A CLASS OF ANALYTIC FUNCTIONS DEFINED BY THE CARLSON-SHAFFER OPERATOR

BY

NENG XU AND DINGGONG YANG

Abstract

The Carlson-Shaffer operator $L(a, c) f=\phi(a, c) * f$, where $f(z)=z+a_{2} z^{2}+\cdots$ is analytic in the unit disk $E=\{z:|z|<1\}$ and $\phi(a, c ; z)$ is an incomplete beta function, is used to define the class $T(a, c)$. An analytic function f belongs to $T(a, c)$ if $L(a, c) f$ is starlike in E. The object of the present paper is to derive some properties of functions f in the class $T(a, c)$.

1. Introduction

Let A be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$. A function $f \in A$ is said to be starlike of order α in E if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha \quad(z \in E)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote this class as $S^{*}(\alpha)$. Also we denote by

Received January 26, 2006.
AMS Subject Classification: 30C45.
Key words and phrases: Carlson-Shaffer operator, convex, convolution, starlike, subordination.
$S^{*}(0)=S^{*}$. A function $f \in A$ is said to be convex (univalent) in E if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in E)
$$

We denote this class as K. Clearly $f \in K$ if and only if $z f^{\prime} \in S^{*}$.
The class A is closed under the Hadamard product or convolution

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

where

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} .
$$

Let $\phi(a, c)$ be defined by

$$
\begin{equation*}
\phi(a, c ; z)=z+\sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \quad(z \in E ; c \neq 0,-1,-2, \cdots), \tag{1.2}
\end{equation*}
$$

where $(\lambda)_{n}=\lambda(\lambda+1) \cdots(\lambda+n-1)(n \in N=\{1,2,3, \cdots\})$. The function $\phi(a, c)$ is an incomplete beta function. Carlson and Shaffer [1] defined a linear operator on A by the convolution as follows:

$$
\begin{equation*}
L(a, c) f=\phi(a, c) * f \quad(f \in A ; c \neq 0,-1,-2, \cdots) . \tag{1.3}
\end{equation*}
$$

$L(a, c)$ maps A into itself. $L(c, c)$ is the identity and if $a \neq 0,-1,-2, \cdots$, then $L(a, c)$ has a continuous inverse $L(c, a)$ and is an one-to-one mapping of A onto itself. $L(a, c)$ provides a convenient representation of differentiation and integration. If $g(z)=z f^{\prime}(z)$, then $g=L(2,1) f$ and $f=L(1,2) g$.

By using $L(a, c)$ we now introduce the subclass of A as follows.

Definition. A function $f \in A$ is said to be in the class $T(a, c)$ if

$$
\begin{equation*}
L(a, c) f \in S^{*} \quad(c \neq 0,-1,-2, \cdots) \tag{1.4}
\end{equation*}
$$

Miller and Mocanu [4, Theorem 2] have proved that if $c(c \neq 0)$ and a
are real and satisfy

$$
a>N(c)= \begin{cases}|c|+\frac{1}{2} & \left(|c| \geq \frac{1}{3}\right) \tag{1.5}\\ \frac{3}{2} c^{2}+\frac{2}{3} & \left(|c| \leq \frac{1}{3}\right)\end{cases}
$$

then the function

$$
\begin{equation*}
\Phi(c, a ; z)=1+\sum_{n=1}^{\infty} \frac{(c)_{n}}{(a)_{n}} \frac{z^{n}}{n!} \tag{1.6}
\end{equation*}
$$

is convex in E.
In [5] Noor gave the following.

Lemma A.([5, Lemma 2.1]) If $c(c \neq 0)$ and a are real and satisfy (1.5), then $\phi(c, a ; z)$ is convex in E.

Theorem A.([5, Theorem 3.2]) Let $f \in T(a, c)$, where a and c satisfy the conditions of Lemma A. Then $f \in S^{*}$ and hence f is univalent in E.

