
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 1 (2006), No. 4, pp. 557-568

OSCILLATION THEOREMS FOR NEUTRAL DELAY

DIFFERENTIAL EQUATIONS OF ODD ORDER

BY

P. DAS, B. B. MISHRA AND C. R. DASH

Abstract

Sufficient conditions are established ensuring oscillation of

all solutions of the odd-order neutral delay differential equation

(x(t)− px(t− τ ))(n) +
m∑

i=1

pix(t− σi) = 0,

where p ∈ (−∞,∞), σi, pi, τ ∈ (0,∞). The present result im-

proves some recent results.

1. Introduction

Establishing sufficient conditions in terms of coefficients and deviating

arguments ensuring oscillation of all solutions of the odd-order neutral delay

differential equation

(x(t)− p(t)x(t− τ))(n) +
m
∑

i=1

pi(t)x(t− σi) = 0, (1.1)

where τ , σi ∈ (0,∞), p, pi ∈ C(R, (0,∞))is a subject of many investigations.

By a solution of (1.1) on [Ty,∞), Ty ≥ 0, we mean a function y ∈

C ([Ty − r,∞) , R) such that y(t) − p(t)y(t − τ) is n times continuously dif-

ferentiable and (1.1) is satisfied identically for t ≥ Ty where r = max1≤i≤m
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{τ, σi}. Such a solution of (1.1) is said to be oscillatory if it has arbitrarily

large zeros; otherwise, it is called nonoscillatory.

From the review of the literature it appears that the case when p(t) ≡ 0,

n = 1, all solutions of (1.1) are oscillatory if

lim inf
t→∞

m
∑

i=1

pi(t)σi >
1

e
. (1.2)

Similarly, if p(t) ≡ 0, n = 1 and m = 1, all solutions of (1.1) are oscillatory

if

lim inf
t→∞

∫ t

t−σ1

p1(s)ds >
1

e
. (1.3)

Assuming pi(t) = pi ∈ (O,∞), (1.2) and (1.3) reduces respectively to

m
∑

i=1

piσi >
1

e

and

p1σ1 >
1

e
(1.4)

where the later is a sharp condition for oscillation. Indeed, it is established

by an counter example that the former is not a necessary condition for

oscillation.

In [13], authors have further extended the results for odd-order equations

of the form

x(n)(t) + p1x(t− σ1) = 0

replacing (1.4) by

p
1/n
1 σ1 >

n

e
.

But a similar extension of it, for equations with several deviating arguments

and general odd-order equations is yet to be found out. One of the results

of this paper gives the required extension.

In a recent paper [19], Zang established that every solution of (1.1)
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oscillates if

n = 1 (1.5)

0 < p < 1 (1.6)

τ, σi, pi ∈ (0,∞), i = 1, 2, . . . ,m (1.7)

τ > σi, i = 1, 2, . . . ,m (1.8)

and

τ
(

m
∑

i=1

pi

)

> F (λ) =
(1− pλ)2

λ
(1.9)

where λ is the unique real root of the equation

1− py = ln(y), 1 < y <
1

p
. (1.10)

The method adopted by him is not only complicated but also prevents

n, p and τ to take values in other ranges.

Obviously, we prove that, if n is an odd natural number and (1.6)−(1.7)

hold then every solution of (1.1) oscillates, if

(τ

n

)(n)
m
∑

i=1

pi exp(τi) >
(1− pλ)n+1

λ
(1.11)

where λ is the unique real root of

n(1− pλ) = ln(λ), 1 < λ <
1

p
(1.12)

and

τi =















1
τ ln

[

1
(1−p)

(

e
n

)n
m
∑

i=1

piσ
n
i

]

(σi − τ), σi ≥ τ

1
τ ln

(

1
p

)

(σi − τ), σi < τ

(1.13)

Indeed, if n = 1 and (1.8) holds then τi > 0. Consequently, (1.11)

reduces to

τ
(

m
∑

i=1

pi exp(τi)
)

>
(1− pλ)2

λ
, (1.14)
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which is a weaker condition than that of (1.9). Similar results are obtained

when p does not satisfy (1.6). Examples are cited to demonstrate the gen-

eralization.

2. Odd Order Equations

Theorem 1. If n is odd, (1.6), (1.7) and (1.11) - (1.13) are satisfied,

then every solution of (1.1) oscillates.

Proof. To the contrary, suppose that (1.1) admits a nonoscillatory solu-

tion. By Wang [17], the associated characteristic equation

G(µ) = −µn(1− peµτ ) +

m
∑

i=1

pie
µσi = 0 (2.1)

admits a real root, say, µ0. Since G(µ) > 0 for µ ≤ 0, it follows that µ0 > 0

and consequently,

m
∑

i=1

pi
eµ0σi

µn
0

= (1− peµ0τ ) . (2.2)

Since

min
x>0

(ex/xn) = (e/n)n,

from (2.2) it follows that

( e

n

)n
m
∑

i=1

piσ
n
i ≤

m
∑

i=1

pi
eµ0σi

µn
0

= (1− peµ0τ ) ≤ (1− p)eµ0τ .

