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THE MORSE THEORY AND THE MASLOV-TYPE

INDEX THEORY

BY

CHUN-GEN LIU

Abstract

In this lecture note, we give a brief introduction to the clas-

sic Morse theory, the Morse homology theory and the Maslov-type

index theory and its iteration theory. It based on some lectures

in the seminar of dynamical systems in Institute of Mathematics,

Academia Sinica, Taipei.

1. Introduction

1.1. The finite dimensional and infinite dimensional Morse theory

The topological properties of a manifold usually is global information

of the manifold. The shapes of the neighborhoods of critical points of a

Morse function defined on the manifold are usually local information of this

manifold. Morse theory connects the two aspects of analytic information

and topological information of a manifold.

The Morse theory became an important method in the studies of non-

linear analysis, specially in the studies of the closed geodesic theory on a

Riemannian manifold. It had many developments in the fields of analysis

and geometry. For example, the Morse (co)homological theory, the infinite

dimensional Morse theory(the critical group theory), and the Floer homolog-

ical theory were developed on the fundamental of the classical Morse theory.
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These theories are very useful tools today in the study of differential equa-

tions, minimal surfaces theory, harmonic maps, symplectic geometry and

symplectic topology, etc. In this lecture note, we will give a brief intro-

duction on the classical Morse theory and some of its developments. The

main material comes from the references [3]−[5], [6], [46], [47] and [52]. The

first part contains the Morse Lemma, deformation theory, and the Morse

inequalities. The second part contains the Morse homology theory and then

the infinite dimensional Morse theory, i.e., the theory of critical groups.

1.2. Morse index and Maslov-type index theory

Morse index theory has played a very important role in the nonlinear

problems, including nonlinear differential equations, such as existence, mul-

tiplicity and stability problems of closed geodesics in a Riemannian manifold.

Early in 1930’s, this index theory was developed by M. Morse in his work

on closed geodesics on Riemannian manifolds. With the iteration formula

established by R. Bott, many deep results for closed geodesics have been

obtained via Morse theory. During the past almost 30 years, the study of

existence and multiplicity of periodic solutions of nonlinear Hamiltonian has

been one of the important directions in the field of Hamiltonian dynamics.

In this period a great number of research papers have appeared in this and

related areas, and many aspects of critical point theory have been applied

to the variational study of Hamiltonian systems. It is natural to apply the

Morse theoretical method to the problems involving various solutions of non-

linear Hamiltonian systems. It is well known that all critical points of the

associated variational functional of a first order Hamiltonain system possess

infinite Morse indices. The have been a number of attempts in finding finite

representations of Morse indices for periodic orbits of Hamiltonian systems.

The so called Maslov-type index theory is one of the successful attempts.

Since 1980, two different index theories for periodic solutions of nonlinear

Hamiltonian systems have appeared. One index theory was developed by I.

Ekeland in 1980’s for convex Hamiltonian systems. A beautiful systematic

treatment of his index theory was given in his celebrated book [10]. Another

index theory is a classification of general linear Hamiltonian system with

periodic coefficients(without convexity). This index theory began with the



2006] THE MORSE THEORY AND THE MASLOV-TYPE INDEX THEORY 343

work of H. Amann and E. Zehnder in [1]. They established the correspond-

ing index theory for linear Hamiltonian systems with constant coefficients.

After that many mathematicians worked on this problem (cf. [6] and [23]).

The linearized system of a nonlinear Hamiltonian system

ẋ(t) = JH ′(t, x(t)) (1.2.1)

at a solution x(t) is a linear Hamiltonian system

ż(t) = JB(t)z(t), (1.2.2)

where B(t) = H ′′(t, x(t)), J =

(
0 −In
In 0

)
and In is n × n identity matrix.

The fundamental solution of (1.2.2) is a path in the symplectic group Sp(2n)

starting from the identity. Here

Sp(2n) = {M ∈ GL(R2n) |MTJM = J}

and MT denotes the transpose of M . We define the set of symplectic paths

by

Pτ (2n) = {γ ∈ C([0, τ ],Sp(2n) | γ(0) = I2n)}.

For any γ ∈ Pτ (2n), we define ντ (γ) = dimkerC(γ(1) − I). If ντ (γ) = 0, we

say that the symplectic path γ is non-degenerate, and degenerate otherwise.

In their celebrated paper [9], C. Conley and E. Zehnder defined an index

i(γ) ∈ Z for any non-degenerate path γ ∈ Pτ (2n) with n ≥ 2, i.e., the so

called Conley-Zehnder index. For n = 1 this index was studied in [43]. The

index theory for degenerate linear Hamiltonians was established by Y.Long

in [37] and C. Viterbo in [54]. Then in [38] this index theory was further

extended to any paths in Pτ (2n). For any path γ ∈ Pτ (2n), we call the

index pair

(iτ (γ), ντ (γ)) ∈ Z× {0, 1, . . . , 2n}

the Maslov-type index. If γ(t) is the fundamental solution of the linear

system (1.2.2), we denote the index pair of γ also by (iτ (B), ντ (B)). It is

a classification of the linear Hamiltonian systems. If x(t) is a τ -periodic

solution of the nonlinear Hamiltonian system (1.2.1) with H(t + τ, x) =

H(t, x) for any (t, x) and B(t) = H ′′(t, x(t)), we denote (iτ (x), ντ (x)) =
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(iτ (B), ντ (B)) in this case. In this lecture, we will give a brief introduction

to the Maslov-type index theory and its iteration theory.

Acknowledgements

The lecture note was planning when the author was visiting the Institute

of Mathematics, Academia Sinica, Taipei. The author would like to thank

Institute of Mathematics, Academia Sinica for partial support. The author

should thank Professors Du Bau-Sen and Chen Chao-Nien for their hospi-

tality, many helps. The author also thanks Professors Du Bau-Sen, Chen

Chao-Nien, Tzeng Shyuh-Yaur, Chen Kuo-Chang and Chen Yi-Chiuan for

their persisting encouragement, helps, useful comments and discussions.

2. An Induction to the Morse Theory

2.1. Morse theory of differentiable functions on a manifold

Let M be a smooth compact differentiable manifold, f ∈ C2(M,R). A

critical point of f is a point p ∈M such that df(p) = 0. The Morse index of

f at a critical point p is defined by

µ(p) = number of negative eigenvalue of f ′′(p).

A critical piont is non-degenerate if

Hf = f ′′(p) =
( ∂2f

∂xi∂xj

)
, x = (x1, . . . , xn) local coordinates at p

is not degenerate, i.e., its nullity n(p) = 0. The function f is called Morse

function, if all of its critical points are non-degenerate. We denote the level

set of f behind the value a by

fa = {x ∈M |f(x) ≤ a}.

Lemma 2.1.1.(Morse Lemma) If p ∈ M is a non-degenerate critical

point of f , we can choose local coordinates (U,ϕ) at p such that

f(x) = f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n,

x = (x1, . . . , xn) ∈ U, p = (0, . . . , 0), k = µ(p).
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Theorem 2.1.2. If df(p) 6= 0 for all points p ∈ M with a ≤ f(p) ≤
b, then fa and fb are diffeomorphic, i.e., fa ∼= fb. Furthermore, fa is a

deformation retract of fb, so that the inclusion map fa → fb is a homotopy

equivalence.

Proof. The idea of the proof is to push fb down to fa along to the

orthogonal trajectories of the hypersurfaces f =constant, i.e. along the

negative flow of f . By the condition ∇f(p) 6= 0 for p ∈ f−1([a, b]), we can

make a deformation via the negative gradient flow line such that any flow

line starting from the boundary of fb will intersect the boundary of fa among

a bounded time interval. See the figure below. �

Figure 2.1.1. The negative gradient flow.

Example. IfM is a compact manifold and f is a differentiable function

on M with only two critical points, both of which are non-degenerate, then

M is homeomorphic to a sphere Sn.

Claim. One of the critical points must be minimum and another must

be maximum. At the minimum point, say p, the Morse index µ(p) = 0. At

the maximum point, say q, the Morse index µ(q) = n = dimM . Thus M

is the union of two closed n-cells. It is easy to construct a homeomorphim

between M and Sn.

Figure 2.1.2. Gluing the neighborhoods of the two critical points.

Let er = {(x1, . . . , xr) ∈ R
r | x21 + · · · x2r ≤ 1} be the r-cell. ∂er =
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{(x1, . . . , xr) ∈ R
r | x21 + · · · x2r = 1} the boundary of er. ϕ : ∂er → X a

continuous map, X is a topological space. The topological space X ∪ϕ er is

said attached er to X by ϕ if

X ∪ϕ er = X ∪ er/ ∼, ϕ(p) ∼ p.

Theorem 2.1.3. Let M be a compact differential manifold. f :M → R

as defined before. If f−1([a, b]) contains exactly one non-degenerate critical

point p of index k, a < f(p) < b, then fb has the homotopy type of fa ∪ϕ ek.

Proof. We may assume that f(p) = 0. It is sufficient to prove there is a

small number ε > 0 such that

fε ∼ fa ∪ϕ ek.

By the Morse lemma, there is a neighborhood U of p and local coordinates

y1, . . . , yn in U such that f is given by

f = −y21 − · · · − y2k + y2k+1 + · · ·+ y2n.

We set

Aε = {y ∈ fε ∩ U | y21 + · · · + y2k ≤ ρ}

for some small ρ > 0, and

f∗ε = fε \ Aε,

then fε = Aε ∪ f∗ε . For suitable chosen ε > 0 and ρ > 0, this just means

that fε is obtained from f∗ε by attaching a product ek × In−k with Is =

{(x1, . . . , xs) ∈ R
s|0 ≤ xj ≤ 1}. Namely we have

fε = f∗ε ∪φ (ek × In−k) ∼ f∗ε ∪ψ ek.

We can show that

f∗ε ∼= fa

by the same method as in the proof of Theorem 2.1.1. See the figure

below. �
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Figure 2.1.3. Make the homotopy.

Example. Let T 2 be a 2-dimensional torus, resting on its tangent

plane. The function f : T 2 → R is defined by the distance of the points

on T 2 from the tangent plane V . It is smooth (real analytic). The set

of critical points= {s, r, q, p}. Suppose f(s) = c1, f(r) = c2, f(q) = c3,

f(p) = c4. Then µ(s) = 2, µ(r) = 1, µ(q) = 1, µ(p) = 0.

Figure 2.1.4. The function defined on the torus.
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fa =





fa ∼





• = ∅
⋃
ϕ • f(p)<a<f(q)

=
⋃
ϕ f(q)<a<f(r)

=
⋃
ϕ f(r)<a<f(s)

=
⋃
ϕ a > f(s)

Figure 2.1.5. The diffeomorphim and homotopy.