Theorem B. $([5$, Theorem 3.3]) Let $f \in T(a, c)$ with a and c satisfying (1.5). Then the disk E is mapped onto a domain that contains the disk

$$
\begin{equation*}
D=\left\{w:|w|<\frac{2(c+a)}{a}\right\} . \tag{1.7}
\end{equation*}
$$

Theorem C. ([5, Theorem 3.4]) Let $a(a \neq 0), c$ and d be real and $c>N(d)$, where $N(d)$ is defined as in (1.5). Then

$$
\begin{equation*}
T(a, d) \subset T(a, c) . \tag{1.8}
\end{equation*}
$$

Theorem D. $([5$, Theorem 3.5]) Let $a(a \neq 0)$ and c be real and satisfy $c>N(a)$, where $N(a)$ is defined in the similar way of (1.5). Let ψ be a convex function in E. If $f \in T(a, c)$ then $\psi * f \in T(a, c)$.

Theorem E.([5, Theorem 3.7]) Let $f \in T(a, c)$ and let F be defined by

$$
\begin{equation*}
F(z)=\frac{\beta+1}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) d t \quad(\beta \in N) . \tag{1.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z(L(a, c) F(z))^{\prime}}{L(a, c) F(z)}\right\}>\alpha \quad(z \in E) \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{-(2 \beta+1)+\sqrt{4 \beta^{2}+4 \beta+9}}{4} . \tag{1.11}
\end{equation*}
$$

However, we find that Lemma A is not always true for $c(c \neq 0$ real $)$ and a satisfying (1.5).

Counterexample. Let $a=1$ and $\frac{1}{3} \leq c<\frac{1}{2}$. Then $a>N(c)=c+\frac{1}{2}$ and

$$
\begin{equation*}
\phi(c, 1 ; z)=z+\sum_{n=1}^{\infty} \frac{(c)_{n}}{n!} z^{n+1}=\frac{z}{(1-z)^{c}} \tag{1.12}
\end{equation*}
$$

For $z=\rho e^{i \theta}(0<\rho<1)$ and $1-\frac{c}{2}<\cos \theta<1\left(0<\theta<\frac{\pi}{2}\right)$, we have

$$
1+\frac{z \phi^{\prime \prime}(c, 1 ; z)}{\phi^{\prime}(c, 1 ; z)}=1+\frac{(c+1) \rho e^{i \theta}}{1-\rho e^{i \theta}}+\frac{(c-1) \rho e^{i \theta}}{1+(c-1) \rho e^{i \theta}}
$$

Hence

$$
\begin{align*}
\lim _{\rho \rightarrow 1} \operatorname{Re}\left\{1+\frac{\rho e^{i \theta} \phi^{\prime \prime}\left(c, 1 ; \rho e^{i \theta}\right)}{\phi^{\prime}\left(c, 1 ; \rho e^{i \theta}\right)}\right\} & =\frac{1-c}{2}+(c-1) \operatorname{Re}\left\{\frac{e^{i \theta}}{1+(c-1) e^{i \theta}}\right\} \\
& =\frac{1-c}{2}+(c-1) \frac{c-1+\cos \theta}{\left|1+(c-1) e^{i \theta}\right|^{2}} \\
& =-\frac{(1-c)(2-c)(2 \cos \theta+c-2)}{2\left|1+(c-1) e^{i \theta}\right|^{2}} \\
& <0, \tag{1.13}
\end{align*}
$$

which implies that the function $\phi(c, 1 ; z)\left(\frac{1}{3} \leq c<\frac{1}{2}\right)$ is not convex in E.
In view of $\frac{z}{(1-z)^{2}} \in S^{*}$, we see that

$$
f_{c}(z)=\phi(c, 1 ; z) * \frac{z}{(1-z)^{2}} \in T(1, c) .
$$

But $f_{c}(z)=z \phi^{\prime}(c, 1 ; z)\left(\frac{1}{3} \leq c<\frac{1}{2}\right)$ is not starlike in E. Thus the counterexample shows that Theorem A is not true when $a=1$ and $\frac{1}{3} \leq c<\frac{1}{2}$. In [5], the proof of Theorem B used Lemma A, and so its validity is not justified.

