UNFILTRABLE HOLOMORPHIC VECTOR BUNDLES IN A CYCLIC QUOTIENT OF $C^2 \setminus \{0\}$

BY

E. BALLICO

Abstract

Let $G := \mathbf{Z}/n\mathbf{Z}$, $n \geq 2$, act diagonally on \mathbf{C}^2 and set $X := \mathbf{C}^2 \setminus \{0\}/G$ (a punctured neighborhood for the normal surface singularity A_{n-1}). Here we prove the existence of a rank two holomorphic vector bundle on X without rank one subsheaves.

1. Unfiltrable Vector Bundles

Let M be a reduced and irreducible complex space and E a rank two holomorphic vector bundle on M. We will say that E is *unfiltrable* if there is no rank one torsion free sheaf L such that there is a non-zero map $L \to E$. In the case M smooth it is sufficient to use holomorphic line bundles L to test if E is unfiltrable. If M is Stein, then no rank two holomorphic vector bundle on M is unfiltrable by Theorem A of Cartan - Serre. For example of pairs (M, E) with M smooth compact complex surface and E unfiltrable, see [2] and [3]. In [1] we proved the existence of unfiltrable rank two holomorphic vector bundles on $\mathbb{C}^2 \setminus \{0\}$. If one is interested in the case in which M = Y/Swith Y Stein manifold and S discrete in M, then unfiltrable bundles may exist only if dim(Y) = 2 by an extension theorem due to Serre ([6]).

The aim of this paper is to prove the following result.

Received May 5, 2004 and in revised form September 7, 2004.

AMS 2000 Subject Classification: 32L05, 32L010, 32S05.

Key words and phrases: Holomorphic bundle.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

E. BALLICO

Theorem 1. Let $G : \mathbb{Z}/n\mathbb{Z} \subset GL(2, \mathbb{C})$, $n \geq 2$, act diagonally on \mathbb{C}^2 and set $X := \mathbb{C}^2 \setminus \{0\}/G$. Then there is a rank two unfiltrable holomorphic vector bundle on X.

Notice that X is a smooth open subset of the two-dimensional normal Stein space \mathbb{C}^2/G which has a cyclic singularity of type A_{n-1} at the point of \mathbb{C}^2/G which is the image of $0 \in \mathbb{C}^2$.

The case n = 1 (i.e. $X = \mathbb{C}^2 \setminus \{0\}$), was done in [1] using a nice result proved in [2]. Here we prove Theorem 1 (i.e. the case $n \ge 2$) reducing it to the case proved in [1].

For higher rank holomorphic vector bundles the notion of unfiltrability should be replaced with the notion of irreducibility (see [2], [3] and references therein). Here we state it in the case of singular complex spaces.

Definition 1. Let M be a reduced and irreducible complex space and E a holomorphic vector bundle on M. We will say that E is *irreducible* if there is no inclusion $i: F \to E$ with F a coherent analytic sheaf on M such that $1 \leq \operatorname{rank}(F) < \operatorname{rank}(E)$.

We were unable to prove the following conjecture.

Conjecture 1. For every integer $r \ge 2$ and every normal complex surface singularity there is a fundamental system $\{(Y_n, P)\}_{n\ge 1}$ of representative of it such that each $Y_n \setminus \{P\}$ admits a rank r irreducible holomorphic vector bundle.

Proof of Theorem 1. The cyclic group $G \cong \mathbb{Z}/n\mathbb{Z}$ acts as a diagonal sugroup of $GL(2, \mathbb{C})$, i.e. we fix two primitive *n*-roots ϵ_i , i = 1, 2, of unity and the generator *e* of *G* acts by the formula $e(z_1, z_2) = (\epsilon_1 z_1, \epsilon_2 z_2)$. We fix $\alpha_i \in \mathbb{C}$, i = 1, 2, such that $0 < |\alpha_1| \le |\alpha_2| < 1$ and set $\lambda = 0$. With these parameters there is a unique Hopf surface *M* and it has a cyclic covering of order *n*, say $u : B \to M$, which is the primary Hopf surface constructed with the parameters α_1, α_2 and with $\lambda = 0$ ([5], Th. 32). As in [1] we assume that α_1 and α_2 are chosen so that there are no positive integers *a*, *b* such that $\alpha_1^a = \alpha_2^b$. Hence the coverings $f : \mathbb{C}^2 \setminus \{0\} \to B$ and $u \circ f : \mathbb{C}^2 \setminus \{0\} \to M$ are the universal coverings. In [1] we used the surface *B* to construct unfiltrable vector bundles for the trivial group. Since *T* has algebraic dimension zero ([5], Th. 31), *M* has algebraic dimension zero. Since *B* belongs to Kodaira's 2006]

