6H

2 + 1
96H

4. First, we wish

to show that Φ is equal to either 0 or 2
3 + H2

8 + r(H).

Integrating both sides of the Lemma 2.1 over M, we have

0 =

∫

M

[

∑

(φαijk)
2 +

∑

φαijH
α
ij +Φ(2 +

H2

2
− Φ)−

∑

R2
αβ12

]

=

∫

M

[

∑

(φαijk)
2 −

∑

φαijjH
α
i +Φ(2 +

H2

2
− Φ)−

∑

R2
αβ12

]

.

It follows from Lemmas 2.2 and 2.3 that

0 ≥
∫

M

[

− 1

4

∑

|∇⊥Hα|2 +Φ(2 +
H2

2
− Φ)−

∑

R2
αβ12

]

.

Since

∑

(Rαβ12)
2 = 4

∑

(φα11φ
β
12 − φ

β
11φ

α
12)

2

= 8
∑

(φα11)
2
∑

(φα12)
2 − 8(

∑

φα11φ
α
12)

2,
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by Lemmas 2.4 and 2.5 with c = 1, we get

0 ≥
∫

M

[

− 1

4

∑

(
∑

φαijH
α)2 − 8

∑

(φα11)
2
∑

(φα12)
2 + 8(

∑

φα11φ
α
12)

2

+Φ(2 +
H2

2
− Φ)

]

=

∫

M

{

− 1

2

[

(
∑

φα11H
α)2 + (

∑

φα12H
α)2 + 16

∑

(φα11)
2
∑

(φα12)
2

−16(
∑

φα11φ
α
12)

2
]

+Φ(2 +
H2

2
− Φ)

}

≥
∫

M
u(Φ,H),

where u is the continuous function given by u(Φ,H) = −3
2

[

Φ2−(43 +
H2

4 )Φ+

H4

192

]

, if Φ > H2

8 ; u(Φ,H) = Φ(2 + H2

4 − Φ), if Φ ≤ H2

8 .

Notice that u is nonnegative. In fact, if 2
3 +

H2

8 + r(H) ≥ Φ > H2

8 , then

u(Φ,H) ≥ −3

2

[

Φ− (
2

3
+
H2

8
+ r(H) )

]

[−2

3
+ r(H)

]

≥ 0,

and if Φ ≤ H2

8 , then

u(Φ,H) ≥ Φ(2 +
H2

8
) ≥ 0.

The preceding integral inequality then implies that if 0 ≤ Φ ≤ 2
3 +

H2

8 +

r(H), then either Φ = 0 and M is totally umbilical, or Φ = 2
3 + H2

8 + r(H).

In the latter case we show below that M is minimal.

Now we shall simply assume that Φ = 2
3 + H2

8 + r(H). In this case, all

the integral inequalities of previous argument become equalities. The proof

of M is minimal is broken up into four steps.

Step 1. We establish the following two equations for later use:

|∇Φ|2 =
∑

φαijΦjH
α
i
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and

∫

M

∑ |∇⊥Hα|2
4Φ

=

∫

M

r(H)

r(H) + 2
3 + H2

12

|∇Φ|2
Φ2

+

∫

M

1

4Φ

∑

(
∑

φαijH
α)2.

Because Φ = 2
3 + H2

8 + r(H), by Lemma 2.3, φα111 = φα122 = φα212 =

−φα221 =
Hα

1
4 and φα211 = φα222 = φα121 = −φα112 =

Hα
2
4 , it follows from a

straight computation that

|∇Φ|2=
∑

φαijΦjH
α
i =(

∑

φα11H
α
1 +

∑

φα12H
α
2 )

2+(
∑

φα12H
α
1 +

∑

φα22H
α
2 )

2.

We obtain the first equation.

Since Φ = 2
3 + H2

8 + r(H), we have

Φi = (
1

4
+

1
6 + H2

48

r(H)
)
∑

HαHα
i ,

and hence
∑

HαHα
i Φi =

r(H)|∇Φ|2
r(H)
4 + 1

6 + H2

48

.

Multiplying by Hα, dividing by Φ and integrating over M, the equation

∆Hα +
∑

φαijφ
β
ijH

β = 0 implies that

0 =

∫

M
(

∑

Hα∆⊥Hα

Φ
+

∑

φαijφ
β
ijH

αHβ

Φ
)

=

∫

M

[

−
∑

(
Hα

Φ
)iH

α
i +

1

Φ

∑

(
∑

φαijH
α)2

]

=

∫

M

[

−
∑

(
|∇⊥Hα|2

Φ
+

ΦiH
αHα

i

Φ2
) +

1

Φ

∑

(
∑

φαijH
α)2

]

=

∫

M

[

−
∑ |∇⊥Hα|2

Φ
+

r(H)
r(H)
4 + 1

6 + H2

48

|∇Φ|2
Φ2

+
1

Φ

∑

(
∑

φαijH
α)2

]

.

This gives the second equation.

Step 2. We shall show that H2 and Φ are constants. Dividing the
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equation of Lemma 1 by Φ and integrating over M, we get

∫

M

∆Φ

2Φ
=

∫

M

[

∑

(φαijk)
2

Φ
+

∑

φαijH
α
ij

Φ
+ (2 +

H2

2
− Φ)−

∑

R2
αβ12

Φ

]

.

