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ON THE PRODUCT AND RATIO OF t

AND BESSEL RANDOM VARIABLES

BY

SARALEES NADARAJAH AND SAMUEL KOTZ

Abstract

The distributions of products and ratios of random vari-

ables are of interest in many areas of the sciences. In this paper,

the exact distributions of the product | XY | and the ratio | X/Y |

are derived when X and Y are Student’s t and Bessel function ran-

dom variables distributed independently of each other.

1. Introduction

For given random variables X and Y , the distributions of the product

| XY | and the ratio | X/Y | are of interest in many areas of the sciences.

In traditional portfolio selection models certain cases involve the product

of random variables. The best examples of this are in the case of investment

in a number of different overseas markets. In portfolio diversification models

(see, for example, Grubel (1968)) not only are prices of shares in local mar-

kets uncertain but also the exchange rates are uncertain so that the value

of the portfolio in domestic currency is related to a product of random vari-

ables. Similarly in models of diversified production by multinationals (see,

for example, Rugman (1979)) there is local production uncertainty and ex-

change rate uncertainty so that profits in home currency are again related to

a product of random variables. An entirely different example is drawn from
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the econometric literature. In making a forecast from an estimated equa-

tion Feldstein (1971) pointed out that both the parameter and the value of

the exogenous variable in the forecast period could be considered as ran-

dom variables. Hence the forecast was proportional to a product of random

variables.

An important example of ratios of random variables is the stress −
strength model in the context of reliability. It describes the life of a compo-

nent which has a random strength Y and is subjected to random stress X.

The component fails at the instant that the stress applied to it exceeds the

strength and the component will function satisfactorily whenever Y > X.

Thus, Pr(X < Y ) is a measure of component reliability. It has many appli-

cations especially in engineering concepts such as structures, deterioration

of rocket motors, static fatigue of ceramic components, fatigue failure of

aircraft structures and the aging of concrete pressure vessels.

The distributions of | XY | and | X/Y | have been studied by several au-

thors especially when X and Y are independent random variables and come

from the same family. With respect to products of random variables, see

Sakamoto (1943) for uniform family, Harter (1951) and Wallgren (1980) for

Student’s t family, Springer and Thompson (1970) for normal family, Stuart

(1962) and Podolski (1972) for gamma family, Steece (1976), Bhargava and

Khatri (1981) and Tang and Gupta (1984) for beta family, AbuSalih (1983)

for power function family, and Malik and Trudel (1986) for exponential fam-

ily (see also Rathie and Rohrer (1987) for a comprehensive review of known

results). With respect to ratios of random variables, see Marsaglia (1965)

and Korhonen and Narula (1989) for normal family, Press (1969) for Stu-

dent’s t family, Basu and Lochner (1971) and Ali et al. (2005) for Weibull

family, Shcolnick (1985) for stable family, Hawkins and Han (1986) for non-

central chi-squared family, Provost (1989) for gamma family, and Pham-Gia

(2000) for beta family.

However, there is relatively little work of the above kind when X and Y

belong to different families. In the applications mentioned above, it is quite

possible that X and Y could arise from different but similar distributions

(see below for examples). In a recent paper, Nadarajah and Gupta (2005)

studied the exact distributions of products of random variables when X has

the logistic distribution and Y comes from similar but different distributions.

In this paper, we study the exact distributions of | XY | and | X/Y | whenX
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and Y are independent random variables having the Student’s t and Bessel

function distributions with pdfs
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respectively, for −∞ < x < ∞, −∞ < y < ∞, ν > 0, b > 0 and m > 1,

where
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√
πxm

2mΓ (m+ 1/2)

∫
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(
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is the modified Bessel function of the second kind.

Student’s t and Bessel function distributions have found applications in

a variety of areas that range from image and speech recognition and ocean

engineering to finance. Both are rapidly becoming distributions of first choice

whenever “something” with heavier than Gaussian tails is observed in the

data. Some examples are (see Kotz et al (2001) for further applications):

1. in communication theory, X and Y could represent the random noise

corresponding to two different signals.

2. in ocean engineering, X and Y could represent distributions of navigation

errors.

3. in finance, X and Y could represent distributions of log-returns of two

different commodities.

4. in image and speech recognition, X and Y could represent “input” dis-

tributions.