Consequently,

µ0 >
1

τ
ln

[ 1

(1− p)

( e

n

)n
m
∑

i=1

piσ
n
i

]

. (2.3)

Again, the positiveness of the left hand side of (2.2) shows that

µ0 <
1

τ
ln

(

1

p

)

. (2.4)
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From (2.3), (2.4) and the definition of τi in (1.13) gives that

µ0(σi − τ) ≥ τi i = 1, 2, . . . ,m. (2.5)

Multiplying (2.2) throughout by exp(−µ0τ)
(

τ
n

)n
then using (2.5) in the

resulting equation it yields

(τ

n

)n
m
∑

i=1

pi exp(τi) ≤
( τ

n

)n µn
0 (1− peµ0τ )

eµ0τ
(2.6)

Putting ξ = exp(µ0τ) in the right hand side of (2.6) and denoting it by K(ξ)

we see that

K(X) =
1

nn

(lnX)n(1− pX)

X
. (2.7)

It is easy to verify that K ′(X) = 0 if and only if X satisfies (1.12). That

is X = λ. Furthermore, K ′′(λ) < 0 shows that X = λ is a point of local

maximum of K(X). Consequently,

K(ξ) ≤ K(λ) =
1

nn

(ln λ)n(1− pλ)

λ
. (2.8)

Using (1.12) in (2.8) we obtain

K(ξ) ≤
(1− pλ)n+1

λ
. (2.9)

Combining (2.6) and (2.9) the resultant inequality contradicts (1.11).

This completes the proof. �

Corollary 1. If the hypotheses of Theorem 1 are satisfied rplacing (1.11)

to (1.13) by

(τ

n

)n
m
∑

i=1

pi exp(τi) >

(

n+ 1

ne

)n+1

then every solution of (1.1) oscillates.

Proof. The proof follows directly from Theorem 1 if

F (λ) =
(1− pλ)n+1

λ
≤

(

n+ 1

ne

)n+1

(2.10)
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where λ satisfies (1.12). Indeed, from (1.12)

1− pλ =
1

n
lnλ

and subsequently, from (2.10) we get

F (λ) =
(1− pλ)n+1

λ
=

1

λ

(

lnλ

n

)n+1

. (2.11)

Sinece

max
x>1

(lnx)n+1

x
=

(

n+ 1

e

)n+1

, (2.12)

from (2.11) and (2.12) we get

F (λ) ≤

(

n+ 1

ne

)n+1

.

This completes the proof. �

Corollary 2. If the hypotheses of Theorem 1 are satisfied replacing

(1.11) to (1.13) by

( τ

n

)n
m
∑

i=1

pi exp(τi) > (1− p)n+1, (2.13)

then every solution of (1.1) oscillates.

Proof. In Theorem 1 we observe that F is a decreasing function of

λ (1 < λ < 1/p). Hence

F (λ) < F (1) = (1− p)n+1 (2.14)

Now the proof follows from (2.13), (2.14) and Theorem 1. �

Corollary 3. If the hypotheses of Theorem 1 are satisfied replacing

(1.11)−(1.13) by

(τ

n

)n
m
∑

i=1

pi exp(τi) >
(1− p)n+1

(1 + np)n(1 + n)
(2.15)
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then every solution of (1.1) oscillates.

Proof. In theorem 1,

F (λ) =
(1− pλ)n+1

λ

where λ satisfies

H(λ) = n(1− pλ)− lnλ = 0, 1 < λ < 1/p.

Clearly, F (x) is decreasing for 1 < x < 1/p, H ′(y) < 0 and H ′′(y) > 0 for

1 < y < 1/p. Suppose that λ = 1 + c for some c > 0. Expanding H by

Taylors theorem (for some 1 ≤ α ≤ 1 + c),

0 = H(λ) = H(1) + cH ′(1) +
c2

2!
H ′′(α)

> H(1) + cH ′(1)

= n(1− p) + c(−np− 1). (2.16)

Consequently, from (2.16) it yields

c >
n(−p)

1 + np

and

λ = 1 + c >
(1 + n)

1 + np
. (2.17)

Since F is decreasing

F (λ) > F

(

1 + n

1 + np

)

=
(1− p)n+1

(1 + np)n(1 + n)
. (2.18)

Now the proof follows from (2.15), (2.18) and Theorem 1. �

Theorem 2. Suppose that (1.7) is satisfied, n is odd and p = 0. If

( e

n

)n
m
∑

i=1

piσ
n
i > 1 (2.19)

then every solution of (1.1) oscillates.
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Proof. To the contrary, by Wang [17], the associated characteristic equa-

tion (2.1) admits a real root µ0. Proceeding in the lines of Theorem 1 we

obtain (2.2). Since

min
x>0

ex

xn
=

( e

n

)n
(2.20)

from (2.2), (2.20) and (2.19) the contradiction follows.