By applying Stokes’ theorem, we obtain

∫

M

|∇Φ|2
2Φ2

=

∫

M

[

∑ |∇⊥Hα|2
4Φ

−
∑ Φφαijj − φαijΦj

Φ2
Hα

i + (2 +
H2

2
− Φ)

−
∑

R2
αβ12

Φ

]

=

∫

M

[

∑

|∇⊥Hα|2
4Φ

−
∑

|∇⊥Hα|2
2Φ

+

∑

φαijΦjH
α
i

Φ2

+(2 +
H2

2
− Φ)−

∑

R2
αβ12

Φ

]

,

where we have used
∑

(φαijk)
2 = 1

4

∑ |∇⊥Hα|2 and
∑

φαijj =
Hα

i

2 for all i.

Consequently, we obtain from the equations of step 1 that

0 =

∫

M

[

− |∇Φ|2
2Φ2

−
∑ |∇⊥Hα|2

4Φ
+

∑

φαijΦjH
α
i

Φ2
+(2+

H2

2
−Φ)−

∑

R2
αβ12

Φ

]

=

∫

M

[

− |∇Φ|2
2Φ2

− r(H)

r(H) + 2
3 +

H2

12

|∇Φ|2
Φ2

− 1

4Φ

∑

(
∑

φαijH
α)2 +

|∇Φ|2
Φ2

+(2 +
H2

2
− Φ)−

∑

R2
αβ12

Φ

]

=

∫

M

[ |∇Φ|2
2Φ2

(1− 2r(H)

r(H) + 2
3+

H2

12

)− 1

4Φ

∑

(
∑

φαijH
α)2+(2+

H2

2
−Φ)

− 8

Φ

∑

(φα11)
2
∑

(φα12)
2 +

8

Φ
(
∑

φα11φ
α
12)

2
]

=

∫

M

{ |∇Φ|2
2Φ2

(1− 2r(H)

r(H) + 2
3 + H2

12

) +
1

Φ
[Φ(2+

H2

2
−Φ)− 1

2
((
∑

φα11H
α)2

+(
∑

φα12H
α)2 + 16

∑

(φα11)
2
∑

(φα12)
2 − 16(

∑

φα11φ
α
12)

2)]
}

=

∫

M

{ |∇Φ|2
2Φ2

(1− 2r(H)

r(H) + 2
3+

H2

12

)+
1

Φ
[Φ(2 +

H2

2
− Φ)− 1

2
(Φ +

H2

8
)2]

}

.

Since the last term of the integrand vanishes,

Φ(2 +
H2

2
− Φ)− 1

2
(Φ +

H2

8
)2 = −3

2

[

Φ2 − (
4

3
+
H2

4
)Φ +

H4

192

]

= 0,
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we have
∫

M

|∇Φ|2
2Φ2

(1− 2r(H)

r(H) + 2
3 +

H2

12

) = 0.

We note that the integrand is non-positive. In fact, let

f(x) =
1

2
+

1
3 +

x
24

√

4
9 + 1

6x+ 1
96x

2
.

Then

f ′(x) = − 1

108(49 + 1
6x+ 1

96x
2)

3
2

< 0

for all x > 0, f is decreasing for all x ≥ 0, and f(x) < f(0) = 1 for all x > 0.

We then have |∇Φ| = 0 or H = 0, thus Φ is constant on each connected

component of the set where H 6= 0. Since H2 satisfies the quadratic equation

Φ2− (43 +
H2

4 )Φ+ H4

192 = 0, H2 is also constant on each connected component

of the set where H 6= 0. We conclude that, whether H is zero or not, H2

and Φ are constants.

Step 3. Assume that H2 is a positive constant. We establish the follow-

ing five equations:

∆⊥Hα +
1

2
(Φ +

H2

8
)Hα = 0,

∑

|∇⊥Hα|2 = 1

2
(Φ +

H2

8
)H2,

∑

φα11H
α
1 =

∑

φα12H
α
1 =

∑

φα11H
α
2 =

∑

φα12H
α
2 = 0,

∑

(Hα
1 )

2 − (Hα
2 )

2 = 2(Φ +
H2

8
)
∑

φα11H
α

and
∑

Hα
1H

α
2 = (Φ +

H2

8
)
∑

φα12H
α.
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Since the equality in Lemma 2.5 with c = 1 holds, applying

Hα =
4

Φ + H2

8

(
∑

φ
β
11H

βφα11 +
∑

φ
β
12H

βφα12)

twice, we have

φαijφ
β
ijH

β =
8

Φ + H2

8

[

(
∑

(φβ11)
2
∑

φ
β
11H

β +
∑

φ
β
11φ

β
12

∑

φ
β
12H

β)φα11

+(
∑

φ
β
11φ

β
12

∑

φ
β
11H

β +
∑

(φβ12)
2
∑

φ
β
12H

β)φα12

]

=
8

Φ+H2

8

[1

4
(Φ+

H2

8
)
∑

φ
β
11H

βφα11+
1

4
(Φ+

H2

8
)
∑

φ
β
12H

βφα12

]

=
1

2
(Φ +

H2

8
)Hα.

