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APPROXIMATING FIXED POINTS OF NONEXPANSIVE

MAPPINGS
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STEVO STEVIĆ

Abstract

Let D be a subset of a normed space X and T : D → X be

a nonexpansive mapping. In this paper we consider the following

iteration method which generalizes Ishikawa iteration process:

xn+1 = t
(1)
n T (t(2)n T (· · ·T (t(k)n Txn + (1− t

(k)
n )xn + u

(k)
n ) + · · · )

+(1− t
(2)
n )xn + u

(2)
n ) + (1− t

(1)
n )xn + u

(1)
n ,

n = 1, 2, 3 . . . , where 0 ≤ t
(i)
n ≤ 1 for all n ≥ 1 and i = 1, . . . , k,

and sequences {xn} and {u
(i)
n }, i = 1, . . . , k, are in D.

We improve several results in [2], concerning approximation

of fixed points of T.

1. Introduction

Let D be a subset of a normed space X. We say that a mapping T : D →

X is nonexpansive if for all x, y ∈ D, ||Tx − Ty|| ≤ ||x − y|| holds. During

last four decades many authors have investigated nonexpansive mappings

and the set of its fixed points. Browder [1] and Kirk [12] have shown that

nonexpansive mapping T which maps a closed, bounded, convex subset C of

a uniformly convex Banach space into itself has a nonempty fixed point set

in C. In almost all papers authors used some iteration method for such inves-

tigations. However, in general, for arbitrary x ∈ C the Picard iterates T nx
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do not converge to a fixed point of T. Genel and Lindenstrauss [6] showed

that there exists a nonexpansive mapping T defined on a closed, bouded and

convex subset C of Hilbert space H such that the sequence {xn} defined by

the recurrent formula xn+1 = (xn+Txn)/2 does not converge. The sequence

defined by xn+1 = (1− tn)xn + tnTxn, where {tn} is a real sequence whose

terms belong to interval [0, 1], has been investigated by Dotson [3], Edelstein

[4], Groetsch [8], Ishikawa [9], Johnson [11], Krasnosel’skǐi [13], Outlaw [16],

Senter and Dotson [17] and others. They showed that these iterative meth-

ods may be used to find a fixed point of a nonexpansive mapping T mainly

in a Hilbert space or a uniformly convex Banach space or a strictly convex

Banach space. This sequence is considered as an iterative process of the

type introduced by W. R. Mann [14]. Ishikawa [10] first used this iterative

method for nonexpansive mappings without any assumption on convexity of

the Banach space X. In [10] he proved the following theorem.

Theorem A. Let D be a subset of a normed space X and T : D → X be

a nonexpansive mapping. Given a sequence {xn} in D and a real sequence

{tn}, satisfying

(a) 0 ≤ tn ≤ t < 1 and
∑

∞

n=1 tn = ∞,

(b) xn+1 = (1− tn)xn + tnTxn, for n = 1, 2, 3, . . . ,

if {xn} is bounded, then ||Txn − xn|| → 0 as n → ∞.

If the sequence {xn} in D is defined by the following recurrent formula

xn+1 = tnT (snTxn + (1− sn)xn) + (1− tn)xn, x1 ∈ D, n = 1, 2, 3 . . . ,

where {tn} and {sn} are real sequences whose terms belong to the interval

[0, 1], we say that {xn} satisfies an Ishikawa iteration process (see [9]). In [2]

Deng extends Theorem A to the Ishikawa iteration process. In this paper

we consider the following iteration method:

xn+1 = t(1)n T (t(2)n T (· · ·T (t(k)n Txn + (1− t(k)n )xn + u(k)n ) + · · · ) (1)

+(1− t(2)n )xn + u(2)n ) + (1− t(1)n )xn + u(1)n ,

n = 1, 2, 3 . . . , where 0 ≤ t
(i)
n ≤ 1 for all n ≥ 1 and i = 1, 2, . . . , k.