Similarly the proof of Theorem C in [5] is not valid. Also the result from Theorem E is not sharp.

In this paper we discuss similar problems and obtain useful results for the class $T(a, c)$.

2. Preliminary Results

To prove our results, we need the following lemmas.
Lemma 2.1.([4, Corollary 4.1]) If a, b and c are real and satisfy $-1 \leq$ $a \leq 1, b \geq 0$ and $c>1+\max \{2+|a+b-2|, 1-(a-1)(b-1)\}$, then

$$
\begin{equation*}
z F(a, b ; c ; z) \in S^{*} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F(a, b ; c ; z)=1+\sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \tag{2.2}
\end{equation*}
$$

is the Gaussian hypergeometric function.

Applying Lemma 2.1, we derive the following result.
Lemma 2.2. If a and c are real and satisfy $-1 \leq a \leq 1$ and $c>3+|a|$, then $\phi(a, c ; z)$ defined by (1.2)is convex in E.

Proof. From (1.2) we have

$$
\begin{align*}
z \phi^{\prime}(a, c ; z) & =z+\sum_{n=1}^{\infty} \frac{(n+1)(a)_{n}}{(c)_{n}} z^{n+1} \\
& =z+\sum_{n=1}^{\infty} \frac{(a)_{n}(2)_{n}}{(c)_{n}} \frac{z^{n+1}}{n!} \\
& =z F(a, 2 ; c ; z) . \tag{2.3}
\end{align*}
$$

Since $-1 \leq a \leq 1$ and $c>3+|a|$, it follows from (2.3) and Lemma 2.1 (with $b=2)$ that $z \phi^{\prime}(a, c ; z)$ is starlike in E, which leads to $\phi(a, c) \in K$.

Lemma 2.3.([6]) If $f \in K$ and $g \in S^{*}$, then $f * g \in S^{*}$.
Let f and g be analytic in E. The function f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if g is univalent in $E, f(0)=g(0)$ and $f(E) \subset g(E)$.

Lemma 2.4.([2]) Let $\alpha(\alpha \neq 0)$ and β be complex numbers and let p and h be analytic in E with $p(0)=h(0)$. If $Q(z)=\alpha h(z)+\beta$ is convex and $\operatorname{Re} Q(z)>0$ in E, then

$$
p(z)+\frac{z p^{\prime}(z)}{\alpha p(z)+\beta} \prec h(z)
$$

implies that $p(z) \prec h(z)$.
Lemma 2.5. $([3])$ Let $\alpha(\alpha \neq 0)$ and β be complex numbers and let h be analytic and univalent in E and $Q(z)=\alpha h(z)+\beta$. Let p be analytic in E and satisfy

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\alpha p(z)+\beta} \prec h(z) \quad(p(0)=h(0)) . \tag{2.4}
\end{equation*}
$$

If
(i) $\operatorname{Re} Q(z)>0$ for $z \in E$, and
(ii) Q and $\frac{1}{Q}$ are convex in E,
then the solution of the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\alpha q(z)+\beta}=h(z) \quad(q(0)=h(0)) \tag{2.5}
\end{equation*}
$$

is univalent in E and is the best dominant of (2.4).
Lemma 2.6.([7]) Let μ be a positive measure on the unit interval $[0,1]$. Let $g(t, z)$ be a function analytic in E for each $t \in[0,1]$ and integrable in t for each $z \in E$ and for almost all $t \in[0,1]$, and suppose that $\operatorname{Re} g(t, z)>0$ in $E, g(t,-\rho)$ is real and

$$
\operatorname{Re} \frac{1}{g(t, z)} \geq \frac{1}{g(t,-\rho)} \quad(|z| \leq \rho<1 ; t \in[0,1])
$$

If $g(z)=\int_{0}^{1} g(t, z) d \mu(t)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{1}{g(z)} \geq \frac{1}{g(-\rho)} \quad(|z| \leq \rho) . \tag{2.6}
\end{equation*}
$$