2.2. The Morse inequlities

Let M be a compact manifold, which can be built up by successively

attaching cells, in the way described in the section 2.1. Then there is a CW -

complexK, such that its cells are in dimension preserving 1-1 correspondence

with the attached cells, and the homology of K is the homology of M(with

respect to any group of coefficients). We may take R domain of coefficients.

Let

C =

n∑

i=0

Ci

the (naturally graded) vector space of chains of K.

Z =

n∑

i=0

Zi

the space of cycles,

B =

n∑

i=0

Bi

the space of the boundary and

H =
n∑

i=0

Hi

the real homology group of K. By definition, we have the exact sequence
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(1) 0 → Z
i−→ C

p−→ B
δ−→ 0

(2) 0 → B → Z → H → 0

where δ reduced the degree by 1. Setting dimCi = ci, dimZi =

zi, dimBi = bi and dimHi = hi. From (1) and (2), we have

ci = bi−1 + zi, zi = hi + bi.

So there holds

ci − hi = bi + bi−1, i = 0, 1, . . . , b−1 = 0. (2.2.1)

Since bi ≥ 0, the relations lead to the following sequence of inequalities

c0 ≥ h0
c1 − c0 ≥ h1 − h0
c2 − c1 + c0 ≥ h2 − h1 + h0
· · · · · · · · · · · ·

(2.2.2)

Let f be a non-degenerate differentiable function on the compact differ-

entiable manifold M . By slightly perturbation, we can assume that any pair

of critical points p, q ∈ M of f satisfy f(p) 6= f(q). By Theorem 2.1.2 and

the above arguments, we have the following result.

Theorem 2.2.1. Let ci, i = 0, 1, . . . be the number of critical points of

index i of f , and hi the i th-Betti number of M , i.e., hi = Hi(M ;R). Then

there exist a sequence of non-negative integers bi such that

ci − hi = bi−1 + bi, i = 0, 1, . . . . (2.2.3)

Therefore (2.2.2) holds in this case. We set

Mt(f) =
∞∑

i=0

cit
i,

Pt(M) =

∞∑

i=0

hit
i,

Qt(f) =

∞∑

i=0

bit
i.
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The inequalities of (2.2.2) can be written as

Mt(f)− Pt(M) = (1 + t)Qt(f). (2.2.4)

Corollary 2.2.2. (Morse Lacunary Principle) Suppose that no consec-

utive powers of t occur in Mt(f). Then Qt(f) ≡ 0. So that

Mt(f) = Pt(M) (2.2.5)

for any coefficient K. In particular, M is then free of torsion.

Proof. If Qt(f) =
∞∑

i=0

bit
i 6= 0, for example bi 6= 0, then the right should

contains the consecutive powers: ti and ti+1. Thus Mt(f) also contains this

two consecutive terms. �

Example. Consider the unit sphere

S2n+1 = {(z0, . . . , zn) ∈ C
n+1|

n∑

i=0

|zi|2 = 1},

and on it defines the function

f(z) =
1

2

n∑

i=0

λi|zi|2,

where λ0 < λ1 < · · · < λn are sequence of distinct real numbers. It is clear

that f is invariant under the S1 action on S2n+1:

e
√
−1θ : (z0, . . . , zn) → (e

√
−1θz0, . . . , e

√
−1θzn).

Thus the function can descends to the projective space CPn. Around the

point ei = (0, . . . , 0, 1, 0 · · · 0), the i th element is 1 and others are zero, we

have a local coordinate of CPn. Since
∑n

i=0 |zj | = 1, we can write

f(z) =
1

2

(∑

j 6=i
(λj − λi)|zj |2 + λi

)
.
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The point ei is the critical point. f ′′(ei) has eigenvalues

λ0 − λi, λ1 − λi, . . . , λi−1 − λi, λi+1 − λi, . . . , λn − λi.

Every eigenvalue has real dimension 2. So µ(ei) = 2i and by definition

Mt(f) = 1 + t2 + t4 + · · ·+ t2n.

The lacunary principle applies and we conclude that

Pt(CPn) = 1 + t2 + t4 + · · ·+ t2n. (2.2.6)

Corollary 2.2.3. Let M be a compact differentiable manifold, f ∈
C2(M,R). If all critical points are non-degenerate, then the number of crit-

ical points of f satisfies

♮crit(f) ≥ dimH∗(M,R) =

n∑

i=0

hi. (2.2.7)

In the general case, the number of critical points of f satisfies

♮crit(f) ≥ cup length(M), (2.2.8)

where the cup length of M is defined by

cup length(M) = max{k ∈ N|∃ω1, . . . , ωk−1 ∈ H∗(M,R)

with dimωi > 0 and ω1 ∪ · · · ∪ ωk−1 6= 0}.

Proof. (2.2.7) is a direct consequence of Theorem 2.2.1 with t = 1.

(2.2.8) is a Lyusternik-Schnirelmann type estimate on the critical points

of f . If there exist ω1 ∪ · · · ∪ ωm 6= 0 with dimωi > 0, and f possesses

only m critical points. By the deformation lemma, one can cover M by m

open contractible sets Mi, i = 1, . . . ,m. Since dimωi > 0, one can choose

representaions of ωi which come from ω̃i ∈ H∗(M,Mi). But the cup product

ω̃1 ∪ · · · ∪ ω̃m ∈ H∗(M,∪m1 Mi) = 0. This is a contradiction. �
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2.3. Infinite dimensional Morse theory

In this section, we give a brief introduction to the infinite dimensional

Morse theory. One can see this theory is a natural generalization of the

classical finite dimensional Morse theory. All the material comes from [6].

Let M be a (infinite dimensional) Hilbert manifold, f ∈ C1(M,R). We

say that f satisfies the (PS)c condition if any sequence {xn} ⊂ M along

with f(xn) → c ∈ R and df(xn) → θ (strongly) possesses a convergent

subsequence. We say that f satisfies the (PS) condition if it satisfies (PS)c
condition for all c ∈ R.

Lemma 2.3.1.(Deformation Lemma). Suppose f ∈ C1(M,R) satisfies

(PS)c for c ∈ [a, b].

(1) If there is no critical point in f−1((a, b]), then fa is a strong defor-

mation retract of fb.

(2) If a is the only critical value of f in [a, b), and the critical set Ka

corresponding to the critical value a is only isolated points. Then fa is a

strong deformation retract of fb \Kb.

Proof. The idea of the proof is similar to that in the proof of Theorem

2.1.1. The (PS)c condition in some sense is a condition such that one can

do every things as in the compact cases. �

Definition 2.3.2.([6]) Let p ∈M be an isolated critical point of f with

f(p) = c. We define the qth critical group with coefficient group G at p by

Cq(f, p) = Hq(fc ∩ Up, (fc \ {p}) ∩ Up;G), (2.3.1)

where Up is a neighborhood of p such that the critical point set K satisfying

K ∩ (fc ∩ Up) = {p}. According to the excision property of the singular

homology theory, Cq(f, p) is well defined for q = 0, 1, . . ., i.e., they do not

depend on the choice of Up.

As in the finite dimensional case, the critical group Cq(f, p) is the local

property of the critical point p. The following result says something on the

relation between the Morse index and the critical groups.
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Theorem 2.3.3. Suppose that f ∈ C2(M,R) and p is a nondegenerate

critical point of f with index k, then

Cq(f, p) =

{
G, q = k,

0, q 6= k.
(2.3.2)

In general, if p is a critical point with finite Morse index k and nullity j,

then

Cq(f, p) = 0, q /∈ [k, k + j]. (2.3.3)

Proof. We prove (2.3.2) here. Suppose the Hilbert manifold is modulo

on the Hilbert space H. So we can treat the local neighborhood of p in M

as the Hilbert space and write the function f in this neighborhood as

f(x) =
1

2
(Ax.x),

where A is a bounded, invertible (by the non-degenerateness), self-adjoint

operator. We write H = H+ ⊕ H− with H± the positive and negative

space with respect to the spectral decomposition of the operator A. Define

P± : H → H± the orthogonal projection. By the Morse lemma, we have

f(x) =
1

2

(
‖(AP+)1/2x‖2 − ‖(−AP−)1/2x‖2

)
, x ∈ Bε = {‖x‖ ≤ ε}.

As the finite dimensional case, one can push the set Bε ∩ f0 into the set

H− ∩ f0. Thus

Cq(f, p) ∼= Hq(f0 ∩Bε, (f0 \ {θ}) ∩Bε)
∼= H1(H

− ∩Bε, (H− \ {θ}) ∩Bε)

∼= Hq(B
k, Sk−1) ∼=

{
G, q = k

0, q 6= k.

(2.3.3) follows from (2.3.2) and a so call shifting theorem. See [6] for

details. �

From (2.3.2) and (2.3.3) we know that, if the Morse index and nullity at

a critical point are finite, the critical group can be calculated in some sense.

But it make no sense in study of the periodic solutions of first order nonlinear
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systems, since at every critical point, its Morse index is infinite. Recently, W.

Kryszewski and A. Szulkin [22] defined an infinite dimensional cohomology

theory and a Morse theory for this kind of ”strong infinite” functional. The

main idea of this Morse theory is to combine the critical group theory and

an index theory (it is known as Maslov-type index theory, we will give a

brief introduction in section 4 below), specially use the information from the

Galerkin approximation formulae in Theorem 4.1.11 below. They defined

the ε-approximation cohomology group sequence

cqε(f, p) = Hq
ε (W,W

−)

for an admissible pair (W,W−) of p, which in some sense is a kind of Gromoll-

Meyer pair with respect to some gradient-like vector field. ε is a sequence

comes from the Galerkin approximation scheme and the Maslov-type index

in Theorem 4.1.11. It is in fact the Morse indices of the functional in the

finite dimensional truncated spaces.

Figure 2.3.1. The process of homotopy.

Suppose f has only isolated critical values {ci}.

Definition 2.3.4. For a pair of regular values a < b, we call

Mq(a, b) =
∑

a<ci<b

rankHq(fci+εi , fci−εi ;G)
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the qth Morse type number of the function f in the interval (a, b), q = 0, 1, . . ..

By the exactness of the singular homology theory, we have

Theorem 2.3.5.