class VII_0 , M belongs to Kodaira's class VII_0 , i.e. $b_1(M) = 1$, $h^1(M, \mathcal{O}_M) = 1$ and $h^0(M, \omega_M) = 0$. Hence $\chi(\mathcal{O}_M) = 0$ and $\omega_M \cdot \omega_M = 0$. We fix an integer $c_2 \geq 3$ and call Z a general subset of M with $\operatorname{card}(Z) = c_2$. Consider the general extension

$$0 \to \mathcal{O}_M \to D \to \mathcal{I}_Z \to 0. \tag{1}$$

Since $h^0(M, \omega_M) = 0$, for every subset Z' of Z with $\operatorname{card}(Z) = \operatorname{card}(Z) - 1$ we have $h^0(M, \mathcal{I}_{Z'} \otimes \omega_M) = 0$. Hence the Cayley - Bacharach condition is satisfied ([4]). Thus D is locally free. Hence $u^*(D)$ is locally free and fits in the exact sequence

$$0 \to \mathcal{O}_B \to u^*(D) \to Lu^{-1}(z) \to 0.$$
⁽²⁾

Since $Z \neq \emptyset$ and $u^{-1}(Z) \neq \emptyset$, we have $h^0(M, D) = h^0(B, u^*(D)) = 1$. Since M and B have algebraic dimension zero, they have only finitely many closed curves. Since Z is general, we see that neither D nor $u^*(D)$ contain a line bundle not contained in the trivial line subbundle arising from the exact sequences (1) and (2). We have $c_1(D) \cong \mathcal{O}_M$ and $c_1(u^*(D)) \cong \mathcal{O}_B$. With the notation of [2], p. 9, we call $m(2, \mathcal{O}_M)$ a certain integer with the property that if $c_2 \ge \max\{m(2, \mathcal{O}_M), 5\}$, there is a flat family $\{D_z\}_{z\in\Delta}$ parametrized by the unit disk $\Delta \subset \mathbb{C}$ such that $D_0 = D$ and D_z is unfiltrable (i.e. it contains no rank one subsheaf) for every $z \in \Delta \setminus \{0\}$. Consider the flat family $\{u^*(D_z)\}_{z\in\Delta}$ of holomorphic rank one vector bundles on B such that $u^*(D_0) = u^*(D), c_1(u^*(D_z)) \cong \mathcal{O}_B$ and $c_2(u^*(D_z)) = nc_2$ for every $z \in \Delta$. \Box

Claim. Each $u^*(D_z), z \in \Delta \setminus \{0\}$, in unfiltrable.

Proof of the Claim. Fix any $z \in \Delta \setminus \{0\}$ and set $E_z := f^*(u^*(D_z))$. The proof of the unfiltrability of E_z for a general z given in [1], p. 202, works verbatim because it only use the unfiltrability of $u^*(D_z)$, the existence of the flat family $\{u^*(D_z)\}_{z\in\Delta}$ and that $u^*(D_0)$ fits in the exact sequence (2). \Box

References

1. E. Ballico, Holomorphic vector bundles on $\mathbb{C}^2 \setminus \{0\}$, Israel J. Math. **128**(2002), 197-204.

2. C. Bănică and J. Le Potier, Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, *J. Reine Angew. Math.* **378**(1987), 1-31.

3. V. Brinzanescu, Holomorphic vector bundles over compact complex surfaces, Lect. Notes in Math. 1624, Springer-Verlag, Berlin, 1996.

4. F. Catanese, *Footnotes to a theorem of Reider*, Algebraic Geometry, Proceedings of the L'Aquila Conference 1988, 67-74, Lect. Notes in Math. 1417, Springer-Verlag, Berlin, 1990.

 K. Kodaira, On the structure of compact analytic surfaces, II, Amer. J. Math. 88(1966), 682-721; reprinted in Kunihiko Kodaira: Collected Works, Vol.3, 1471-1510, Princeton University Press and Iwanami Shoten, Publishers, 1975.

6. J.-P. Serre, Prolongements de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16(1966), 363-374; reprinted in J.-P. Serre, (Evres - Collected Papers, Vol. II, 277-288, Springer, Berlin, 1986.

Department of Mathematics, University of Trento, 38050 Povo (TN), Italy.

E-mail: ballico@science.unitn.it