In each of the examples above, it will be of interest to study the distri-

bution of the ratio | X/Y |. For example, in communication theory, | X/Y |
could represent the relative strength of the two different signals. In ocean

engineering, | X/Y | could represent the relative safety of navigation. In

finance, | X/Y | could represent the relative popularity of the two different

commodities. The distribution of the product | XY | is considered here for

completeness.
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The exact expressions for the distributions of | XY | and | X/Y | are
given in Sections 2 and 3. Nadarajah and Kotz (2003) have shown that the

cdf corresponding to (1) can be expressed as

F (x)=
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and this result will be crucial for the calculations. The calculations involve

several special functions, including the Euler psi function defined by

Ψ(x) =
d log Γ(x)

dx
,

the Struve function defined by
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the Bessel function of the first kind defined by

Jν(x) =
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the hypergeometric functions defined by
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and

Sµ,ν (x) = sµ,ν (x) +
2µ+ν−1Γ(ν)Γ ((µ + ν + 1)/2)
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where (e)k = e(e+1) · · · (e+ k− 1) denotes the ascending factorial. We also

need the following important lemmas.

Lemma 1.(Equation (2.16.3.13), Prudnikov et al., 1986, volume 2) For

c > 0, z > 0 and α > ν,
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Lemma 2.(Equation (2.16.3.14), Prudnikov et al., 1986, volume 2) For

c > 0, z > 0 and ν > −1,

∫

∞

0

xν+1

(

x2 + z2
)ρKν(cx)dx = (2z)ν (z/c)1−ρ Γ(ν + 1)S−ν−ρ,1+ν−ρ(cz).

Further properties of the above special functions can be found in Prud-

nikov et al. (1986) and Gradshteyn and Ryzhik (2000).

2. Product

Theorem 1 derives an explicit expression for the cdf of | XY | in terms

of the hypergeometric function.
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Theorem 1. Suppose X and Y are distributed according to (1) and

(2), respectively. If ν is an odd integer then the cdf of Z =| XY | can be

expressed as
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1
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and C denotes the Euler’s constant.

Proof. The cdf F (z) = Pr(| XY |≤ z) can be expressed as
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where F (·) inside the integrals denotes the cdf of a Student’s t random

variable with degrees of freedom ν. Substituting the form for F given by (3)

for odd degrees of freedom, (7) can be reduced to
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1
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By direct application of Lemma 1, one can easily see that J(k) = A(k), where

A(k) is given by (6). The result of the theorem follows by substituting this

form for J(k) into (8). �

Theorem 2 is the analogue of Theorem 1 for the case when the degrees

of freedom ν is an even integer.

Theorem 2. Suppose X and Y are distributed according to (1) and

(2), respectively. If ν is an even integer then the cdf of Z =| XY | can be

expressed as
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and C denotes the Euler’s constant.

Proof. Substituting the form for F given by (3) for even degrees of

freedom, (7) can be reduced to
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ν/2
∑

k=1

B

(

k − 1

2
,
1

2

)

J(k), (11)
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J(k) =
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(
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By direct application of Lemma 1, one can easily see that J(k) = A(k), where

A(k) is given by (10). The result of the theorem follows by substituting this

form for J(k) into (11). �
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Figure 1 illustrates possible shapes of the pdf of | XY | for ν = 5 and a

range of values of m. Note that the shapes are unimodal and that the value

of m largely dictates the behavior of the pdf near z = 0.
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Figure 1. Plots of the pdf of (4) for ν = 5 and m = 2, 3, 5, 10.

3. Ratoio

Theorem 3 derives an explicit expression for the cdf of | X/Y | in terms

of the Lommel function.

Theorem 3. Suppose X and Y are distributed according to (1) and

(2), respectively. If ν is an odd integer then the cdf of Z =| X/Y | can be

expressed as
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Proof. The cdf F (z) = Pr(| X/Y |≤ z) can be expressed as

F (z) =
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where F (·) inside the integrals denotes the cdf of a Student’s t random

variable with degrees of freedom ν. Substituting the form for F given by (3)

for odd degrees of freedom, (14) can be reduced to
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The result of the theorem follows by substituting (17) into (15). �

Theorem 4 is the analogue of Theorem 3 for the case when the degrees

of freedom ν is an even integer.

Theorem 4. Suppose X and Y are distributed according to (1) and

(2), respectively. If ν is an even integer then the cdf of Z =| X/Y | can be

expressed as
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Proof. Substituting the form for F given by (3) for odd degrees of
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freedom, (14) can be reduced to
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The result of the theorem follows by substituting (21) into (19). �
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Figure 2. Plots of the pdf of (18) for ν = 10 and m = 2, 3, 5, 10.

Figure 2 illustrates possible shapes of the pdf of | X/Y | for ν = 10 and

a range of values of m. Note that the shapes are unimodal and that the

value of m largely dictates the behavior of the pdf near z = 0.
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