H∗(fc+ε, fc−ε;G) ∼= H∗(fc, fc \Kc) ∼=
m⊕

j=1

C∗(f, zj), Kc = {zj}mj=1. (2.3.4)

Thus we have

Mq(a, b) =
∑

a<ci<b

mi∑

j=1

rankCq(f, z
i
j). (2.3.5)

Setting βq(a, b) = rankHq(fb, fa;G), the Morse inequalities now turn

into the following form

Theorem 2.3.6. Suppose f satisfies the (PS)c condition for a < c < b,

and the critical points in f−1([a, b]) are isolated, a and b are regular values,

then there holds

∞∑

q=0

Mq(a, b)t
q −

∞∑

q=0

βq(a, b)t
q = (1 + t)Q(t), (2.3.6)

where Q(t) is a formal series with non-negative coefficients.

Proof. By the exactness of the singular homology theory, the proof is

standard. We omit it here. One can refer [6] for a complete proof. �

The critical group theory is an important tool in studying the existence

and multiple problems of nonlinear problems. We refer the celebrated book

[6] and the references therein for various applications of the critical group

theory.

3. The Morse Homology Theory

3.1. The negative gradient flow and connecting orbits

Let Mn be an n-dimensional compact Riemannian manifold. f ∈ C∞
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(M,R) is a Morse function. We consider the negative gradient flow

ψ : R×M →M
∂

∂t
ψ(t, x)=−∇f(ψ(t, x)), ψ(0, x)=x, ∀x ∈M.

(3.1.1)

For a critical point x ∈ Crit(f), by definition the stable and unstable mani-

folds of x are the submanifolds of M :

W s(x) = {p ∈M | lim
t→+∞

ψ(t, p) = x}
W u(x) = {p ∈M | lim

t→−∞
ψ(t, p) = x}

One can always find a generic Riemannian metric on M such that the stable

and unstable manifolds intersect transversally, i.e.,

W u(x) ⋔W s(y),∀x, y ∈ Critf.

The connecting orbit of the critical points x and y is defined by

Mf
x,y=W

u(x) ∩W s(y)={γ : R →M |γ̇=−∇f(γ), γ(−∞)=x, γ(+∞)=y}.

Claim: For x 6= y ∈ Critf

(1) Mf
x,y ≈W u(x) ∩W s(x), by γ → γ(0).

(2) Mf
x,y is a submanifold of M with dimension

dimMf
x,y = µ(x)− µ(y).

(3) The group R acts on Mf
x,y by γ · τ = γ(τ + ·) for any γ ∈ Mf

x,y and

τ ∈ R. We denote the quotient space by

M̂f
x,y = Mf

x,y/R.

So we have

dimM̂f
x,y = µ(x)− µ(y)− 1

(4) If µ(x) − µ(y) = 1, the manifold M̂f
x,y is compact and hence only

finite many points. If µ(x) − µ(y) = 2, then M̂f
x,y is compact up to broken
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trajectories of order two. i.e.,

∂M̂f
x,y =

⋃

µ(x)−µ(z)=1

M̂f
x,z × M̂f

z,y (3.1.2)

Figure 3.1.1. Boundary of the moduli space.

(5) There is a coherent orientation for all moduli spaces cl(M̂f
x,y), the closure

of the space M̂f
x,y. Furthermore, if µ(x) − µ(y) = 1, then the coherent

orientation for every connecting orbit γ ∈ Mf
x,y, is compatible with the

formula (3.1.2) above, and this orbit itself has a natural orientation induced

by the flow time t. We therefore can defined a function τ0 : M̂f
x,y → {+1,−1}

by τ0(γ(0)) = 1 if these two orientations for γ coincide, and τ0(γ(0)) = −1

otherwise.

Remark. The dimensional formula dimMf
x,y = µ(x) − µ(y) follows

from the Fredholm theory. We linearized the equation in (3.1.1), and get a

linear equation

(FAz)(t) :=

(
d

dt
+A(t)

)
z(t) = 0, z ∈W 1,2(R,Rn), A(t) = f ′′(γ(t)).

It is clear that A− := A(−∞) = f ′′(x), A+ := A(+∞) = f ′′(y). By some

subtle analysis and calculations, we conclude that the differential operator

Fa : H1,2(R,Rn) → L2(R,Rn) is a Fredholm operator, and the Fredholm

index

indFa = kerFA − cokerFA = µ(A−)− µ(A+) = µ(x)− µ(y).
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By the transversal condition, we have cokerFA = 0, so

dimMf
x,y = kerFA = µ(x)− µ(y).

3.2. Morse-Witten complex and Morse homology

In this section, we still assume that M is a closed manifold with a

generical Riemannian metric, and f : M → R is a Morse function with

critical point set Critf . We denote by

Critkf = {x ∈ Critf |µ(x) = k}.

We want to explain how to prove the following classical result again for

Morse function f .

Claim: ♮Critkf ≥ bk, bk = Hk(M,Z) for k = 0, 1, . . ., n = dimM .

For this purpose, we give a brief introduction of the Morse homology.

For the details, we refer the book [52].

The Morse-Witten complex is defined by

Ck(f) = Critkf ⊗ Z =
∑

i

λixi, λi ∈ Z, xi ∈ Critk(f)

with the boundary operator ∂k : Ck(f) → Ck−1(f) defined by

∂kx =
∑

y∈Critk−1f

n(x, y)y, ∀x ∈ Critk(f), (3.2.1)

where n(x, y) is defined by

n(x, y) =
∑

γ∈Mf
x,y

τ0(γ(0)).

Remark. If we define the Morse complex by the coefficient field Z2, we

can ignore the orientation, which is very complicated to defined, and in this
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case n(x, y) is the modulo 2 number

n(x, y) =
∑

γ∈Mf
x,y

τ0(γ(0)) mod 2.

Theorem 3.2.1. ∂2 = 0, so we can define the Morse homology by

Hk(C∗(f), ∂) = ker ∂k/im∂k−1.

Proof. For any x ∈ Ck(f), without loss of generality, we assume x ∈
Critkf , k ≥ 1.

∂2x =
∑

z∈Critk−2f

∑

y∈Critk−1f

n(x, y)n(y, z)z

=
∑

z∈Critk−2f

∑

(u,v)

τ0(u)τ0(v)z,

where (u, v) is a 2 braked orbit starting from x and ending at z, by gluing

in the middle at a critical point y with µ(x) − µ(y) = 1. This braked orbit

is a part of the boundary of clM̂f
x,z. But by (3.1.2) we know that each

components of clM̂f
x,z contains exact two parts of the braked orbits as its

boundary since every 1 dimension manifold with boundary homeomorphic

to an interval [0, 1], see the following figure.

Figure 3.1.2. Boundaries of the moduli space.
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In the coefficient Z2 case, the number

∑

(u,v)

τ0(u)τ0(v) =
∑

(u,v)

1 ≡ 0 mod 2.

In the general case, the situation is much complicated, but the idea is simple.

We know that the braked orbit (u, v) occurs in pair, and by the coherence

orientation, the pair of braked orbits possesses opposite orientations. Thus

the summation
∑

(u,v)

τ0(u)τ0(v) = 0

still holds in the coefficient Z case. This proves that ∂2 = 0. �

The Morse homology is defined by the generic choice of the function and

Riemannian metric, but it is independent of these choices essentially. We

have the following result.

Theorem 3.2.2.

H∗(C∗(f), ∂) ∼= H∗(M,Z).

Remark. The details of the proof of the theorem is not so simple

to give here. The idea is that the homology theory is the unique one to

satisfy some axioms (Eilenberg-Steenrod Axioms: the existence of a long

exact homology sequence; the homotopy axiom; the excision axiom; and the

dimension axiom) and the functorial properties. So in order to prove this

theorem, one should verify the Morse homological theory possesses these

axioms. We refer the book [52] for details. We remind that the coefficient

group Z can be replaced by Z2 or other domain.

This theorem tell us something between topology and analysis. The left

side of the above equality come from critical points of a Morse function which

belongs to the analytic category, and the right side of it belongs to topology

category. It give a direct proof of the above claim about the relation of the

number of critical points and the Beti number of the manifold. Namely we

have the following result.
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Corollary 3.2.3.

♮Critkf ≥ bk,= rankHk(M,Z).

This result is exactly that in Morse inequalities.

3.3. Cup product

Next we choose three functions f, g, h on M such that f − g, g−h and

f − h are Morse functions. We are going to define a map

C∗(f − g)⊗ C∗(g − h) → C∗(f − h).

For this end, let p ∈ Crit(f − g), q ∈ Crit(g − h) and r ∈ Crit(f − h), we

consider the following moduli space

M(p, q, r)

=

{
(l1, l2, l3)

∣∣∣∣∣
l̇1 = −∇(f − g), l̇2 = −∇(g − h), l̇3 = −∇(f − h),

l1(0)= l2(0)= l3(0), l1(−∞)=p, l2(−∞)=q, l3(+∞) = r

}

Namely we consider the moduli space of the following configurations:

Figure 3.3.1. Cup product: an element in the moduli space.

Claim: If f , g and h and the metric are generic, then M(p, q, r) is a

manifold with

dimM(p, q, r) = µ(p) + µ(q)− µ(r)− n. (3.3.1)

Here the number n is the dimension ofM . Using the moduli spaceM(p, q, r),

we have the following definition.
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Definition 3.3.1. We defined a map η2 : Ck(f − g) ⊗ Cl(g − h) →
Ck+l−n(f − h) by

η2(p⊗ q) =
∑

µ(r)=µ(p)+µ(q)−n

♮M(p, q, r)r,∀p ∈ Critk(f −g), q ∈ Critl(g−h).

(3.3.2)

Remark The moduli space can be compactified such that

∂M(p, q, r) =
⋃

p′

M̂f−g
p,p′ ×M(p′, q, r) ∪

⋃

q′

M̂g−h
q,q′ ×M(p, q′, r)

∪
⋃

r′

M̂f−h
r′,r ×M(p, q, r′). (3.3.3)

Figure 3.3.2. Boundary of the moduli space.

So the summation (3.3.2) is well defined, and by (3.3.3), we have

∂η2 = η2∂.

i.e., the map η2 is a chain map. Thus η2 induces a cup product of the Morse

homology

(η2)∗ : Hk(C∗(f − g)) ⊗Hl(C∗(g − h)) → Hk+l−n(f − g).

By Theorem 3.2.2, we have

(η2)∗ : Hk(M,Z)⊗Hl(M,Z) → Hk+l−n(M,Z)
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and there holds

(η2)∗(x⊗ y) = PD(PD(x) ∪ PD(y)), (3.3.4)

where PD is the Poincaré duality.

By a map η3 defined in [13], we can see that this cup product is asso-

ciative, namely, there holds

(η2)∗((η2)∗(x⊗ y)⊗ z) = (η2)∗(x⊗ (η2)∗(y ⊗ z)). (3.3.5)

(3.3.5) can also follow from the Poincaré duality relation (3.3.4).