This iteration process generalizes the Ishikawa iteration process. We

prove an analogous theorem to Theorem A and Theorem 1 in [2]. These
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theorems will be consequences of our theorem. Also we generalize other

results from [2].

2. Auxiliary Results

In this section we prove several auxiliary results which we will apply in

the last section.

One can easily prove the following lemma.

Lemma 1. Suppose that {an} is a sequence of real numbers bounded

from below, such that

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀k ∈ N) an+k < an + ε.

Then the finite limit limn→∞ an exists.

The next lemma is an easy consequence of Lemma 1.

Corollary 1.([22]) Suppose that {an} and {bn} are two sequences of

nonnegative numbers such that an+1 ≤ an+bn for all n ≥ 1. If
∑

∞

n=1 bn < ∞,

then the finite limit limn→∞ an exists.

The following lemma shows that the condition limn→∞ ||an|| = d in [2,

Lemma 2], may be replaced with lim infn→∞ ||an|| = d.

Lemma 2. Let {an} and {bn} be two sequences of a normed space X

and {tn} a sequence of real numbers. If the following conditions

(a) 0 ≤ tn ≤ t < 1 and
∑

∞

n=1 tn = ∞,

(b) an+1 = (1− tn)an + tnbn for all n ≥ 1,

(c) lim supn→∞
||bn|| < +∞,

are satisfied, then lim supn→∞
||an|| ≤ lim supn→∞

||bn||.

Proof. From (b) we obtain

an = a1

n−1
∏

i=1

(1− ti) +

n−1
∑

i=1

n−1
∏

j=i+1

(1− tj)tibi.
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Thus we have

||an|| ≤ ||a1||
n−1
∏

i=1

(1− ti) +
n−1
∑

i=1

n−1
∏

j=i+1

(1− tj)ti||bi||

= ||a1||

n−1
∏

i=1

(1− ti) +

n−1
∑

i=1

(

n−1
∏

j=i+1

(1− tj)−

n−1
∏

j=i

(1− tj)
)

||bi||.

From (c) we have that for each ε > 0 there exists n1 ∈ N such that for

n ≥ n1

||bn|| < d+ ε,

holds, where d = lim supn→∞
||bn||.

On the other hand, from (a) we have that for each ε > 0 there exists

n0 ∈ N such that for n ≥ n0 + n1

n−1
∏

i=n1

(1− ti) ≤ e
−

∑n−1
i=n1

ti < ε,

holds, here we use the following inequality 1 + x ≤ ex, x ∈ R.

Thus for n ≥ n0 + n1 we have

n−1
∑

i=1

(

n−1
∏

j=i+1

(1− tj)−
n−1
∏

j=i

(1− tj)
)

||bi||

≤ ||{bn}||∞
(

n−1
∏

j=n1

(1− tj)−

n−1
∏

j=1

(1− tj)
)

+ (d+ ε)
(

1−

n−1
∏

j=n1

(1− tj)
)

,

≤ 2ε||{bn}||∞ + (d+ ε),

where ||{bn}||∞ = supi∈N ||{bi}||. From (c) we have ||{bn}||∞ < ∞. From all

of the above we have

||an|| ≤ ε||a1||+ 2ε||{bn}||∞ + (d+ ε)

for n ≥ n0 + n1. Since ε > 0 is arbitrary we obtain the result. �

Combining Lemma 2 and Lemma 2 in [2] we obtain the following lemma.
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Lemma 3. Let {an} and {bn} be two sequences of a normed space X

and {tn} a sequence of real numbers. If the following conditions

(a) 0 ≤ tn ≤ t < 1 and
∑

∞

n=1 tn = ∞,

(b) an+1 = (1− tn)an + tnbn for all n ≥ 1,

(c) lim infn→∞ ||an|| = d,

(d) lim supn→∞
||bn|| ≤ d and {

∑n
i=1 tibi} is bounded,

are satisfied, then d = 0.

Remark 1. Note that Lemma 3 improves Lemma 2 in [2].