Thus

∆⊥Hα +
1

2
(Φ +

H2

8
)Hα = 0,

as desired. We obtain the first equation.

Since H2 is a constant, the first equation gives

0 =
1

2
∆H2

=
∑

|∇⊥Hα|2 +
∑

Hα∆⊥Hα

=
∑

|∇⊥Hα|2 − 1

2
(Φ +

H2

8
)H2.

This is the second equation.

Now we show the third equation. Because the equality in Lemma 2.5

with c = 1 holds, we have

A2 +B2 =
H2

4
(Φ +

H2

8
),

A2 −B2 = 4(Φ +
H2

8
)
[

∑

(φα11)
2 −

∑

(φα12)
2
]

,

AB = 4(Φ +
H2

8
)
∑

φα11φ
α
12,

where A =
∑

φα11H
α and B =

∑

φα12H
α.
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Since A2 +B2 and H2 are constants,

0 = 2A(
∑

φα111H
α +

∑

φα11H
α
1 ) + 2B(

∑

φα121H
α +

∑

φα12H
α
1 )

= 2A
∑

φα11H
α
1 + 2B

∑

φα12H
α
1 ,

we have

A
∑

φα11H
α
1 +B

∑

φα12H
α
1 = 0,

we make use here of the facts that φα111 =
Hα

1
4 and φ121 =

Hα
2
4 . Similarly, we

also have

A
∑

φ
β
11H

β
2 +B

∑

φ
β
12H

β
2 = 0.

Since A2 +B2 is a positive constant,
∑

φα11H
α
1 = −tB, ∑φα12H

α
1 = tA,

∑

φα11H
α
2 = −sB and

∑

φα12H
α
2 = sA, for some functions t and s.

Taking differentiation of equations A2 − B2 = 4(Φ + H2

8 )
[

∑

(φα11)
2 −

∑

(φα12)
2
]

and AB = 4(Φ+ H2

8 )
∑

φα11φ
α
12, and then substituting

∑

φα11H
α
1 =

−tB, ∑φα12H
α
1 = tA,

∑

φα11H
α
2 = −sB and

∑

φα12H
α
2 = sA, we get

2tAB = (Φ +
H2

8
)(sA+ tB),

2sAB = (Φ +
H2

8
)(tA− sB),

t(A2 −B2) = (Φ +
H2

8
)(tA− sB),

s(A2 −B2) = (Φ +
H2

8
)(−sA− tB).

In particular, t(A2 − B2) = 2sAB, s(A2 − B2) = −2tAB, and s2AB =

−t2AB. Since at least one of A and B is nonzero, there are three cases. If

A = 0, then −tB2 = 0, −sB2 = 0, so that t = s = 0. Likewise, if B = 0,

then t = s = 0. If A and B are nonzero, then s2 = −t2, and hence t = s = 0.

In each case, t = s = 0. Therefore we have the third equation.

Taking differentiation of the third equation, and substituting φα111 =

φα122 = φα212 = −φα221 =
Hα

1
4 and φα211 = φα222 = φα121 = −φα112 =

Hα
2
4 , we find
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that

1

4

∑

[(Hα
1 )

2 − (Hα
2 )

2] +
∑

φα11∆
⊥Hα = 0,

−1

2

∑

Hα
1H

α
2 +

∑

φα11(H
α
12 −Hα

21) = 0,

1

2

∑

Hα
1H

α
2 +

∑

φα12∆
⊥Hα = 0,

1

4

∑

[(Hα
1 )

2 − (Hα
2 )

2] +
∑

φα12(H
α
12 −Hα

21) = 0.

The equations four and five then follow from ∆⊥Hα+ 1
2(Φ+ H2

8 )Hα = 0

and

Hα
12 −Hα

21 =
∑

HβRβα12 = 2
∑

Hβ(φα12φ
β
11 − φα11φ

β
12).

Step 4. The hard part is to show that M is minimal. Suppose, to get a

contradiction, that H2 is a positive constant. The following computation is

straightforward,

∑

Hα
i H

α
j Rikjk =

∑

|∇⊥Hα|2R1212 = (1 +
H2

4
− Φ

2
)
∑

|∇⊥Hα|2.

Applying the third equation of step 3, we obtain

∑

Hα
i H

β
j Rβαij = −2

∑

(Hα
1H

β
2 −Hα

2H
β
1 )(φ

α
11φ

β
12 − φα12φ

β
11) = 0.

Because φα111 = φα122 = φα212 = −φα221 =
Hα

1
4 and φα211 = φα222 = φα121 =

−φα112 =
Hα

2
4 ,

∑

Hα
i H

βRβαij,j=
1

2

∑

[

(Hα
1 )

2−(Hα
2 )

2
]

∑

φα11H
α+

∑

Hα
1H

α
2

∑

φα12H
α.

Applying the fourth and fifth equations of step 3, we obtain

∑

Hα
i H

βRβαij,j =
1

4
(Φ +

H2

8
)2H2.