Using the gradient flow of the Morse function f to replace the negative

gradient flow as in section 3.2, we can get the Morse cohomology theory and

the cup product structure.(c.f. [13] and [14]).

Following the basic ideas of the definition of the Morse homology and

combining the Gromov psudo-holomorphic theory, Floer constructed a so

called Floer (co)homological theory for compact symplectic manifolds, and

ultimately conduced to the proofs of the Arnold conjecture about the number

of fixed points of a Hamiltonian diffeomorphism (non-degenerate cases) on

closed symplectic manifolds. Unfortunately, we do not have enough space

to explain this beautiful theory here. We refer the papers [11], [12], [15],

[36], [50] and the references therein for details. One can apply the Morse

homology theory to the study of degenerate Arnold conjecture(the general

cases). For this topic, we refer the papers [53], [27] and the references therein.

4. The Maslov-Type Index Theory

4.1. The definition of the Maslov-type index for a symplectic path

We first recall some properties of the symplectic group.

Let (R2n, ω) be the linear symplectic space, where ω =
∑n

i=1 dxi∧dyi is
the standard symplectic form. A map ϕ : R2n → R

2n is called symplectic if

ϕ∗ω = ω. The matrix M corresponding to a linear symplectic map is called

symplectic matrix. Any symplectic matrix M should satisfy MTJM = J .

For any symplectic matrix M ∈ Sp(2n), we have the following results.



364 CHUN-GEN LIU [September

(1) If λ ∈ σ(M), then λ̄, λ−1 and λ̄−1 ∈ σ(M) with the same multiplicity

of λ.

(2) detM = 1, i.e., the any symplectic map ϕ preserving the the “area”

in R
2n.

(3) There exist unique orthogonal symplectic matrix U and positively

definite symmetric symplectic matrix P such that M = PU . We call it the

polar decomposition.

(4) A positively definite symmetric matrix P ∈ L(R2n) is symplectic, if

and only if it has the form

P = exp(Q) = I +Q+
1

2!
Q2 + · · · + 1

k!
Qk + · · · ,

where Q =

(
A B

B −A

)
, A and B are symmetric n× n matrices.

(5) An orthogonal matrix U ∈ L(R2n) is symplectic, if and only if it has

the form

U =

(
A −B
B A

)
,

where ATB is symmetric, and ATA + BTB = I. These conditions are also

the necessary and sufficient conditions such that A ±
√
−1B are unitary

matrices.

(6) The space Sp(2n) is path connected and its fundamental group

π1(Sp(2n)) = Z. So for any closed path in Sp(2n) there is a natural way to

defined an integer as its index.

Claim. For a proof of the result (1), we notice that the coefficients

of the characteristic polynomial fM(λ) = det(M − λI) are all real, so if

λ ∈ σ(M), then λ̄ ∈ σ(M). Thus we need to show that λ−1 ∈ σ(M). By the

condition MTJM = J we know that (detM)2 = 1, in fact by the result (2),

there holds detM = 1, thus

fM (λ) = detM det(I − λJ−1MTJ) = 0 ⇒ det(I − λMT ) = 0.

It implies

λ2nfM(λ−1) = 0.
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If we using detM = 1, the characteristic polynomial can be written in the

symmetric form

fM(λ) = λn
n∑

k=0

ak(λ
k + λ−k), an = 1, ak ∈ R.

The proof of the result (2) follows from the definition ϕ∗ω = ω and

ωn = ω ∧ · · · ∧ ω is the volume form of R2n. The reason is that ϕ∗(ωn) =

detM · ωn = ωn.

We now give a proof of the result (3). Since MMT is a positive definite

matrix, we define a symmetric positive definite matrix

P = (MMT )1/2,

and set

U = P−1M.

We have

UUT = P−1MMTP−1 = P−1P 2P−1 = I,

so U is orthogonal.

If M possesses two polar decompositions M = P1U1 = P2U2, then

MT = UT1 P1 = UT2 P2. Thus

P 2
1 = P1U1U

T
1 P1 =MMT

and

P 2
2 = P2U2U

T
2 P2 =MMT .

So P1 = P2, and so U1 = U2.

Since M = J−1(MT )−1J , we have

M = J−1(UTP )−1J = J−1P−1JJ−1(UT )−1J = P1U1

is a polar decomposition. Thus we have

J−1P−1J = P, J−1(UT )−1J = U.
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It implies that P and U are symplectic.

Proof of the result (4).

Necessity. Since exp(Q) = P is symplectic,

exp(Q) = J−1(exp(Q))−1J = exp(−J−1QJ).

Since Q and −J−1QJ are symmetric, by the uniqueness, we have Q =

−J−1QJ . Setting Q =

(
A B

C D

)
, we have D = −A and B = C. By QT = Q,

we have B = BT and A = AT .

Sufficiency. P = exp(Q) with Q as defined above, it only need to invert

the above computations.

Proof of (5).

The sufficiency follows from direct computations.

Necessity. By the given conditions it holds that UTKU = K withK = I

or J . Thus it also holds for K = I +
√
−1J . Let

U =

(
A B

C D

)
.

Then

UT (I +
√
−1J)U =

(
I

√
−1I

−
√
−1I I

)
.

Comparing both sides we obtain

E∗E = F ∗F = I, E∗F =
√
−1I,

where E = A +
√
−1C and F = B +

√
−1D, E∗ denotes the complex

conjugate of ET . This implies

E∗(E +
√
−1F ) = 0.

But E∗ is non-singular. Thus E +
√
−1F = 0. This implies

D = A, C = −B.
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The symmetry of ATB and ATA+BTB = I follow from the orthogonality

of U .

The second part of the result (5) is easy to prove.

The result (6) follows from the results (4) and (5). We can write

Sp(2n) = U(n)× (positively definite symmetric symplectic matrices).

It is well known that π1(U(n)) = π1(S
1) = Z. The space of positively definite

symmetric symplectic matrices is contractible, this follows from that any

P = exp(Q) as defined in (4) can be deformed in this space to the identity

I by exp(tQ), t ∈ [0, 1].

In the particular case n = 1, the orthogonal symplectic matrix U ∈

Sp(2) ∩O(2) has the form

U(θ) =

(
cos θ − sin θ

sin θ cos θ

)
.

The positively definite symmetric symplectic matrix has the form

P (r, z) =

(
r z

z 1+z2

r

)
, r > 0, z ∈ R.

Thus any symplectic matrix M ∈ Sp(2) possesses the polar decomposition

M =M(r, θ, z) =

(
r z

z 1+z2

r

)(
cos θ − sin θ

sin θ cos θ

)
.

We can take (r, θ, z) ∈ R
+×R×R as the coordinates of the space Sp(2).

Thus Sp(2) ∼= R
3 \ {the z axis}. We denote by Sp(2n)∗ = {M ∈ Sp(2n) :

det(M − I) 6= 0}, and Sp(2n)0 = Sp(2n) \ Sp(2n)∗. The following is the

figure of Sp(2)0.
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Figure 4.1.1. The surface Sp(2)0.

We now turn to the definition of the Maslov-type index for a symplectic

path starting from the identity.

A τ -periodic solution of a nonlinear Hamiltonian system is a solution of

the following problem
{
ż(t) = JH ′(t, z(t))

z(0) = z(τ),
(4.1.1)

where H ∈ C2(R×R
2n,R) with H(t, z) = H(t+ τ, z) for all (t, z) ∈ R×R

2n.

H ′(t, z) is the gradient of H with respect to the 2n-dimensional variable z.

The linearized system of the above system (4.1.1) at a τ -periodic solution

z(t) is the following linear Hamiltonian system

ẏ(t) = JB(t)y(t), (4.1.2)

where B(t) = H ′′(t, z(t)) is a symmetric 2n × 2n matrix function. The

fundamental solution γ(t) is a 2n× 2n matrix function satisfying

{
γ̇(t) = JB(t)γ(t)

γ(0) = I.

It is well known that the fundamental solution γ of a linear Hamiltonian

system is a symplectic path starting from the identity. We denote the set of
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all the symplectic paths starting from the identity by

Pτ (2n) = {γ ∈ C([0, τ ],Sp(2n)) : γ(0) = I}.

We denote the unit circle in the complex plane by U = {x ∈ C : |x| = 1}.

Definition 4.1.1. For ω ∈ U, τ > 0, γ ∈ Pτ (2n), we define

νω(γ) = dimC kerC(γ(τ)− ωI).

A path γ ∈ Pτ (2n) is called ω-degenerated if ντ,ω(γ) > 0, otherwise it is

called ω-non-degenerated.

Definition 4.1.2. For ω ∈ U , given two paths γ1 and γ2 ∈ Pτ (2n), we
say γ1 and γ2 are ω-homotopic on [0, τ ] and write γ1 ∼ω γ2, if there exists

a map δ ∈ C([0, 1] × [0, τ ],Sp(2n)) such that δ(0, ·) = γ1(·), δ(1, ·) = γ2(·),
δ(s, 0) = I and νω(δ(s, ·)) is constant for s ∈ [0, 1].

Sp(2n)0
k

Sp(2n)0
k
= {M ∈ Sp(2n) | dimC kerC(M − I) = k}

Figure 4.1.2. A case of homotopy of two symplextic paths.

4.1.1. Non-degenerated paths in Sp(2n)

We denoted the subset of ω-non-degenerated paths in Pτ (2n) by P∗
τ,ω(2n),

and P0
τ,ω(2n) = Pτ (2n) \ P∗

τ,ω(2n). We recall that D(a) = diag(a, 1/a) for

a 6= 0 and defineM+
n = D(2)⋄n,M−

n = D(−2)⋄D(2)⋄(n−1) . For two symplec-

tic matrices Mi =

(
Ai Bi
Ci Di

)
∈ Sp(2ni) with Ai, Bi, Ci, Di ∈ L(Rni ,Rni)
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the set of ni×ni matrices, i = 1, 2, we recall that the symplectic direct sum

(or ⋄-product) of M1 and M2 are defined by

M1 ⋄M2 =




A1 0 B1 0

0 A2 0 B2

C1 0 D1 0

0 C2 0 D2


 .

We denoted by M⋄k the k-fold symplectic direct sum M ⋄ M ⋄ · · · ⋄ M .

Note that the symplectic direct summation of two symplectic matrices is

still symplectic matrix. The two symplectic matrices M±
n defined above are

located in the different connected components of Sp∗ω(2n) = {M ∈ Sp(2n) :

det(M − ωI) 6= 0}.