Lemma 4. Let D be a subset of a normed space X and T : D → X

be a nonexpansive mapping with a nonempty fixed points set F (T ) in D. Let

sequences {xn} and {u
(i)
n }, i = 1, . . . , k, in D satisfy the recurrent formula

(1). Then

||xn+1 − p|| ≤ ||xn − p||+ ||u(1)n ||+ ||u(2)n ||t(1)n + ||u(3)n ||t(1)n t(2)n + · · ·

+||u(k)n ||t(1)n t(2)n · · · t(k−1)
n

for all n ≥ 1 and all p ∈ F (T ).

Proof. We prove this lemma by induction. Let k = 1, then we have

||xn+1 − p|| = ||t(1)n Txn + (1− t(1)n )xn + u(1)n − p||

≤ ||t(1)n (Txn − Tp) + (1− t(1)n )(xn − p)||+ ||u(1)n ||

≤ t(1)n ||Txn − Tp||+ (1− t(1)n )||xn − p||+ ||u(1)n ||

≤ t(1)n ||xn − p||+ (1− t(1)n )||xn − p||+ ||u(1)n ||

= ||xn − p||+ ||u(1)n ||,

as desired.

Let

yn = t(2)n T (· · ·T (t(k)n Txn + (1− t(k)n )xn + u(k)n ) + · · · ) + (1− t(2)n )xn + u(2)n .

By the inductive hypothesis we have

||yn − p|| ≤ ||xn − p||+ ||u(2)n ||+ ||u(3)n ||t(2)n + ||u(4)n ||t(2)n t(3)n + · · · (2)

+||u(k)n ||t(2)n t(3)n · · · t(k−1)
n .
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Since xn+1 = t
(1)
n Tyn + (1− t

(1)
n )xn + u

(1)
n we have

||xn+1 − p|| = ||t(1)n Tyn + (1− t(1)n )xn + u(1)n − p||

≤ ||t(1)n (Tyn − Tp) + (1− t(1)n )(xn − p)||+ ||u(1)n ||

≤ t(1)n ||Tyn − Tp||+ (1− t(1)n )||xn − p||+ ||u(1)n ||

≤ t(1)n ||yn − p||+ (1− t(1)n )||xn − p||+ ||u(1)n ||.

From this and (2) the result follows. �

Lemma 5. Let D be a subset of a normed space X and T : D → X be

a nonexpansive mapping. Let sequences {xn} and {u
(i)
n }, i = 1, . . . , k, in D

satisfy recurrent formula (1). Then

||xn+1 − xn|| ≤ (t(1)n + t(1)n t(2)n + · · ·+ t(1)n t(2)n · · · t(k)n )||Txn − xn||+ ||u(1)n ||

+||u(2)n ||t(1)n +||u(3)n ||t(1)n t(2)n + · · · + ||u(k)n ||t(1)n t(2)n · · · t(k−1)
n ,

n = 1, 2, 3 . . . .

Proof. First, let k = 1. Then

||xn+1−xn|| = ||t(1)n Txn+(1−t(1)n )xn+u(1)n −xn|| ≤ t(1)n ||Txn−xn||+ ||u(1)n ||,

as desired.

Let us suppose that statement is true for k − 1 and let yn be defined as

in Lemma 4. Then we have

||xn+1 − xn|| = ||t(1)n Tyn + (1− t(1)n )xn + u(1)n − xn||

≤ t(1)n ||Tyn − xn||+ ||u(1)n ||

≤ t(1)n ( ||Tyn − Txn||+ ||Txn − xn|| ) + ||u(1)n ||

≤ t(1)n ( ||yn − xn||+ ||Txn − xn|| ) + ||u(1)n ||.