Because H2 and Φ are constants,
∑ |∇⊥Hα|2 is also a constant, com-
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bining the above equations, we have

0 =
1

2
∆

∑

|∇⊥Hα|2 =
∑

(Hα
ij)

2 +
∑

Hα
i H

α
ijj

=
∑

(Hα
ij)

2 +
∑

Hα
i (H

α
jji +Hα

kRkjij + 2Hβ
j Rβαij +HβRβαij,j)

=
∑

(Hα
ij)

2 +
∑

Hα
i (∆

⊥Hα)i +
∑

Hα
i H

α
j Rikjk + 2

∑

Hα
i H

β
j Rβαij

+
∑

Hα
i H

βRβαij,j

=
∑

(Hα
ij)

2 − 1

2
(Φ +

H2

8
)
∑

|∇⊥Hα|2 + (1 +
H2

4
− Φ

2
)
∑

|∇⊥Hα|2

+
∑

Hα
i H

βRβαij,j

≥ 1

2

∑

(
∑

Hα
ii)

2− 1

2
(Φ+

H2

8
)
∑

|∇⊥Hα|2+(1+
H2

4
−Φ

2
)
∑

|∇⊥Hα|2

+
∑

Hα
i H

βRβαij,j

=
1

8
(Φ +

H2

8
)H2(

10

3
+H2 − r(H)) > 0.

We then have a contradiction. This contradiction shows that H = 0.

Then we conclude that M is a minimal surface with Φ = 4
3 , so that M is the

Veronese surface (see [7]). This completes the proof of the Theorem 1.1.

4. Proof of Theorem 1.2

The idea of the proof is to consider a minimizing sequence gm of the

conformal group G, such that the sequence gm converges to an element g0

of the closure of G. If g0 ∈ G, then the result follows immediately from

Theorem 1.1. Otherwise we shall show that M is totally umbilical.

By the hypothesis of Theorem 1.2, there is a sequence gm ∈ G such that

Φm− 1
8H

2
m−r(Hm) ≤ 2

3+
1
m on M, for allm, where r(H)=

√

4
9+

1
6H

2+ 1
96H

4,

Φm and Hm are the square of the length of the trace free part of the second

fundamental form and the mean curvature of the immersion gm ◦ x, respec-
tively. Without loss of generality, we may assume that gm ∈ Dn+1. Since the

closure of Dn+1 in Rn+1 is compact, there is a subsequence, still denoted by

gm, which converges to g0, for some g0 in the closed unit disk. If g0 ∈ Dn+1,

then Φm tends to Φ0, and H
2
m tends to H2

0 as m tends to infinity. In this

case, we obtain that Φ0− 1
8H

2
0 −r(H0) ≤ 2

3 on M, and the desired conclusion
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follows from Theorem 1.1. Thus from now on, we may assume that g0 is a

unit vector. In this case we shall show below that M is totally umbilical.

There are four steps we want to do at this point.

Step 1. We want to show that Φ = 0 or (1+ < x, g0 >)
2Φ = 3+

√
6

24 F 2.

The proof is an adaptation of the proof of Theorem 1.1. To avoid ambiguity,

for each fixed m, let x̄ = gm ◦ x, and we shall now use the notations da and

dā for the area measures of x and x̄, respectively. We have to modify our

integral inequality in the proof of Theorem 1.1 as follows

0 =

∫

M

[

∑

(φ̄αijk)
2 +

∑

φ̄αijH̄
α
ij+Φ̄(2 +

H̄2

2
−Φ̄)−

∑

R̄2
αβ12

]

dā

=

∫

M

[

∑

(φ̄αijk)
2 −

∑

φ̄αijjH̄
α
i + Φ̄(2 +

H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

≥
∫

M

[

− 1

4

∑

|∇̄⊥H̄α|2 + Φ̄(2 +
H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

≥
∫

M

[

− 1

2
f(Φ̄, H̄) + Φ̄(2 +

H̄2

2
− Φ̄)

]

dā

≥
∫

M
Φ̄v(Φ̄, H̄)dā,

=

∫

M
Φv(Φ̄, H̄) da,

where v is the continuous function defined on M, v(Φ,H) = −3
2

[

Φ − (23 +

H2

8 + r(H))
]

, if Φ > 2
3 +

H2

8 + r(H); v(Φ,H) = −
√
6
2

[

Φ− (23 +
H2

8 + r(H))
]

,

if H2

8 ≤ Φ ≤ 2
3 +

H2

8 + r(H); v(Φ,H) =
√
6
3 + H2

8 +
√
6
2 r(H)− Φ, if Φ < H2

8 .