It is well known that every M ∈ Sp(2n) has unique polar decomposition

M = AU with A = (MMT )1/2, U =

(
u1 −u2
u2 u1

)
and u = u1 +

√
−1u2 is

a unitary matrix. If γ(t) = A(t)U(t), t ∈ [0, 1] is a continuous symplectic

path starting from the identity, there exists a continuous real function ∆(t)

satisfying detu(t) = exp(
√
−1∆(t)). We define ∆τ (γ) = ∆(τ) − ∆(0) ∈ R

which is depends only on γ. Particularly, if γ(τ) ⊆ {M+
n ,M

−
n }, we have

1
π∆τ (γ) ∈ Z.

Lemma 4.1.3.([41], [39]) If γ0 and γ1 ∈ Pn(2n) possess common end

point γ0(τ) = γ1(τ), then ∆τ (γ0) = ∆τ (γ1) if and only if γ0 ∼ω γ1 on [0, τ ]

with fixed end points for some ω ∈ U.

For any ω ∈ U, and γ ∈ P∗
τ,ω(2n), we can connect γ(τ) to M+

n or M−
n

by a path β : [0, τ ] → Sp(2n)∗ω. The adjoining path β ∗ γ is defined by

β ∗ γ(t) =
{
γ(2t), t ∈ [0, 1/2],

β(2t− 1), t ∈ [1/2, 1].

It is easy to see that the integer k = 1
π∆τ (β ∗γ) is independent of the choice

of the path β.
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Figure 4.1.3. The adjoint symplectic path.

Definition 4.1.4.([41], [39]) For τ > 0, ω ∈ U and γ ∈ P∗
τ,ω(2n), we

define

iτ,ω(γ) = k =
1

π
∆τ (β ∗ γ).

We call the number iτ,ω(γ) the ω-index of γ. Particularly, we call the number

iτ (γ) := iτ,1(γ) (with ω = 1) the Maslov-type index of the symplectic path

γ.

4.1.2. Degenerated paths in Sp(2n)

For a degenerated symplectic path γ ∈P0
τ,ω(2n), we can choose a non-

degenerated symplectic path β0 ∈ P∗
τ,ω(2n), sufficiently C0-close to γ in

Pτ (2n) such that

iτ,ω(β0)=inf{iτ,ω(β) |β∈P ∗
τ,ω(2n), β is sufficiently C0-close to γ in Pτ (2n)},

and we can also choose a non-degenerated symplectic path β1 ∈ P∗
τ,ω(2n),

sufficiently C0-close to γ in Pτ (2n) such that

iτ,ω(β1)=sup{iτ,ω(β) |β∈P ∗
τ,ω(2n), β is sufficiently C0-close to γ in Pτ (2n)}.

In this case, we have the following result.

Lemma 4.1.5.([41], [39]) With the above notations, there holds

iτ,ω(β1)− iτ,ω(β0) = ντ,ω(γ).
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Definition 4.1.6.([41], [39]) For any τ > 0, ω ∈ U, γ ∈ P0
τ,ω(2n), we

define

iτ,ω(γ) = inf{iτ,ω(β) |β ∈ P ∗
τ,ω(2n), β is sufficiently C0closeto γ in Pτ (2n)}

For any symplectic path γ ∈ Pτ (2n), ω ∈ U, the index pair

(iτ,ω(γ), ντ,ω(γ)) ∈ Z× {0, 1, . . . , 2n}

is well defined. We call the index pair the index function of γ at ω. We also

call iτ,ω(γ) the ω-index of γ, and ντ,ω(γ) the nullity of γ. If ω = 1, the index

pair is simply denoted by (iτ (γ), ντ (γ)), which is the so called Maslov-type

index of γ.

For a linear Hamiltonian system

ẏ(t) = JB(t)y(t), y ∈ R
2n (4.1.3)

with B(t) the symmetric τ -periodic 2n× 2n continuous matrix function. Its

fundamental solution γB is a symplectic path, i.e., γB ∈ Pτ (2n). In this

case, we denote the index function of the linear Hamiltonian system (or of

the matrix function B) by

(iτ,ω(B), ντ,ω(B)) := (iτ,ω(γB), ντ,ω(γB)). (4.1.4)

As usual, the eigenvalues of γB(τ) are called Floquet multipliers of the linear

Hamiltonian system (4.1.3)(or B).

Let H ∈ C1(R/(τZ)×R
2n,R). Suppose x is a τ -periodic solution of the

Hamiltonian system

ẋ(t) = JH ′(t, x(t)), (4.1.5)

such that H is C2 along the orbit x(R) of x. The associated symplectic

path of x is defined to be the fundamental solution γx = γB of the linearized

Hamiltonian system (4.1.3) with B(t) = H ′′(t, x(t)) for all t. In this case,

we define the index function of the periodic solution x by

(iτ,ω(x), ντ,ω(x)) := (iτ,ω(γx), ντ,ω(γx)). (4.1.6)
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As usual, the eigenvalues of the symplectic matrix γx(τ) are called Floquet

multipliers of the periodic solution x of the Hamiltonian system (4.1.5).

4.1.3. Properties of the index function

Lemma 4.1.7.(Symmetry)([41], [39]) For any ω ∈ U and γ ∈ Pτ (2n),
there holds

(iτ,ω(γ), ντ,ω(γ)) = (iτ,ω̄(γ), ντ,ω̄(γ)). (4.1.7)

Theorem 4.1.8.(Symplectic additivity)([41], [39]) For any ω ∈ U, sup-

pose γi ∈ Pτ (2ni) for i = 0, 1, then γ0 ⋄ γ1 ∈ Pτ (2n0 + 2n1) and

(iτ,ω(γ0⋄γ1), ντ,ω(γ0⋄γ1)) = (iτ,ω(γ0), ντ,ω(γ0))+(iτ,ω(γ1), ντ,ω(γ1)). (4.1.8)

Theorem 4.1.9.(Homotopic invariant)([41], [39]) For any ω ∈ U, sup-

pose γ0 and γ1 ∈ Pτ (2n) satisfying γ0 ∼ω γ1. Then there holds

(iτ,ω(γ0), ντ,ω(γ0)) = (iτ,ω(γ1), ντ,ω(γ1)). (4.1.9)

Theorem 4.1.10.(Local constant)([41]) The index function (iτ,ω(γ),

ντ,ω(γ)) is local constant. The discontinuous points appear only at the ω

which is the eigenvalues of γ(τ), i.e., at the points of Floquet multiplier of

γ.

For the monotonicity of the Maslov-type index, we have the following

result. We denote by Ls(R2n) the set of symmetric 2n× 2n matrices.

Theorem 4.1.11.(Monotonicity)([28]) For any two matrix functions

Bj ∈ C(S1,Ls(R2n)) with B0(t) < B1(t) for all t ∈ R, we have

i(B1)− i(B0) = I(B0, B1),

where I(B0, B1) =
∑

s∈[0,1) ν((1− s)B0+ sB1), and ν((1 − s)B0 + sB1) =

dimker(γs(1) −I), γs(t) is the fundamental solution of the linear systems

ż = JBs(t)z with Bs(t) = (1− s)B0(t) + sB1(t). Particularly, there holds

i(B0) + ν(B0) ≤ i(B1).



374 CHUN-GEN LIU [September

By noting that i(B0) = −n and ν(B0) = 2n for B0 ≡ 0, it implies that for

any symmetric positively definite (convex case) matrix function B(t) > 0,

there holds i(B) ≥ n.

4.1.4. The relation of Maslov-type index and Morse index:

Galerkin approximation

We consider the following problem

{
ẋ(t) = JH ′(t, x(t))

x(τ) = x(0)
(4.1.10)

In the following, we always suppose that the Hamiltonian functionH satisfies

the following conditions:

(H1) H ∈ C2(R× R
2n,R) and

H(t+ τ, x) = H(t, x), ∀(t, x) ∈ R× R
2n. (4.1.11)

(H2) There exist constants a > 0 and p > 1 such that

|H ′′(t, x)| ≤ a(1 + |x|p), ∀(t, x) ∈ R× R
2n. (4.1.12)

Recall that W = W 1/2,2(R/Z,R2n) is the subspace of L2(R/Z,R2n)

which consists of all elements

z(t) =
∑

k∈Z
exp(2kπtJ)ak, ak ∈ R

2n,

satisfying

‖z‖21/2,2 :=
∑

k∈Z
(1 + |k|)|ak|2 < +∞.

This space is a Hilbert space with the norm ‖ · ‖1/2,2 and the inner product

〈·, ·〉1/2,2. We define an operator A : W →W such that

〈Ax, y〉 =
∫ τ

0
(−Jẋ(t), y(t)) dt, ∀x, y ∈W. (4.1.13)
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A is a bounded self-adjoint operator with finite dimensional kernel N , and

the restriction A|N⊥ is invertible. Define the functional on W by

f(x) =
1

2
〈Ax, x〉 −

∫ τ

0
H(t, x) dt, ∀x ∈W. (4.1.14)

Then f ∈ C2(W,R) and a critical point of f corresponds to a solution of the

problem (4.1.10). If x = x(t) is a critical point of f , the second variation of

f at x is given by

(f ′′(x)h, h) =
∫ τ

0
[(−Jḣ, h)− (H ′′(t, x)h, h)] dt = 〈(A−B)h, h〉 ∀h ∈W,

(4.1.15)

where B : W → W defined by

〈Bz1, z2〉 =
∫ τ

0
(B(t)z1(t), z2(t)) dt, ∀z1, z2 ∈W B(t) = H ′′(t, x(t)).

(4.1.16)

It is well known that both the dimensions of the positive and the negative

eigen-subspaces of the quadratic form (4.1.15)(i.e., the Morse index of −f
and f at x) are infinite. Let Wm =

∑m
k=−m exp(2kπtJ)R2n, and Pm :

W → Wm the projection operator. Then the sequence Γ = {Pm |m ∈ N}
is a Galerkin approximation scheme with respect to A, i.e., it satisfies the

following three conditions:

1◦ Wm = PmW is finite dimensional space for all m ∈ N.

2◦ Pm → I strongly as m→ ∞.

3◦ [Pm, A] := PmA−APm = 0.

With this Γ = {Pm |m ∈ N}, we get a finite dimensional approximation

Pm(A−B)Pm of the operator A−B. The domain of the operator Pm(A−
B)Pm is Wm. For this finite dimensional approximation operator, we have

the following result.