2006] APPROXIMATING FIXED POINTS OF NONEXPANSIVE MAPPINGS 443

By the inductive hypothesis we obtain

||xn+1 − xn||

≤ t(1)n ( ( t(2)n + t(2)n t(3)n + · · ·+ t(2)n t(3)n · · · t(k)n )||Txn − xn||

+||u(2)n ||+ ||u(3)n ||t(2)n + ||u(4)n ||t(2)n t(3)n + · · ·

+||u(k)n ||t(2)n t(3)n · · · t(k−1)
n + ||Txn − xn|| ) + ||u(1)n ||

= ( t(1)n + t(1)n t(2)n + · · ·+ t(1)n t(2)n · · · t(k)n )||Txn − xn||

+||u(1)n ||+ ||u(2)n ||t(1)n + ||u(3)n ||t(1)n t(2)n + · · · + ||u(k)n ||t(1)n t(2)n · · · t(k−1)
n .

This completes inductive proof. �

Lemma 6. Let D be a subset of a normed space X and T : D → X be a

nonexpansive mapping. Let sequences {xn} and {un} in D satisfy recurrent

formula (1). Then

||Txn+1 − xn+1||

≤ ( 1 + 2 ( t(1)n t(2)n + · · · + t(1)n t(2)n · · · t(k)n ) )||Txn − xn||

+2(||u(1)n ||+ ||u(2)n ||t(1)n + ||u(3)n ||t(1)n t(2)n + · · ·+ ||u(k)n ||t(1)n t(2)n · · · t(k−1)
n ),

n = 1, 2, 3 . . . .

Proof. Let us define yn as in Lemma 4. Then we have

||Txn+1 − xn+1||

≤ ||Txn+1 − Txn||+ ||Txn − xn+1||

≤ ||xn+1 − xn||+ ||t(1)n Tyn + (1− t(1)n )xn + u(1)n − Txn||

≤ ||xn+1 − xn||+ t(1)n ||Tyn − Txn||+ (1− t(1)n )||xn − Txn||+ ||u(1)n ||

≤ ||xn+1 − xn||+ t(1)n ||yn − xn||+ (1− t(1)n )||Txn − xn||+ ||u(1)n ||.

By Lemma 5 we obtain the desired inequality. �

3. Main Results

We are now in a position to formulate and prove the main results in this

paper.
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Theorem 1. Let D be a subset of a normed space X and T : D → X

be a nonexpansive mapping. Given a sequence {xn} in D satisfying the

recurrent formula (1), where u
(i)
n = 0 for all n ≥ 1 and for all i ∈ {1, . . . , k},

and real sequences {t
(i)
n }, i = 1, 2, . . . , k, satisfying

(a) 0 ≤ t
(1)
n ≤ t < 1 and

∑

∞

n=1 t
(1)
n = ∞,

(b) 0 ≤ t
(i)
n ≤ 1, i = 2, . . . , k,

(c)
∑

∞

n=1( t
(1)
n t

(2)
n + · · ·+ t

(1)
n t

(2)
n · · · t

(k)
n ) < ∞

(d) limn→∞( t
(2)
n + t

(2)
n t

(3)
n + · · ·+ t

(2)
n t

(3)
n · · · t

(k)
n ) = 0,

if {xn} is bounded , then ||Txn − xn|| → 0 as n → ∞.

Proof. Let us define yn as in Lemma 4. Since {||Txn−xn||} is bounded,

by Corollary 1, Lemma 6 and (c) we conclude that there exists the finite

limit limn→∞ ||Txn − xn||, say d. Let an = Txn − xn and let the sequence

{bn} satisfy the equality an+1 = (1− t
(1)
n )an + t

(1)
n bn, where we assume that

bn = 0 if t
(1)
n = 0. Then bn = t

(1)
n

−1
(Txn+1 − Txn) + Txn − Tyn and

||bn|| ≤ t(1)n

−1
||Txn+1 − Txn||+ ||Tyn − Txn||

≤ t(1)n

−1
||xn+1 − xn||+ ||yn − xn||

≤ ( 1 + 2( t(2)n + · · ·+ t(2)n t(3)n · · · t(k)n ) )||Txn − xn||.

By (d) we have lim sup ||bn|| ≤ d.