Dividing the integral inequality by λ2m = 1
1−|gm|2 and letting m −→ ∞,

Lemma 2.6 gives

0 ≥
∫

M
ΦL(Φ, F ) da,

where F =
∑

Fαeα, F = |F|, was defined at Lemma 2.7 and L is the con-

tinuous function given by L(Φ, F ) = −3
2

[

(1+ < x, g0 >)
2Φ − 3+

√
6

24 F 2
]

, if

(1+ < x, g0 >)
2Φ ≥ 3+

√
6

24 F 2; L(Φ, F ) = −
√
6
2

[

(1+ < x, g0 >)
2Φ− 3+

√
6

24 F 2
]

,

if F 2

8 ≤ (1+ < x, g0 >)
2Φ ≤ 3+

√
6

24 F 2; L(Φ, F ) = F 2

4 − (1+ < x, g0 >)
2Φ, if

(1+ < x, g0 >)
2Φ ≤ F 2

8 .
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On the other hand, since Φm− 1
8H

2
m −

√

4
9 + 1

6H
2
m + 1

96H
4
m ≤ 2

3 +
1
m on

M, taking limits m −→ ∞, we see that

(1+ < x, g0 >)
2Φ− 3 +

√
6

24
F 2 ≤ 0,

and thus the integrand ΦL is nonnegative. We conclude that Φ = 0 or

L = 0, and hence Φ = 0 or (1+ < x, g0 >)
2Φ = 3+

√
6

24 F 2. We note that all

inequalities become equalities in the procedure for limits, and, in particular,

ψα
ijj =

Fα
i

4 for all α, i, j.

Step 2. We want to show that either M is totally umbilical or (1+ <

x, g0 >)
2Φ and F 2 are positive constants. Multiplying both sides of the equa-

tion for Φ̄ in Lemma 2.1 by Φ̄, integrating over M and applying pointwise

estimates of Step 1, we obtain

0 =

∫

M

[1

2
|∇̄Φ̄|2 + 1

2
Φ̄∆̄Φ̄

]

dā

=

∫

M

1

2
|∇̄Φ̄|2 + Φ̄

[

∑

(φ̄αijk)
2+

∑

φ̄αijH̄
α
ij+Φ̄(2+

H̄2

2
−Φ̄)−

∑

R̄2
αβ12

]

dā

≥
∫

M

1

2
|∇̄Φ̄|2 − 1

4
Φ̄
∑

|∇̄⊥H̄α|2 −
∑

φ̄αijH̄
α
i Φ̄j

+Φ̄
[

Φ̄(2 +
H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

=

∫

M

1

2
|∇̄Φ̄|2 + 1

4

∑

Φ̄iH̄
αH̄α

i −
∑

φ̄αijH̄
α
i Φ̄j

+Φ̄
[

− 1

4

∑

(
∑

φ̄αijH̄
α)2 + Φ̄(2 +

H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā,

where in the last step we have used the identity

∫

M
Φ̄
∑

|∇̄⊥H̄α|2 dā =

∫

M

[

−
∑

Φ̄iH̄
αH̄α

i + Φ̄
∑

(
∑

φ̄αijH̄
α)2

]

dā.

In fact, this identity comes from multiplying the equation ∆̄⊥H̄α+
∑

φ̄αij φ̄
β
ijH̄

β

= 0 by Φ̄H̄α and then integrating over M.
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By using Lemma 2.5 again, we have

0 ≥
∫

M

[1

2
|∇̄Φ̄|2 + 1

4

∑

Φ̄iH̄
αH̄α

i −
∑

φ̄αijH̄
α
i Φ̄j

]

dā

+

∫

M
Φ̄
[

− 1

2
f(Φ̄, H̄) + Φ̄(2 +

H̄2

2
− Φ̄)

]

dā

≥
∫

M

[1

2
|∇̄Φ̄|2 + 1

4

∑

Φ̄iH̄
αH̄α

i −
∑

φ̄αijH̄
α
i Φ̄j + Φ̄2v(Φ̄, H̄)

]

dā,

where v was given at Step 1. Substituting the relationships of Lemma 2.6

into this last integral, we get

0 ≥
∫

M

[

2λ6m(1+ < x, gm >)4
∑

(φαklψ
α
kli)

2

−2λ6m(1+ < x, gm >)4
∑

φαklψ
α
kli

∑

φαijF
α
j

+
1

2
λ6m(1+ < x, gm >)3

∑

φαklψ
α
kli

∑

FαFα
i

+λ4m(1+ < x, gm >)4Φ2v(λ2m(1+ < x, gm >)2Φ, λmF )
]

× 1

λ2m(1+ < x, gm >)2
da.

Dividing the integral inequality by λ4m and letting m −→ ∞, we find that

0 ≥
∫

M

[

2(1+ < x, g0 >)
2
∑

(φαklψ
α
kli)

2

−2(1+ < x, g0 >)
2
∑

φαklψ
α
kli

∑

φαijF
α
j

+
1

2
(1+ < x, g0 >)

∑

φαklψ
α
kli

∑

FαFα
i

]

da,

this we can do because Φ = 0 or L = 0. We assert that the integrand is

nonnegative. Let Ω be a connected component of the set of points where

Φ > 0, and let U = c(1+ < x, g0 >)
√
Φ defined on Ω, where 1

c2 = 3+
√
6

24 .

Then

Ui = c
√
Φ < ei, g0 > +2c

∑ φα11√
Φ
(1+ < x, g0 >)φ

α
11i

+2c
∑ φα12√

Φ
(1+ < x, g0 >)φ

α
12i,
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for all i. Substituting (1+ < x, g0 >)φ
α
ijk in terms of ψα

ijk, Lemma 2.8 gives

Ui =
c

2
√
Φ

∑

φαijF
α
j =

c√
Φ

∑

φαklψ
α
kli,

for all i, here we have used the fact that ψα
ijj =

Fα
i

4 for all α, i, j. Since

F 2 = U2, we find that the integrand is equal to (1+ < x, g0 >)2Φ(12 −
2
c2 )|∇U |2 on Ω. When Φ = 0 the integrand vanishes, when Φ > 0, because
1
2 − 2

c2
= 3−

√
6

12 > 0, the integrand is also nonnegative, as desired.