Theorem 4.1.12.([16], [39]) Let {Pm} be a Galerkin approximation

scheme with respect to A. Then there exist d > 0 sufficiently small and
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m0 > 0 such that for all m ≥ m0,

dimm+
d (Pm(A−B)Pm) = m+ n− iτ (B)− ντ (B),

dimm0
d(Pm(A−B)Pm) = ντ (B),

dimm−
d (Pm(A−B)Pm) = m+ n+ iτ (B).

(4.1.17)

where m+
d (·), m−

d (·), m0
d(·) denote the eigenspaces corresponding to the

eigenvalue λ belonging to [d,+∞), (−∞, d] and (−d, d) respectively.

4.1.5. The relation of Maslov-type index and Morse index: the

saddle point reduction

Let S1 = R/(τZ). We equip the Hilbert space L = L2(S1,R2n) with the

usual norm

‖x‖L2 =
( ∫ τ

0
|x(t)|2

)1/2
, ∀x ∈ L2.

In the Hilbert space L we define an operator A by

〈Ax, y〉L =

∫ τ

0
(−Jẋ, y) dt, ∀x, y ∈ L. (4.1.18)

Then the domain of A is domA = W 1,2(S1,R2n). The range of A is closed

and the resolution of A is compact. The spectrum of the operator A is

σ(A) = 2πZ. It is a point spectrum, i.e., it contains only eigenvalues, and

the multiplicity of every eigenvalue is 2n. The eigen-subspace of A belonging

to the eigenvalue 2kπ is

Ek = exp(2kπtJ)R2n = ((cos 2kπt)I + (sin 2kπt)J)R2n.

Especially, ker(A) = R
2n. We consider the Hamiltonian systems (4.1.10)

with the condition (H1) in the above subsection 4.1.4 and

(H3) There exists a constant C(H) > 0 such that

|H ′′(t, x)| ≤ C(H), ∀(t, x) ∈ [0, τ ]× R
2n. (4.1.19)

Define a functional on the space L by

g(x) =

∫ τ

0
H(t, x(t)) dt. (4.1.20)



2006] THE MORSE THEORY AND THE MASLOV-TYPE INDEX THEORY 377

By the conditions (H1) and (H3), we have g ∈ C1(L,R), and

g′(x) = H ′(t, x). (4.1.21)

g′(x) is Gadeaux differentiable, its Gadeaux derivative is

dg′(x)y = H ′′(t, x(t))y, (4.1.22)

and there exists a constant c(H) > 0 such that

‖dg′(x)‖L(L) ≤ c(H). (4.1.23)

Define the action functional by

f(x) =
1

2
〈Ax, x〉L − g(x), ∀x ∈ domA =W 1,2(S1,R2n), (4.1.24)

Under the conditions (H1) and (H3), f ∈ C1(W,R), f ′ is Gadeaux differen-

tiable. The critical points of f are solutions of the problem (4.1.10).

Let P0 : L→ E0 = R
2n be the projection map. Define

A0x = Ax+ P0x, ∀x ∈W. (4.1.25)

Without loss of generality, we suppose the constant in (4.1.23) satisfies

c(H) /∈ σ(A0) and c(H) > 1. Denote by {Eλ} the spectral resolution of

the selfadjoint operator A0, we define the projections on the Hilbert space

L by

P =

∫ c(H)

c(H)
dEλ, P+ =

∫ +∞

c(H)
dEλ, P− =

∫ −c(H)

−∞
dEλ. (4.1.26)

Then the Hilbert space L possesses an orthogonal decomposition

L = L+ ⊕ L− ⊕ Z, (4.1.27)

where Z = PL is a finite dimensional space, and L± = P±L. With standard

arguments as in [39], [1] and [6], we have the following result.

Theorem 4.1.13.([1], [6]) Suppose the function H satisfies the condi-

tions (H1) and (H3). Then there exists a functional a ∈ C2(Z,R)and an
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injection map u ∈ C1(Z,L) such that u : Z → W satisfies the following

conditions:

1◦ The map u has the form u(z) = w(z) + z, where Pw(z) = 0.

2◦ The functional a satisfies

a(z) = f(u(z))

a′(z) = Az − Pg′(u(z)) = Au(z) − g′(u(z)),

a′′(z) = (AP − Pdg′(u(z)))u′(z) = [A− dg′(u(z))]u′(z).

And a′ is globally Lipschitz continuous.

3◦ z ∈ Z is a critical point of a, i.e., a′(z) = 0, if and only if u(z) is a

critical point of f .

4◦ If g(u) = 〈Bu, u〉L :=
∫ τ
0 (B(t)u(t), u(t)) dt, u ∈ L, then a(z) =

1
2〈(A−B)z, z〉L.

5◦ dimker a′′(z) = ντ(γ), where γ is the fundamental solution of the

linear Hamiltonian systems ẏ = JH ′′(t, u(z)(t))y.

Particularly, for the symmetric matrix continuous function B(t) satisfy-

ing B(t+ τ) = B(t), we define a symmetric operator B on L by

〈Bx, y〉L =

∫ τ

0
(B(t)x(t), y(t)) dt, ∀x, y ∈ L (4.1.28)

and define

f(x) =
1

2
〈(A−B)x, x〉L, ∀x ∈W. (4.1.29)

The critical points of f are solutions of the following problem

{
ẋ = JB(t)x

x(1) = x(0).
(4.1.30)

By Theorem 4.1.13, we obtain a subspace

Z = {x|x(t) =
∑

|k|≤k0
exp(2kπtJ)ak, ak ∈ R

2n}

with a sufficiently large k0 ∈ N, an injection map u ∈ C∞(Z,L), and a
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smooth functional a ∈ C∞(Z,R) defined by

a(z) = f(u(z)), ∀z ∈ Z (4.1.31)

Let 2d = dimZ. Note that the origin of Z as a critical point of a corresponds

to the origin of L as a critical point of f . Denote by m∗ for ∗ = +, 0 and

− the positive, null, and negative Morse indices of the functional a at the

origin respectively, i.e., the total multiplicities of positive, zero, and negative

eigenvalues of the 2d × 2d matrix a′′(0) respectively. We have the following

result.

Theorem 4.1.14.([9], [43], [37]−[41]) There hold





m− = d+ iτ (B),

m0 = ντ (B),

m+ = d− iτ (B)− ντ (B).

(4.1.32)

We consider Problem (4.1.10) with H satisfying condition (H1) in sub-

section 4.1.4 and (H3) above. Recall that the functional f(x) is defined

in (4.1.24). By Theorem 4.1.13, there exist the corresponding functional

a : Z → R and an injection u : Z → L such that a(z) = f(u(z)). Suppose

z = z(t) ∈ Z is a critical point of a. Then x = x(t) = u(z)(t) is a solution of

problem (4.1.10). Suppose m∗(z) with ∗ = 0,± are the Morse index of a at

z. We have the following result.

Theorem 4.1.15. Under the above conditions and notations, there hold





m−(z) = d+ iτ (x),

m0(z) = ντ (x),

m+(z) = d− iτ (x)− ντ (x).

(4.1.33)

4.1.6. The relation of Maslov-type index and Morse index: the

second order Hamiltonian systems

We consider the following problem

{
ẍ+∇V (t, x) = 0,

x(τ) = x(0), ẋ(τ) = ẋ(0),
(4.1.34)
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where V ∈ C2(R × R
n,R) satisfying V (t + τ, x) = V (t, x) for all (t, x) ∈

R×R
n. Let W =W 1,2(S1,Rn) with the inner product

〈x, y〉W =

∫ 1

0
[(x(t), y(t)) + (ẋ(t), ẏ(t))] dt.

We define a functional F :W → R by

F (x) =

∫ 1

0
[
1

2
(ẋ(t), ẋ(t))− V (t, x(t))] dt, ∀x ∈W. (4.1.35)

The critical points of F are solutions of problem (4.1.34). Suppose x ∈ W

is a critical point of F . The Hessian of F at x is given by

(F ′′(x)y, z) =
∫ 1

0
[(ẏ(t), ż(t))− (∆V (t, x(t))y(t), z(t))] dt. (4.1.36)

The linearized system of (4.1.34) at x is given by the linear second order

systems

ÿ +∆V (t, x(t))y = 0. (4.1.37)

We rewrite this systems into a first order linear Hamiltonian systems

ż = JB(t)z, z ∈ R
2n, (4.1.38)

where z = (ẏ, y)T and B(t) =

(
−I 0

0 −∆V (t, x(t))

)
. Suppose γx = γ(t) is

the fundamental solution of (4.1.38). Then the index (iτ (γx), ντ (γx)) is well

defined. We denote the Morse index and nullity of F at x by m−(x) and

m0(x), i.e., the total multiplicities of all the negative eigenvalues and zeros

of F ′′(x) respectively.

Theorem 4.1.16.([2], [39]) Under the above conditions, there hold

m−(x) = iτ (γx), m0(x) = ντ (γx), (4.1.39)

We refer the paper [34] for the Morse index theory and its iteration
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theory of the closed geodesics on Riemannian (Finsler) manifolds.

4.1.7. Calculate the index by dual variational methods

Let B ∈ C(S1,Ls(R2n)), where S1 = R/Z, and Ls(R2n) be the set of

symmetric 2n× 2n metrics. Consider the linear Hamiltonian system

ż = JB(t)z, z ∈ R
2n.

We first give a brief introduction to the dual Morse index theory of the above

system. Let W 1,2 = W 1,2(S1,R2n), and L = L2(S1,R2n). The embedding

j : W 1,2 → L is compact. Both W 1,2 and L are Hilbert spaces with inner

product 〈·, ·〉 and 〈·, ·〉2 respectively. We define an operator A : L → L

with domain W 1,2 by Ax = −J d
dt . The spectrum of A is isolated. In fact

σ(A) = 2πZ. Let k /∈ σ(A) be so large such that B(t) + kI > 0. Then the

operator Λk = A + kI : W 1,2 → L is invertible, and its inverse is compact.

We define a quadratic form in L by

Q∗
k,B(v, u) =

∫ 1

0
[(Ck(t)v(t), u(t)) − (Λ−1

k v(t), u(t))] dt, ∀v, u ∈ L,

where Ck(t) = (B(t) + kI)−1. Denote Q∗
k,B(v) = Q∗

k,B(v, v). Then

〈Ckv, v〉2 =

∫ 1

0
(Ck(t)v(t), v(t)) dt

define a Hilbert structure in L. C−1
k Λ−1

k is a self-adjoint and compact op-

erator under this inter product. By the spectral theory, there exists a basis

ej, j ∈ N of L, and an eigenvalue sequence λj → 0 in R such that

〈Ckei, ej〉2 = δij ,

〈Λ−1
j ej , v〉2 = 〈Ckλjej , v〉2, ∀v ∈ L.