3. The Class $T(a, c)$

Theorem 3.1. Let a and c be real and satisfy

$$
\begin{equation*}
c \neq 0,-1<c \leq 1 \text { and } a>3+|c| . \tag{3.1}
\end{equation*}
$$

Then $T(a, c) \subset S^{*}$.
Proof. If $f \in T(a, c)$, then $L(a, c) f=\phi(a, c) * f \in S^{*}$. Since a and c satisfy (3.1), we have from Lemma 2.2 that $\phi(c, a) \in K$. Therefore an application of Lemma 2.3 leads to

$$
f=\phi(c, a) *(\phi(a, c) * f) \in S^{*} .
$$

This completes the proof of the theorem.
Theorem 3.2. Let a and c satisfy (3.1). If $f \in T(a, c)$, then $f(E)$ contains the disk

$$
\begin{equation*}
D=\left\{w:|w|<\frac{a}{2(|c|+a)}\right\} . \tag{3.2}
\end{equation*}
$$

Proof. Let

$$
f(z)=z+\sum_{n=1}^{\infty} a_{n+1} z^{n+1} \in T(a, c)
$$

where a and c satisfy (3.1), and $w_{0}\left(w_{0} \neq 0\right)$ be any complex number such that $f(z) \neq w_{0}$ for $z \in E$. Then the function

$$
g(z)=\frac{w_{0} f(z)}{w_{0}-f(z)}=z+\left(a_{2}+\frac{1}{w_{0}}\right) z^{2}+\cdots
$$

is analytic and univalent in E by Theorem 3.1, and hence

$$
\begin{equation*}
\frac{1}{\left|w_{0}\right|}-\left|a_{2}\right| \leq\left|a_{2}+\frac{1}{w_{0}}\right| \leq 2 . \tag{3.3}
\end{equation*}
$$

Since

$$
L(a, c) f(z)=z+\sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} a_{n+1} z^{n+1} \in S^{*}
$$

we have $\left|\frac{a a_{2}}{c}\right| \leq 2$, and it follows from (3.3) that

$$
\begin{equation*}
\left|w_{0}\right| \geq \frac{1}{2+\left|a_{2}\right|} \geq \frac{a}{2(|c|+a)} \tag{3.4}
\end{equation*}
$$

This gives the desired result.

Theorem 3.3. Let a, c and d be real. If

$$
\begin{equation*}
d \neq 0,-1<d \leq 1 \quad \text { and } \quad c>3+|d|, \tag{3.5}
\end{equation*}
$$

then $T(a, d) \subset T(a, c)$.
Proof. If $f \in T(a, d)$, then $L(a, d) f=\phi(a, d) * f \in S^{*}$. Since c and d satisfy (3.5), $\phi(d, c) \in K$ by Lemma 2.2. Hence it follows from Lemma 2.3 that

$$
\begin{aligned}
L(a, c) f & =\phi(a, c) * f=(\phi(a, d) * \phi(d, c)) * f \\
& =\phi(d, c) *(\phi(a, d) * f) \in S^{*},
\end{aligned}
$$

that is, $f \in T(a, c)$. The proof is complete.
Theorem 3.4. Let $f \in T(a, c)$ and $\psi \in K$. Then $\psi * f \in T(a, c)$.
Proof. Since $L(a, c) f \in S^{*}$ and $\psi \in K$, it follows from Lemma 2.3 that

$$
L(a, c)(\psi * f)=\psi * L(a, c) f \in S^{*}
$$

Hence $\psi * f \in T(a, c)$.
In view of Theorem 3.4, we see that the assumption " $a(a \neq 0)$ and c are real and satisfy $c>N(a)$, where $N(a)$ is defined in the similar way of (1.5)" in Theorem D is redundant.