On the other hand we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

t
(1)
i bi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

(Txi+1 − Txi + t
(1)
i (Txi − Tyi ) )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||xn+1 − x1||+

n
∑

i=1

t
(1)
i || yi − xi ||

≤ ||xn+1−x1||+
n
∑

i=1

t
(1)
i (t

(2)
i +· · ·+t

(2)
i t

(3)
i · · · t

(k)
i )||Txi−xi||.

By (c) we can conclude that the last expression is bounded. Therefore, by

Lemma 3 we obtain the result. �

Remark 2. Theorem 1 above generalizes Theorem 1 of Deng [2]. It is

not only a generalization in the sense of our new iterative method, it also

generalizes this theorem in the case k = 2 since in our theorem we have
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the weaker condition
∑

∞

n=1 t
(1)
n t

(2)
n < ∞ instead of

∑

∞

n=1 t
(2)
n < ∞ which

appears in Theorem 1 [2]. This weaker condition is supplied by Lemma

6 which provides a better estimate than the estimate from [22], which is

applied in Theorem 1 [2].

The following theorem, analogous to the Theorem 1, refers to the case

when the sequence {un} is not zero.

Theorem 2. Let D be a subset of a normed space X and T : D → X be

a nonexpansive mapping. Given sequences {xn} and {u
(i)
n }, i = 1, . . . , k,

in D which satisfy recurrent formula (1) and real sequences {t
(i)
n }, i =

1, 2, . . . , k, satisfying

(a) 0 < a ≤ t
(1)
n ≤ b < 1,

(b) 0 ≤ t
(i)
n ≤ 1, i = 2, . . . , k,

(c)
∑

∞

n=1( t
(1)
n t

(2)
n + · · ·+ t

(1)
n t

(2)
n · · · t

(k)
n ) < ∞

(d) limn→∞( t
(2)
n + t

(2)
n t

(3)
n + · · ·+ t

(2)
n t

(3)
n · · · t

(k)
n ) = 0,

(e)
∑

∞

n=1 ||u
(i)
n || < ∞, i = 1, . . . , k,

if {xn} is bounded , then ||Txn − xn|| → 0 as n → ∞.

Proof. Let us define yn as in Lemma 4. Since {||Txn−xn||} is bounded,

by Corollary 1, Lemma 6, (c) and (e) we conclude that there exists the

finite limit limn→∞ ||Txn − xn|| = d. Let an = Txn − xn and suppose the

sequence {bn} satisfies the equality an+1 = (1− t
(1)
n )an + t

(1)
n bn + u

(1)
n . Then

bn = t
(1)
n

−1
(Txn+1 − Txn − u

(1)
n ) + Txn − Tyn and

||bn|| ≤ t(1)n

−1
||Txn+1 − Txn||+ ||Tyn − Txn||+ t(1)n

−1
||u(1)n ||

≤ t(1)n

−1
||xn+1 − xn||+ ||yn − xn||+ a−1||u(1)n ||

≤ ( 1 + t(2)n + · · ·+ t(2)n · · · t(k)n )||Txn − xn||+ t(1)n

−1
(||u(1)n ||

+||u(2)n ||t(1)n + ||u(3)n ||t(1)n t(2)n + · · ·+ ||u(k)n ||t(1)n t(2)n · · · t(k−1)
n )

+(t(2)n + t(2)n t(3)n + · · ·+ t(2)n t(3)n · · · t(k)n )||Txn − xn||

+||u(2)n ||+ ||u(3)n ||t(2)n + · · ·+ ||u(k)n ||t(2)n t(3)n · · · t(k−1)
n + a−1||u(1)n ||

≤ ( 1 + 2( t(2)n + · · · + t(2)n · · · t(k)n ) )||Txn − xn||+
2

a

k
∑

j=1

||u(j)n ||.