For any v ∈ L with v =
∑∞

j=1 ξjej , there holds

Q∗
k,B(v) = −

∫ 1

0
(Λ−1

k v(t), v(t)) − (Ck(t)v(t), v(t)) dt =

∞∑

j=1

(1− λj)ξ
2
j .
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Define

L−
k (B) =

{ ∞∑

j=1

ξjej | ξj = 0 if 1− λj ≥ 0
}

L0
k(B) =

{ ∞∑

j=1

ξjej | ξj = 0 if 1− λj 6= 0
}

L+
k (B) =

{ ∞∑

j=1

ξjej | ξj = 0 if 1− λj ≤ 0
}
.

Observe that L−
k (B), L0

k(B) and L+
k (B) are Q∗

k,B-orthogonal, and L= L−
k (B)

⊕L0
k(B)⊕L+

k (B). Since λj → 0 as j → ∞, both L−
k (B) and L0

k(B) are finite

dimensional subspaces. We define the k-dual Morse index of B by

i∗k(B) = dimL−
k (B), ν∗k(B) = dimL0

k(B).

We have the following result for the relation of k-dual Morse index and the

Maslov-type index.

Theorem 4.1.17.([28]) There hold

i∗k(B) = i(B) + n+ 2n
[ k
2π

]
, ν∗k(B) = ν(B),

where [a] = max{j ∈ Z | j ≤ a}.

The Maslov-type index defined by spectral flow was studied in [45]. The

Maslov-type index theory with Lagrangian boundary condition was studied

by the author in [29], and that with other non-periodic boundary condition

was studied in [30] recently.

4.2. Iteration theory of the Maslov-type index

In this section we consider the iteration theory of the Maslov-type index.

Namely, we will give brief introduction to the theory which related the iter-

ated indices (ikτ (γ
k), νkτ (γ

k)) for the iterated symplectic path γk ∈ Pkτ (2n)
of γ with the index (iτ (γ), ντ (γ)) of the symplectic path γ ∈ Pτ (2n), where
the k-th iterated path γk of γ is defined by

γk(t) = γ(t− kτ)γ(τ)k, ∀ kτ ≤ t ≤ (k + 1)τ. (4.2.1)
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To understand this iterated path, we consider a τ -periodic solution x : S1 =

R/(τZ) → R
2n of the nonlinear Hamiltonian system

ẋ(t) = JH ′(t, x(t)). (4.2.2)

Here we suppose H is C2 along the orbit x(R) and τ -periodic in time t. We

define the iteration of the τ -periodic function x by

xk(t) = x(t− jτ), jτ ≤ t ≤ (j + 1)τ, 0 ≤ j ≤ k − 1.

Then xk becomes a kτ -periodic solution of the system (4.2.2). But geomet-

rically it is the same as x. We set Bk(t) = H(t, xk(t)) for k ∈ N. Then

γk ∈ Pkτ (2n) is the fundamental solution of the linearized system

ẏ(t) = JBk(t)y(t). (4.2.3)

Definition 4.2.1. The mean index of a symplectic path γ ∈ Pτ (2n) is
defined by

îτ (γ) = lim
k→∞

ikτ (γ
k)

k
. (4.2.4)

From Theorem 4.1.10, we have the following definition.

Definition 4.2.2. For any M ∈ Sp(2n) and ω ∈ U , the following

number

S±
M(ω) = lim

ε→0+
iτ,exp(±ε

√
−1)ω(γ)− iτ,ω(γ)

with γ ∈ Pτ (2n) satisfying γ(τ) =M do not depend on the choice of γ. We

call it the splitting number of M at ω.

4.2.1. Precise iteration formulae

With the index function defined in section 1, we are able to introduce

the following Bott-type formula.
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Theorem 4.2.3.([41], [39]) For any γ ∈ Pτ (2n) and m ∈ N, there hold

imτ (γ
m) =

∑

ωm=1

iτ,ω(γ),

νmτ (γ
m) =

∑

ωm=1

ντ,ω(γ).
(4.2.5)

A direct consequence is the following formula, which tells us that the

mean index is well defined.

Corollary 2.4.2.([41], [39]) For any γ ∈ Pτ (2n), there hold

îτ (γ) =
1

2π

∫ 2π

0
iτ,exp(

√
−1θ)(γ) dθ. (4.2.6)

For the hyperbolic case, the following iteration formula is very simple.

Corollary 4.2.5. For any γ ∈ Pτ (2n), if σ(γ(τ)) ∩ U = ∅, in this case

we call γ hyperbolic, and there hold

îτ (γ) = iτ (γ), imτ (γ
m) = miτ (γ), ∀m ∈ N. (4.2.7)

The splitting numbers are determined by the end matrix γ(τ), so the

following iteration formula tells us that the iteration properties are only

dependent on the matrix M = γ(τ).

Theorem 4.2.6.([44], [39]) For any γ ∈ Pτ (2n), let M = γ(τ). Then

for any m ∈ N we have

imτ (γ
m) =m(iτ (γ) + S+

M (1) −C(M))+

+ 2
∑

θ∈(0,2π)
E

(
mθ

2π

)
S−
M (e

√
−1θ)− (S+

M (1) + C(M)).
(4.2.8)

Here E(a) = min{k ∈ Z | k ≥ a} and C(M) is defined by

C(M) =
∑

θ∈(0,2π)
S−
M (e

√
−1θ).
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4.2.2. Iteration inequalities

Theorem 4.2.7.([31], [32]) For any γ ∈ Pτ (2n) and ω ∈ U \ {1}, it

always holds that

iτ (γ) + ντ (γ)− n ≤ iτ,ω(γ) ≤ iτ (γ) + n− ντ,ω(γ). (4.2.9)

Theorem 4.2.8.([31], [32], [39]) For any γ ∈ Pτ (2n) and m ∈ N, it

always holds that

mîτ (γ)− n ≤ imτ (γ
m) ≤ mîτ (γ) + n− νmτ (γ

m). (4.2.10)

Theorem 4.2.9.([31], [32], [39]) For any γ ∈ Pτ (2n) and m ∈ N, it

always holds that

m(iτ (γ)+ντ (γ)−n)+n−ντ(γ) ≤ imτ (γ
m) ≤ m(iτ (γ)+n)−(νmτ (γ

m)−ντ (γ)).
(4.2.11)

Remark. All the estimates (4.2.9)−(4.2.11) are optimal in the sense

of the left equality and the right equality can be achieved by some suitable

symplectic paths γ ∈ Pτ (2n). For the iteration formulae of Morse index

theory of closed geodesic on a Riemannian (or Finsler) manifold, we refer

the readers to the paper [34]. For the further applications of the iteration

theory of Maslov-type index theory, we refer the readers to the papers [16],

[24]−[26], [32]−[33], [35], [37]−[41, [43] and [44]

4.3. Application to nonlinear Hamiltonian systems

We will give two examples to explain how to apply this index theory

to the study of the nonlinear Hamiltonian systems. One is the study of

Rabinowitz conjecture about the existence of the minimal periodic solution

for some nonlinear Hamiltonian systems. The reason we choose this problem

is that it is easy to explain and in some sense, the calculation is not so

complicated. Another is the multiplicity problems of closed characteristics

on some hypersurfaces in R
2n. The latter is complicated to explain it clearly,

so we only state some results and give some references for details.
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4.3.1. The minimal periodic problems

We now apply the results obtained above to autonomous Hamiltonian

systems

−Jẋ = Bx+H ′(x), x ∈ R
2n, (4.3.1)

where n ∈ N and H ∈ C2(R2n,R), and B is a 2n × 2n symmetric semi-

positively definite matrix whose operator norm is denoted by ‖B‖.

Theorem 4.3.1. Suppose B ∈ L(R2n) is a symmetric semi-positively

definite matrix, and the Hamiltonian function H satisfies the conditions:

(H1) H ∈ C2(R2n,R). (H2) there are constants µ > 2 and r0 > 0 such that

0 < µH(x) ≤ H ′(x) · x, ∀|x| ≥ r0.

(H3) H(x) = o(|x|2) at x = 0. (H4) H(x) ≥ 0 ∀x ∈ R
2n.

Then for every 0 < τ < 2π
‖B‖ , the system (4.3.1) possesses a non-constant

τ -periodic solution x satisfying

iτ (x) ≤ n+ 1. (4.3.2)

Moreover, suppose this solution x further satisfies the following condition:

(HX) H ′′(x(t)) ≥ 0 ∀t ∈ R and
∫ τ
0 H

′′(x(t)) dt > 0. Then τ is the minimal

period of x.

Proof. Fix τ ∈ (0, 2π
‖B‖ ). By conditions (H1)−(H4), we can find a non-

constant τ -periodic solution x of (4.3.1) via the saddle point theorem such

that (4.3.2) holds. For reader’s convenience, we sketch the proof here and

refer the reader to Theorem 4.3.5 of [24] or Theorem 4.23 of [51] for details.

In fact, following P. Rabinowitz’ pioneering work [48], choose K > 0

and χ ∈ C∞(R,R) such that χ(t) = 1 if t ≤ K, χ(t) = 0 if t ≥ K + 1, and

χ′(t) < 0 if y ∈ (K,K + 1). Set

ĤK(z) =
1

2
Bz · z +HK(z),

with

HK(z) = χ(|z|)H(z) + (1− χ(|z|))RK |z|4,
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where the constant RK satisfies

RK ≥ max
K≤|z|≤K+1

H(z)

|z|4 .

Let E =W 1/2,2(R/(τZ),R2n) be the Sobolev space with the usual norm.

Define a functional fK on E by

fK(z) =
1

2

∫ τ

0
(ż · Jz − ĤK(z)) dt, ∀z ∈ E. (4.3.3)

For m ∈ N, define E0 = R
2n,

Em =
{
z ∈ E | z(t) =

m∑

k=−m
exp(

2kπt

τ
J)ak, ak ∈ R

2n
}
,

E± =
{
z ∈ E | z(t) =

∑

±k>0

exp(
2kπt

τ
J)ak, ak ∈ R

2n
}
,

and E+
m = Em ∩ E+, E−

m = Em ∩ E−. We have Em = E−
m ⊕ E0 ⊕ E+

m. Let

Pm be the projection Pm : E → Em. Then {Em, Pm}m∈N form a Galerkin

approximation scheme of the operator −Jd/dt on E. Denote by fK,m =

fK|Em . Set Qm = {re : 0 ≤ r ≤ r1} ⊕ {Br1(0) ∩ (E−
m ⊕ E0

m)} with some

e ∈ ∂B1(0)∩E+
m for large r1 > 0 and small ρ > 0. Then ∂Qm and Bρ(0)∩E+

m

form a homologically link (cf. P.84 of [6] or p.167 of [18]). By the definition

of τ , we obtain a constant δ = δ(K) > 0 such that

fK,m(z) ≥ δ > 0, ∀z ∈ ∂Bρ(0) ∩ E+
m,

and

fK,m(z) ≤ 0, ∀z ∈ ∂Qm.