Theorem 3.5. If $a \geq 1$, then

$$
\begin{equation*}
T(a+1, c) \subset T(a, c) \tag{3.6}
\end{equation*}
$$

Proof. It is known that for $f \in A$,

$$
\begin{equation*}
z(L(a, c) f(z))^{\prime}=a L(a+1, c) f(z)-(a-1) L(a, c) f(z) . \tag{3.7}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
g(z)=\frac{z(L(a, c) f(z))^{\prime}}{L(a, c) f(z)} . \tag{3.8}
\end{equation*}
$$

Then $g(0)=1$ and from (3.7) and (3.8) we get

$$
\begin{equation*}
\frac{a L(a+1, c) f(z)}{L(a, c) f(z)}=g(z)+a-1 \tag{3.9}
\end{equation*}
$$

Differentiating both sides of (3.9) logarithmically and using (3.8) we have

$$
\begin{equation*}
\frac{z(L(a+1, c) f(z))^{\prime}}{L(a+1, c) f(z)}=g(z)+\frac{z g^{\prime}(z)}{g(z)+a-1} . \tag{3.10}
\end{equation*}
$$

If $f \in T(a+1, c)$, then (3.10) leads to

$$
\begin{equation*}
g(z)+\frac{z g^{\prime}(z)}{g(z)+a-1} \prec \frac{1+z}{1-z} . \tag{3.11}
\end{equation*}
$$

Since $Q(z)=\frac{1+z}{1-z}+a-1$ is convex in E and $\operatorname{Re} Q(z)>a-1 \geq 0(z \in E)$, it follows from (3.11) and Lemma 2.4 that $g(z) \prec \frac{1+z}{1-z}$, which is equivalent to $f \in T(a, c)$. This proves (3.6).

Theorem 3.6. Let $f \in T(a, c)$ and

$$
\begin{equation*}
F(z)=\frac{\beta+1}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) d t \quad(\beta>0) . \tag{3.12}
\end{equation*}
$$

Then $L(a, c) F \in S^{*}(\sigma(\beta))$, where

$$
\begin{equation*}
\sigma(\beta)=\left(4 \int_{0}^{1} \frac{t^{\beta}}{(1+t)^{2}} d t\right)^{-1}-\beta \tag{3.13}
\end{equation*}
$$

The result is sharp, that is, the order $\sigma(\beta)$ cannot be increased.

Proof. From (3.12) we have $F \in A$ and

$$
\beta L(a, c) F(z)+z(L(a, c) F(z))^{\prime}=(\beta+1) L(a, c) f(z)
$$

or

$$
\begin{equation*}
\frac{z(L(a, c) F(z))^{\prime}}{L(a, c) F(z)}+\beta=(\beta+1) \frac{L(a, c) f(z)}{L(a, c) F(z)} \tag{3.14}
\end{equation*}
$$

Differentiating both sides of (3.14) logarithmically we deduce that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)+\beta}=\frac{z(L(a, c) f(z))^{\prime}}{L(a, c) f(z)} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
p(z)=\frac{z(L(a, c) F(z))^{\prime}}{L(a, c) F(z)} \tag{3.16}
\end{equation*}
$$

Since $f \in T(a, c)$, it follows from (3.15) that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)+\beta} \prec \frac{1+z}{1-z} \quad(p(0)=1) . \tag{3.17}
\end{equation*}
$$

Taking $\alpha=1, \beta>0, h(z)=\frac{1+z}{1-z}$ and $Q(z)=\frac{1+z}{1-z}+\beta$, it is clear that the conditions (i) and (ii) in Lemma 2.5 are satisfied. Thus, by Lemma 2.5, the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{q(z)+\beta}=\frac{1+z}{1-z} \quad(q(0)=1) \tag{3.18}
\end{equation*}
$$

has a univalent solution $q(z)$,

$$
\begin{equation*}
p(z) \prec q(z) \prec \frac{1+z}{1-z}, \tag{3.19}
\end{equation*}
$$

and $q(z)$ is the best dominant of (3.17). It is easy to verify that the solution $q(z)$ of (3.18) is

$$
\begin{align*}
q(z) & =\frac{z^{\beta+1}}{(1-z)^{2} \int_{0}^{z} \frac{u^{\beta}}{(1-u)^{2}} d u}-\beta \\
& =\left((1-z)^{2} \int_{0}^{1} \frac{t^{\beta}}{(1-t z)^{2}} d t\right)^{-1}-\beta . \tag{3.20}
\end{align*}
$$