Since every immersion is locally an embedding, 1+ < x, g0 > vanishes

only at most finite points on M, thus |∇U |2 = 0, if Φ > 0. Therefore U is

constant on each connected component of the set where Φ 6= 0. A conse-

quence of this is that either M is totally umbilical or (1+ < x, g0 >)
2Φ and

F 2 are constants.

Step 3. Assume that (1+ < x, g0 >)
2Φ and F 2 are positive constants.

It is important now to derive the following four equations which will require

in Step 4:

Fα =
4

Φ + F 2

8(1+<x,g0>)2

(
∑

φ
β
11F

βφα11 +
∑

φ
β
12F

βφα12),

∑

φα11F
α
1 =

∑

φα12F
α
1 =

∑

φα11F
α
2 =

∑

φα12F
α
2 = 0,

(1+ < x, g0 >)
2
∑

[(Fα
1 )

2 − (Fα
2 )

2] = 2
[

(1+ < x, g0 >)
2Φ+

F 2

8

]

∑

φα11F
α

and

(1+ < x, g0 >)
2
∑

Fα
1 F

α
2 =

[

(1+ < x, g0 >)
2Φ+

F 2

8

]

∑

φα12F
α.

The way of proof is proceeding as the procedure of Step 1, but reverses

the order of taking limits and applying Lemma 2.5. Since gm◦x is a Willmore
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immersion, Lemma 2.6 gives

0 =

∫

M

[

∑

(φ̄αijk)
2 +

∑

φ̄αijH̄
α
ij + Φ̄(2 +

H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

=

∫

M

[

∑

(φ̄αijk)
2 −

∑

φ̄αijjH̄
α
i + Φ̄(2 +

H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

≥
∫

M

[

− 1

4

∑

|∇̄⊥H̄α|2 + Φ̄(2 +
H̄2

2
− Φ̄)−

∑

R̄2
αβ12

]

dā

≥
∫

M

{

− 1

2

[

(
∑

φ̄α11H̄
α)2 + (

∑

φ̄α12H̄
α)2 + 16

∑

(φ̄α11)
2
∑

(φ̄α12)
2

−16(
∑

φ̄α11φ̄
α
12)

2
]

+ Φ̄(2 +
H̄2

2
− Φ̄)

}

dā

=

∫

M

{

− 1

2
λ2m

[

(
∑

φα11F
α
m)2 + (

∑

φα12F
α
m)2

+16(1+ < x, gm >)2
∑

(φα11)
2
∑

(φα12)
2

−16(1+ < x, gm >)2(
∑

φα11φ
α
12)

2
]

+Φ(2 +
λ2mF

2
m

2
− λ2m(1+ < x, gm >)2Φ)

}

da,

where λm = 1
1−|gm|2 , and F 2

m =
∑

(Fα
m)2 was defined at Lemma 2.7 with

g = gm. Dividing the integral inequality by λ2m and letting m −→ ∞, we get

0≥
∫

M

{

− 1

2

[

(
∑

φα11F
α)2+(

∑

φα12F
α)2+16(1+< x, g0 >)

2
∑

(φα11)
2
∑

(φα12)
2

−16(1+ < x, g0 >)
2(
∑

φα11φ
α
12)

2
]

+Φ(
F 2

2
− (1+ < x, g0 >)

2Φ)
}

da,

where F denote the function related to g0.

Now, we apply Lemma 2.5 with c = (1+ < x, g0 >)
2 to the first term of

the integrand. Since (1+ < x, g0 >)
2Φ is a positive constant, 1+ < x, g0 >

never vanishes and (1+ < x, g0 >)
2Φ = 3+

√
6

24 F 2, Lemma 2.5 gives

0 ≥
∫

M

{

− 1

2
(1+ < x, g0 >)

2
[

Φ+
F 2

8(1+ < x, g0 >)2

]2

+Φ
[F 2

2
− (1+ < x, g0 >)

2Φ
]}

da
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=

∫

M
−3

2

[

(1+ < x, g0 >)
2Φ2 − ΦF 2

4
+

F 4

192(1+ < x, g0 >)2

]

da

= 0.

It follows that all the inequalities in the preceding process become equal-

ities. In particular, the equality in Lemma 2.5 with c = (1+ < x, g0 >)
2

holds, and hence the first equation follows immediately.