Note. When n = 1, (2.19) reduces to (1.3). �

Theorem 3. Suppose that (1.7) and (1.8) hold, p > 1 and n is odd. If

(τ

n

)n
m
∑

i=1

pi exp(τi) > F (λ) =
(1− pλ)n+1

λ
, (2.21)

where λ is the unique real root of

n(1− py) = ln(y),
1

p
< y < 1

and

τi =
( 1

(p − 1)

m
∑

i=1

pi

)

(τ − σi),

then every solution of (1.1) oscillates.

Proof. On the contrary and by Wang [17], the associated characteristic

equation admits a real root µ0 < 0. That is,

m
∑

i=1

pie
µ0σi = µn

0 (1− peµ0τ ) < (−µ0)
n(p− 1)eµ0τ . (2.22)

Dividing (2.22) throughout by eµ0τ and using (1.8) we get

µ0 < −
[ 1

(p− 1)

m
∑

i=1

pi

]1/n
. (2.23)

From (2.23) it follows that

µ0(σi − τ) > τi. (2.24)
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Dividing the characteristic equation G(µ0) = 0 throughout by
(

τ
n

)n
eµ0τ ,

then using (2.24) and proceeding exactly in the lines of Theorem 1 we obtain

a contradiction.

This completes the proof. �

Theorem 4. Suppose that (1.7) is satisfied. If n is odd and p = 1, then

every solution of (1.1) oscillates.

Proof. If possible, let us suppose that (1.1) admits a nonoscillatory

solution. Consequently, the characteristic equation

G(µ) = −µn (1− eµτ ) +
m
∑

i=1

pie
µσi = 0

admits a real root, say, µ0. Since G(µ) > 0 for all µ ≥ 0 it follows that

µ0 < 0. Hence

µn
0 (1− eµ0τ ) =

m
∑

i=1

pie
µ0σi . (2.25)

The right hand side of (2.25) is positive implies that

1− eµ0τ < 0.

That is

eµ0τ > 1,

which is impossible. This completes the proof. �

Theorem 5. Suppose that (2.7) is satisfied, n is odd, p < 0 and σi ≤

τ (i = 1, 2, . . . ,m). If

( e

n

)n
m
∑

i=1

piσ
n
i ≥ (1− p) exp

{( 1

(−p)

m
∑

i=1

pi

)1/n
τ
}

. (2.26)

then every solution of (1.1) oscillates.

Proof. If possible, suppose that (1.1) admits a nonoscillatory solution.
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By Wang [17], the associated characteristic equation

G(µ) = −µn (1− peµτ ) +

m
∑

i=1

pie
µσi = 0

admits a real root, say, µ0. Clearly, G(µ) > 0 for µ ≤ 0 and hence µ0 > 0

and

G(µ0) = −µn
0 (1− peµ0τ ) +

m
∑

i=1

pie
µ0σi = 0.

Consequently,
m
∑

i=1

pie
µ0σi = µn

0 (1− peµ0τ ) . (2.27)

Dividing (2.27) throughout by µn
0 and using

min
x>0

ex

xn
=

( e

n

)n
,

we obtain

( e

n

)n
m
∑

i=1

piσ
n
i ≤

m
∑

i=1

pi
eµ0σi

µn
0

= 1− peµ0τ < (1− p)eµ0τ (2.28)

Further, dividing (2.27) throughout by eµ0τ and rearranging the terms we

obtain

(

m
∑

i=1

pi

)

>
m
∑

i=1

pie
µ0(σi−τ) = µn

0

(

e−µ0τ − p
)

> µn
0 (−p).

Hence

µ0 <
[ 1

−p

m
∑

i=1

pi

]1/n
. (2.29)

From (2.28) and (2.29) it follows that

( e

n

)n (
m
∑

i=1

piσ
n
i

)

< (1− p)(eµ0τ )

< (1− p) exp
{[ 1

(−p)

m
∑

i=1

pi

]1/n
τ
}

,
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which is a contradiction to (2.26). This completes the proof. �

Example 1. Consider the neutral delay differential equation

(

x(t)−
1

2
x(t− 2)

)′

+ x(t− 1) + 3x(t− 3) = 0.

By Corollary 1 of this paper, all solutions of this equation are oscillatory.

But Theorem 1 of Zhang [19] does not apply because (1.8) fails to hold.
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