By (d) and (e) we obtain lim supn→∞
||bn|| ≤ d.
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On the other hand we have

∥

∥

∥

n
∑

i=1

t
(1)
i bi

∥

∥

∥

=
∥

∥

∥

n
∑

i=1

(Txi+1 − Txi − u
(1)
i + t

(1)
i (Txi − Tyi ) )

∥

∥

∥

≤ ||xn+1 − x1||+
n
∑

i=1

t
(1)
i || yi − xi ||+

n
∑

i=1

||u
(1)
i ||

≤ ||xn+1 − x1||+

n
∑

i=1

t
(1)
i ( t

(2)
i + · · · + t

(2)
i t

(3)
i · · · t

(k)
i )||Txi−xi ||

+

n
∑

i=1

t
(1)
i

(

||u
(2)
i ||+||u

(3)
i ||t

(2)
i +· · ·+||u

(k)
i ||t

(2)
i t

(3)
i · · · t

(k−1)
i

)

+

n
∑

i=1

||u
(1)
i ||

≤ ||xn+1−x1||+

n
∑

i=1

(t
(1)
i t

(2)
i +· · ·+t

(1)
i t

(2)
i · · · t

(k)
i )||Txi−xi ||+

n
∑

i=1

k
∑

j=1

||u
(j)
i ||.

By (c) and (e) we can conclude that the last expression is bounded. There-

fore, by Lemma 3 we obtain the result. �

Theorem 3. Let D be a closed subset of a Banach space X, and T :

D → X be a nonexpansive mapping from D into a compact subset of X. If

{xn} is as in Theorem 1 or Theorem 2, then {xn} converges to a fixed point

of T.

Proof. Since {xn} is a subset of the set {x∈X | d(x, conv(T (D)∪{x1}))}

≤ ‖{u
(1)
n }‖∞}, which is compact by well-known theorem of Mazur, we know

that {xn} containes a subsequence {xnk
} which converges to some p ∈ D

since D is closed. By Theorem 1 (Theorem 2) we have ||Txnk
− xnk

|| → 0

as k → ∞. On the other hand

||Tp−p|| ≤ ||Tp−Txnk
+Txnk

−xnk
+xnk

−p|| ≤ 2||p−xnk
||+||Txnk

−xnk
||,

since T is nonexpansive, which implies that p ∈ F (T ).

By Lemma 4 we have

||xn+1 − p|| ≤ ||xn − p||+

k
∑

i=1

||u(i)n || (3)
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for all n ≥ 1. By Corollary 1 there exists limn→∞ ||xn − p|| = d. Since

limk→∞ ||xnk
− p|| = 0 we have d = 0, as desired.

In [17] Senter and Dotson introduce the following definition:

Let D be a subset of a Banach space X. A mapping T : D → X with a

nonempty fixed points set F (T ) in D will be said to satisfy Condition I, if

there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0

for r ∈ (0,∞), such that ||x − Tx|| ≥ f(d(x, F (T ))) for all x ∈ D, where

d(x, F (T )) = infz∈F (T ) ||x− z||. �

The following theorem generalize Theorem 2 in [10] and Theorem 4 in

[2].

Theorem 4. Let X,D and {xn} be as in Theorem 3. Let T : D → X

be a nonexpansive mapping with a nonempty fixed points set F (T ) in D. If

T satisfies Condition I, then {xn} converges to a member of F (T ).

Proof. By Lemma 4 we have (3) and consequently

d(xn+1, F (T )) ≤ d(xn, F (T )) +

k
∑

i=1

||u(i)n ||.

Further, by Corollary 1 we can conclude that limn→∞ d(xn, F (T )) = r exists.

By (3) we easily obtain

||xn|| ≤ ||x1−p||+||p||+

n−1
∑

i=1

k
∑

j=1

||u
(j)
i || < ||x1−p||+||p||+

∞
∑

i=1

k
∑

j=1

||u
(j)
i || < ∞,

hence, {xn} is bounded and consequently, by Theorem 1 ( Theorem 2 ),

limn→∞ ||xn − Txn|| = 0.