Applying the first equation twice, we have

∑

φαijφ
β
ijF

β

=
8

Φ + F 2

8(1+<x,g0>)2

[

(
∑

(φβ11)
2
∑

φ
β
11F

β +
∑

φ
β
11φ

β
12

∑

φ
β
12F

β)φα11

+(
∑

φ
β
11φ

β
12

∑

φ
β
11F

β +
∑

(φβ12)
2
∑

φ
β
12F

β)φα12

]

=
8

Φ + F 2

8(1+<x,g0>)2

[1

4
(Φ +

F 2

8(1+ < x, g0 >)2
)
∑

φ
β
11F

βφα11

+
1

4
(Φ +

F 2

8(1+ < x, g0 >)2
)
∑

φ
β
12F

βφα12

]

=
1

2

[

Φ+
F 2

8(1+ < x, g0 >)2

]

Fα,

for all α. Thus Fα satifies the following equation

∆⊥Fα +
1

2

[

Φ+
F 2

8(1+ < x, g0 >)2

]

Fα = 0.

The scheme of showing others are similar to that of Step 3 in the proof

of Theorem 1.1. We made a brief sketch here for clarity and completeness.

Let ϕα
ij = (1+ < x, g0 >)φ

α
ij for all α, i, j. Because ψα

ijj =
Fα
i

4 , for all α, i, j,

Lemma 2.8 gives

ϕα
111 =

Fα
1

4
+ 2 < e2, g0 > φα12,

ϕα
112 = −F

α
2

4
− 2 < e1, g0 > φα12,

ϕα
121 =

Fα
2

4
− 2 < e2, g0 > φα11
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and

ϕα
122 =

Fα
1

4
+ 2 < e1, g0 > φα11.

Because the equality in Lemma 2.5 with c = (1+ < x, g >)2 holds, we have

A2 +B2 =
1

2
CF 2,

A2 −B2 = 8C
[

∑

(φα11)
2 −

∑

(φα12)
2
]

,

AB = 8C
∑

φα11φ
α
12,

where A =
∑

ϕα
11F

α, B =
∑

ϕα
12F

α and C = 1
2((1+ < x, g0 >)

2Φ+ F 2

8 ).

Since A2 + B2 and F 2 are constants, differentiating A2 + B2 and sub-

stituting ϕα
ijk in terms of Fα

i and φαij , we obtain

A
∑

ϕα
11F

α
1 +B

∑

ϕα
12F

α
1 = 0,

A
∑

ϕα
11F

α
2 +B

∑

ϕα
12F

α
2 = 0.

Since A2 + B2 is a positive constant,
∑

ϕα
11F

α
1 = −tB, ∑ϕα

12F
α
1 = tA,

∑

ϕα
11F

α
2 = −sB and

∑

ϕα
12F

α
2 = sA, for some functions t and s.

Next, we differentiate the equations involved A2−B2 and AB, obtaining

tAB = C(sA+ tB),

sAB = C(tA− sB),

t(A2 −B2) = 2C(tA− sB),

s(A2 −B2) = 2C(−sA− tB).

As before, this implies s = t = 0, and we get the second equation.

Differentiating the second equation, the proof of remaining part uses

exactly the same argument as Theorem 1.1, one just replaces Hα by Fα

throughout.

Step 4. Finally, we assert that M is totally umbilical. Suppose that, to

get a contradiction, M is not totally umbilical. It will then follow from Step

2 that both (1+ < x, g0 >)
2Φ and F 2 are positive constants.
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Setting C = 1
2

[

(1+ < x, g0 >)
2Φ+ F 2

8 )
]

, since F 2 is a constant function,

we have

0 =
1

2
(1+ < x, g0 >)

2∆F 2

= (1+ < x, g0 >)
2
∑

|∇⊥Fα|2 + (1+ < x, g0 >)
2
∑

Fα∆⊥Fα

= (1+ < x, g0 >)
2
∑

|∇⊥Fα|2 − CF 2,

and hence

(1+ < x, g0 >)
2
∑

|∇⊥Fα|2 = CF 2.

This means that (1+ < x, g0 >)
2
∑ |∇⊥Fα|2 is also a constant function.

Both first derivatives being equal to zeros, we get

(1+ < x, g0 >)
2
∑

Fα
j F

α
ji < ei, g0 >

= −(1+ < x, g0 >)
∑

|∇⊥Fα|2 < ei, g0 >
2 .

Once again we use the fact that (1+ < x, g0 >)
2
∑ |∇⊥Fα|2 is a con-

stant, we have

0 =
1

2
(1+ < x, g0 >)

2∆
[

(1+ < x, g0 >)
2
∑

|∇⊥Fα|2
]

=
1

2
(1+ < x, g0 >)

2
∑

|∇⊥Fα|2∆(1+ < x, g0 >)
2

+
1

2
(1+ < x, g0 >)

4∆
∑

|∇⊥Fα|2

+(1+ < x, g0 >)
2∇(1+ < x, g0 >)

2 · ∇
∑

|∇⊥Fα|2

= CF 2
[

− 3
∑

< ei, g0 >
2

+(1+< x, g0 >)(
∑

Hα < eα, g0 >−2 < x, g0 >)
]

+
1

2
(1+ < x, g0 >)

4∆
∑

|∇⊥Fα|2,

here we have used the fact that ∆ < x, g0 >=
∑

Hα < eα, g0 >−2 < x, g0 >.
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We need to adjust the last term,

1

2
(1+ < x, g0 >)

4∆
∑

|∇⊥Fα|2

= (1+ < x, g0 >)
4
[

∑

(Fα
ij)

2 +
∑

Fα
i F

α
ijj

]

= (1+ < x, g0 >)
4
[

∑

(Fα
ij)

2 +
∑

Fα
i (∆

⊥Fα)i

+
∑

Fα
i F

α
j Rikjk + 2

∑

Fα
i F

β
j Rβαij +

∑

Fα
i F

βRβαij,j

]

.