It is well known that for $c_{1}>b_{1}>0$ and $z \in E$, the Gaussian hyperge-
ometric function defined by (2.2) satisfies

$$
\begin{equation*}
F\left(a_{1}, b_{1} ; c_{1} ; z\right)=\frac{\Gamma\left(c_{1}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \int_{0}^{1} \frac{t^{b_{1}-1}(1-t)^{c_{1}-b_{1}-1}}{(1-t z)^{a_{1}}} d t \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(a_{1}, b_{1} ; c_{1} ; z\right)=F\left(b_{1}, a_{1} ; c_{1} ; z\right)=(1-z)^{c_{1}-a_{1}-b_{1}} F\left(c_{1}-b_{1}, c_{1}-a_{1} ; c_{1} ; z\right) . \tag{3.22}
\end{equation*}
$$

By using (3.21) and (3.22), $q(z)$ given by (3.20) can be expressed as

$$
\begin{align*}
q(z) & =\frac{\beta+1}{(1-z)^{2} F(2, \beta+1 ; \beta+2 ; z)}-\beta \\
& =\frac{\beta+1}{(1-z) F(1, \beta ; \beta+2 ; z)}-\beta . \tag{3.23}
\end{align*}
$$

From (3.21) and (3.23) we have

$$
\begin{equation*}
q(z)=\frac{1}{g(z)}-\beta \tag{3.24}
\end{equation*}
$$

where

$$
\begin{gather*}
g(z)=\int_{0}^{1} g(t, z) d \mu(t) \\
g(t, z)=\frac{1}{\beta+1}\left(\frac{1-z}{1-t z}\right), \quad d \mu(t)=\beta(\beta+1) t^{\beta-1}(1-t) d t \quad(\beta>0) . \tag{3.25}
\end{gather*}
$$

Note that for $|z| \leq \rho<1$ and $0 \leq t \leq 1$,

$$
\operatorname{Re} \frac{1}{g(t, z)} \geq(\beta+1)\left(\frac{1+t \rho}{1+\rho}\right)=\frac{1}{g(t,-\rho)}>0 .
$$

Now applying Lemma 2.6, it follows from (3.24) and (3.25) that

$$
\operatorname{Re} q(z) \geq \frac{1}{g(-\rho)}-\beta=\frac{\beta+1}{\int_{0}^{1} \frac{1+\rho}{1+t \rho} d \mu(t)}-\beta \quad(|z| \leq \rho)
$$

which leads to

$$
\begin{equation*}
\inf _{z \in E} \operatorname{Re} q(z)=\frac{1}{g(-1)}-\beta=q(-1) \tag{3.26}
\end{equation*}
$$

Since $q(z)$ is the best dominant of (3.17), from (3.16)-(3.20) and (3.26) we conclude that

$$
\operatorname{Re} \frac{z(L(a, c) F(z))^{\prime}}{L(a, c) F(z)}>q(-1)=\left(4 \int_{0}^{1} \frac{t^{\beta}}{(1+t)^{2}} d t\right)^{-1}-\beta=\sigma(\beta)
$$

and the bound $\sigma(\beta)$ cannot be increased. The proof is now complete.
We note that Theorem 3.6 is better than Theorem E by Noor.

References

1. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
2. S. S. Miller and P. T. Mocanu, On some classes of first order differential subordinations, Michigan Math. J., 32(1985), 185-195.
3. S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations, 56(1985), 297-309.
4. S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc., 110(1990), 333-342.
5. K. I. Noor, Some classes of starlike functions, Soochow J. Math., 22(1996), 553566.
6. S. Ruscheweyh and T. Shiel-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.
7. D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. (2), 21(1980), 287-290.

Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.

E-mail: xuneng11@pub.sz.jsinfo.net

Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China.