From that and Condition I, we have

0 = lim
n→∞

||xn − Txn|| ≥ lim
n→∞

f(d(xn, F (T )))

which implies that r = 0. Let us show that {xn} converges to a member of

F (T ). Since

lim
n→∞

d(xn, F (T )) = 0 and

∞
∑

i=1

k
∑

j=1

||u
(j)
i || < ∞,
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for any positive integer i there exists Ni > 0 and pi ∈ F (T ) such that

||xNi
− pi|| < 2−(i+1) and

∞
∑

i=Ni

k
∑

j=1

||u
(j)
i || < 2−(i+1),

which implies from (3) that ||xn−pi|| < 2−i, for all n ≥ Ni. We may suppose

that Ni+1 ≥ Ni for all i > 0. Thus we have

||pi−pj|| ≤ ||pi − xNi+1 ||+ ||xNi+1 − pi+1||+ ||pi+1 − xNi+2 ||

+ · · ·+ ||pj−1 − xNj
||+ ||xNj

− pj||

≤ 2−i+2−(i+2)+2−(i+1)+2−(i+3)+· · ·+2−(j−1)+2−(j+1)<2−(i−1),

which implies that {pi} is a Cauchy sequence. Thus there exists p∗ ∈ F (T ),

such that limn→∞ pn = p∗, since F (T ) is closed. Since ||xn − pi|| < 2−i, for

all n ≥ Ni, we have limn→∞ xn = p∗, completing the proof. �

By Theorem 1 or by Theorem 2 and the fixed point theorem of Gillespie

and Williams [7], as in [2], it is easy to prove the following theorem. This

theorem generalizes Theorem 1.8 of Veeramani [23] and Theorem 5 in [2].

Theorem 5. Let D be a closed, bounded, convex subset of a Banach

space X, and T : D → D be a nonexpansive mapping on D such that for

some α > 0 and for all x, y ∈ D

||Tx− Ty|| ≤ α(||x− Tx||+ ||y − Ty||).

If {xn} is as in Theorem 1 or Theorem 2, then {xn} converges to the unique

fixed point of T.

Recall that a Banach space X satisfies Opial’s condition [15] if for each

sequence {xn} in X, the condition xn → x0 weakly implies lim infn→∞ ||xn−

x0|| < lim infn→∞ ||xn − y|| for all y ∈ X, y 6= x0.

Theorem 6. Suppose X is a Banach space that satisfies Opial’s con-

dition and D is weakly compact, and let T and {xn} be as in Theorem 1 or

Theorem 2. Then {xn} converges weakly to a fixed point of T.

Proof. Since D is a weakly compact, there exists a subsequence {xnk
}

of {xn} which converges weakly to a p ∈ D. By Theorem 1 or Theorem 2
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we have ||Txn − xn|| → 0 as n → ∞. From that and the nonexpansivity of

T we have

lim inf
n→∞

||xn − p|| ≥ lim inf
n→∞

||Txn − Tp|| = lim inf
n→∞

||xn − Tp||.

Thus from Opial’s condition we have Tp = p. Suppose that {xn} does not

converges weakly to p. Then there are subsequence {xmj
} of {xn} and q 6= p

such that xmj
→ q weakly and Tq = q. By Lemma 4 and Corollary 1 we

obtain that there exist finite limits

lim
n→∞

||xn − p|| and lim
n→∞

||xn − q||.

From that and Opial’s condition we have

lim
n→∞

||xn − p|| = lim
k→∞

||xnk
− p|| < lim

k→∞

||xnk
− q||

= lim
j→∞

||xmj
− q|| < lim

j→∞

||xmj
− p|| = lim

n→∞

||xn − p||,

which is a contradiction. Hence the result follows. �

Remark 3. Iteration process (1) appeared for the first time in an earlier

version of this paper titled ”Approximating fixed points of nonexpansive

mappings by a new iteration method” which was accepted for publication

in the Far East Journal of Mathematical Sciences in 2002, and has already

been cited in papers [18, 19, 20, 21]. However due to page charges the paper

was not published.
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