Now we take care of these terms containing curvature. First, it is

straightforward that

∑

Fα
i F

α
j Rikjk = R1212

∑

|∇⊥Fα|2 = (1 +
H2

4
− Φ

2
)
∑

|∇⊥Fα|2.

Next, applying the second equation of Step 3, we obtain

∑

Fα
i F

β
j Rβαij = −2(Fα

1 F
β
2 − Fα

2 F
β
1 )(φ

α
11φ

β
12 − φα11φ

β
12) = 0.

Finally, substituting ϕα
ijk in terms of Fα

i and φαij, the second equation of Step

3 gives

(1+ < x, g0 >)
2
∑

Fα
i F

βRβαij,j

=
1

2

∑

ϕα
11F

α
∑

[

(Fα
1 )

2 − (Fα
2 )

2
]

+
∑

ϕα
12F

α
∑

Fα
1 F

α
2 .

Then applying the third and fourth equations of Step 3, we have

∑

Fα
i F

βRβαij,j =
F 2

4

[

Φ+
F 2

8(1+ < x, g0 >)2

]2
.

Together these equations imply that

1

2
(1+ < x, g0 >)

4∆
∑

|∇⊥Fα|2

= (1+ < x, g0 >)
4
∑

(Fα
ij)

2 + CF 2(1+ < x, g0 >)
2(1 +

H2

4
− Φ

2
).
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Substituting this into the original equation, it follows that

0 = (1+ < x, g0 >)
4
∑

(Fα
ij)

2 + CF 2
[

− 3
∑

< ei, g0 >
2

+(1+ < x, g0 >)(
∑

Hα < eα, g0 > −2 < x, g0 >)

+(1+ < x, g0 >)
2(1 +

H2

4
− Φ

2
)
]

.

To estimate the first term, let

F̃α
ij = (1+< x, g0 >)

2Fα
ij+(1+ < x, g0 >)(F

α
i < ej , g0 >+Fα

j < ei, g0 >

−
∑

Fα
k < ek, g0 > δij),

for all α, i, j. Then

∑

F̃α
ii = (1+ < x, g0 >)

2
∑

Fα
ii = −CFα,

and

∑

(F̃α
ij)

2

= 2(1+ < x, g0 >)
3(
∑

Fα
ijF

α
i < ej , g0 > +

∑

Fα
ijF

α
j < ei, g0 >

−
∑

Fα
iiF

α
k < ek, g0 >)

+(1+ < x, g0 >)
4
∑

(Fα
ij)

2 + 2(1+< x, g0 >)
2
∑

|∇⊥Fα|2 < ei, g0 >
2

= 2(1+ < x, g0 >)
3(2

∑

Fα
ijF

α
i < ej , g0 > +

∑

(Fα
ij − Fα

ji)F
α
j < ei, g0 >)

+(1+ < x, g0 >)
4
∑

(Fα
ij)

2 + 2(1+ < x, g0 >)C
∑

FαFα
k < ek, g0 >

+2(1+ < x, g0 >)
2
∑

|∇⊥Fα|2 < ei, g0 >
2

= 2(1+ < x, g0 >)
3(2

∑

Fα
ijF

α
i < ej , g0 >+

∑

F βRβαijF
α
j < ei, g0 >)

+(1+< x, g0 >)
4
∑

(Fα
ij)

2+2(1+ < x, g0 >)
2
∑

|∇⊥Fα|2 < ei, g0 >
2

=−2(1+ < x, g0 >)
2
∑

|∇⊥Fα|2 < ei, g0 >
2+(1+ < x, g0 >)

4
∑

(Fα
ij)

2.

Thus the first term can estimate from below by

(1+ < x, g0 >)
4
∑

(Fα
ij)

2 =
∑

(F̃α
ij)

2 + 2CF 2
∑

< ei, g0 >
2

≥
∑

(F̃α
ii )

2 + 2CF 2
∑

< ei, g0 >
2
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≥ 1

2

∑

(
∑

F̃α
ii )

2 + 2CF 2
∑

< ei, g0 >
2

=
1

2
C2F 2 + 2CF 2

∑

< ei, g0 >
2 .

Because 1 =< x, g0 >
2 +

∑

< ei, g0 >
2 +

∑

< eα, g0 >
2, we conclude that

0 ≥ CF 2
[

1−
∑

< ei, g0 >
2 − < x, g0 >

2 +
1

4
(1+ < x, g0 >)

2H2

+(1+ < x, g0 >)H
α < eα, g0 > +

1

32
F 2 − 1

4
(1+ < x, g0 >)

2Φ
]

= CF 2
[ 9

32
F 2 − 1

4
(1+ < x, g0 >)

2Φ
]

=
24−

√
6

96
CF 4 > 0.

This contradiction shows that M is totally umbilical. This completes the

proof of Theorem 1.2.
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