It is well known that fK satisfies the usual (P.S)∗ condition on E, i.e. a

sequence {xm} with xm ∈ Em possesses a convergent subsequence in E,

provided f ′K,m(xm) → 0 as m → ∞ and |fK,m(xm)| ≤ b for some b > 0

and all m ∈ N. Thus by the saddle point theorem (cf. [49]), the Galerkin

approximation method, and Theorem 4.2.1 of [51], we obtain a critical point

xK ∈ E of fK such that 0 < cK ≡ fK(xK) ≤ M1, where M1 is a constant

independent of K and there holds iτ (xK) ≤ n+ 1.
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Now the arguments in the section 6 of [49] yields a constant M2 inde-

pendent of K such that ‖xK‖C ≤ M2. Choose K > M2. Then x ≡ xK is a

non-constant τ -periodic solution of the system (4.3.1) satisfying (4.3.2).

Denote the minimal period of this solution x by τ/m for some m ∈ N.

By the condition (HX) and B being semi-positively definite, using (9.17) of

[39], we obtain

iτ/m(x) ≥ n. (4.3.4)

Since the system (4.3.3) is autonomous, we have

ντ/m(x) ≥ 1. (4.3.5)

Therefore, by (4.3.2), (4.3.4), (4.3.5), and Theorem 4.2.9, we obtain m = 1

and complete the proof. �

Remark. If B = 0, Theorem 4.3.1 holds for every τ > 0.

The following corollary gives more accessible sufficient conditions for the

existence of solutions with prescribed minimal period.

Corollary 4.3.2. Under the conditions of Theorem 4.3.1 except (HX),

which is replaced by the following two conditions: (H5) H ′′(x) ≥ 0 for all

x ∈ R
2n. (H6) The set D = {x ∈ R

2n|H ′(x) 6= 0, 0 ∈ σ(H ′′(x))} is

hereditarily disconnected, i.e. every connected component of D contains only

one point.

Then the system (4.3.1) possesses a τ -periodic solution x with minimal period

τ .

Proof. Since conditions (H5) and (H6) imply the condition (HX) holds

for every non-constant periodic solution of (4.3.1), the corollary follows from

Theorem 4.3.1. �

Similarly, we consider the existence of non-constant periodic solutions

with prescribed minimal period for the following autonomous second order

Hamiltonian systems

ẍ+ V ′(x) = 0, x ∈ R
n, (4.3.6)
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where n ∈ N and V : Rn → R is a function. In this paper, we consider the

following conditions on V :

(V1) V ∈ C2(Rn,R).

(V2) There exist constants µ > 2 and r0 > 0 such that

0 < µV (x) ≤ V ′(x) · x, ∀|x| ≥ r0.

(V3) V (x) ≥ V (0) = 0 ∀x ∈ R
n.

(V4) V (x) = o(|x|2), at x = 0.

(V5) There exist constants b > 0 and r1 > 0 such that

V (x) ≤ b

2
|x|2, ∀|x| ≤ r1.

(V6) V ′′(x) ≥ 0, ∀x ∈ R.

(V7) D = {x ∈ R
n|V ′(x) 6= 0, 0 ∈ σ(V ′′(x))} is hereditarily discon-

nected.

Theorem 4.3.3. Suppose V satisfies the condition (V1)−(V4), (V6)

and (V7). Then for every τ > 0, the system (4.3.6) possesses a non-constant

τ -periodic solution with minimal period τ .

Proof. For the system (4.3.6), we consider the following functional

ψ(x) =

∫ τ

0
(
1

2
|ẋ|2 − V (x)) dt, ∀x ∈W 1,2(R/(τZ),Rn).

By using the saddle point theorem (cf. Theorem 4.4 of [49], here we choosing

E = W 1,2(R/(τZ),Rn), X = R
n, Y = Lτ ≡ {x ∈ E|x(0) = 0}), under the

conditions (V1)-(V4) it is well known that there exists a crictal point x ∈ E

of ψ such that its Morse index satisfying m−(x, τ) ≤ n + 1. From [1] and

[54], we know the Morse index m−(x, τ) of x is just the Maslov-type index

iτ (B) of the matrix B(t) =

(
I 0

0 V ′′(x(t))

)
. Thus we have

iτ (x) = iτ (B) ≤ n+ 1. (4.3.7)
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When x further satisfies (V6) and (V7), denote the minimal period of x by

τ/m for some m ∈ N. By (V6), (V7) we have

iτ/m(x) = iτ/m(B) ≥ n. (4.3.8)

Note that the system is autonomous, we have

ντ/m(x) = ντ/m(B) ≥ 1. (4.3.9)

Therefore, by Theorem 4.2.9 we have m = 1. �

By the same argument as above, we have the following result whose

proof is omitted.

Theorem 4.3.4. Suppose V satisfies the conditions (V1)−(V3) and

(V5)−(V7). Then for every 0 < τ < 2π/
√
b, (4.3.6) possesses a non-constant

τ -periodic solution x with minimal period τ .

In his pioneering work [48], P. Rabinowitz proposed a conjecture: whe-

ther a superquadratic Hamiltonian system possesses a periodic solution with

a prescribed minimal period. This conjecture has been deeply studied by

many mathematicians. We refer to [9], [16], [32], [39], and references therein

for survey of the study on this problem. Our Theorem 4.3.1 and Theorem

4.3.3 follow the idea of [39], generalize corresponding results in [10] and are

different from that of [16].

For Rabinowitz’ conjecture on the second order Hamiltonian systems,

similar results under various convexity conditions have been proved (cf.

[10] and reference therein). In [32] and [39] under precisely the conditions

(V1)−(V4) of Rabinowitz, Y. Long proved that for any τ > 0 the system

(4.3.6) possesses a τ -periodic solution x whose minimal period is at least

τ/(n+ 1).

We refer the papers [9], [16], [24]−[26], [31]−[34], [35], [37]−[42], [43] and

[44] for further applications of the Maslov-type index theory to the study of

periodic solutions for nonlinear Hamiltonian systems. In the follow, we list

some recent development in this direction.
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4.3.2. The fixed energy problems for autonomous nonlinear Hamil-

tonian systems

We consider a compact hypersurface Σ in R
2n. For x ∈ Σ, let NΣ(x) be

the outward normal vector of Σ at x. We consider the given energy problem

of finding τ > 0 and an absolutely continuous curve x : [0, τ ] → R
2n such

that {
ẋ(t) = JNΣ(x(t)), x(t) ∈ Σ, ∀ t ∈ R,

x(τ) = x(0),
(4.3.10)

where J =

(
0 −In
In 0

)
is the standard symplectic matrix on R

2n with In

being the identity matrix in R
n. We call any such curve x solving the

above problem with minimal period τ > 0 the closed characteristic on Σ.

Any two closed characteristics x1 and x2 on Σ are geometrically distinct if

x1(R) 6= x2(R). Let J (Σ) be the set of all closed characteristics on Σ, [(x, τ)]

be the set of all closed characteristics on Σ which are geometrically the same

as (x, τ), and J̃ (Σ) be the set of all geometrically distinct ones on Σ. For

any C2 function H : R2n → R satisfying H−1(1) = Σ with ∇H(x) 6= 0 for

all x ∈ Σ, we can turn the problem (4.3.10) into the following nonlinear

Hamiltonian system with fixed energy





ẋ(t) = J∇H(x(t)),

H(x(t)) = 1,

x(τ) = x(0).

(4.3.11)

For a periodic solution x with period τ > 0 of any Hamiltonian system, we

linearized the Hamiltonian system at x, and get a linear Hamiltonian system

ż(t) = JB(t)z(t), B(t) is symmetric for all t ∈ [0, τ ]. (4.3.12)

Suppose γx(t) is the fundamental solution of the linear Hamiltonian system

(4.3.12), i.e., γx(t) solves the equation (4.3.12) with γx(0) = I2n. It is well

known that γx(t) is a symplectic matrix for all t ∈ R.

We call the eigenvalues of matrix γx(τ) the Floquet multipliers of (x, τ).

If all Floquet multipliers of (x, τ) lie on the unit circle U = {z ∈ C| |z| = 1},
we say that the closed characteristic (x, τ) is elliptic. If no Floquet multiplier

lies on the unit circle except 1, and the algebraic multiplicity of 1 ∈ σ(γx(τ))
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is 2, we say that the closed characteristic (x, τ) is hyperbolic, otherwise,

(x, τ) is non-hyperbolic. About the multiplicity of closed characteristics on a

convex hypersurface, we introduce the following surprised results. We denote

by J (Σ) the number of geometrical distinct closed characteristics lying on

Σ.

Theorem 4.3.5.([44]) For any convex C2 hypersurface Σ in R
2n, there

holds

J (Σ) ≥ [n/2] + 1.

Furthermore, if J (Σ) < ∞, there exists at least one elliptic closed charac-

teristic.

Theorem 4.3.6.([35]) For any centrical symmetric convex C2 hyper-

surface Σ in R
2n, there holds

J (Σ) ≥ n.

For a star-shaped hypersuface, we introduce the following results.

Theorem 4.3.7.([33]) For a star-shaped hypersurface Σ in R
2n, either

there exist infinitely many closed characteristics, or there exists at least one

nonhyperbolic closed characteristic, provided every closed characteristic on

Σ possesses its Maslov-type mean index greater than 2 when n is odd, and

greater than 1 when n is even.

Theorem 4.3.8.([21]) A non-degenerate hypersurface Σ in R
2n pos-

sesses at least two geometrically distinct closed characteristics for n ≥ 2.

Moreover, for n = 2, such a hypersurface Σ either possesses infinitely many

closed characteristics, or possesses at least two geometrically distinct elliptic

closed characteristics.

Here we mean that a hypersuface Σ is non-degenerate if all closed char-

acteristics and their iterations are non-degenerate. We mention that in [19]

and [20] the results in Theorem 4.3.7 and Theorem 4.3.8 have been extended

to a somewhat more general cases.
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tischen Institut der Universität Bonn, 1960.

4. R. Bott, Morse theory indomitable, Publications mathématiques de l’I.H.E.S., 68
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