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Abstract

In this paper, we obtain some sufficient conditions under

which the zero solution of a certain third order non-linear ordinary

vector differential equation is unstable. Our results include and

improve some well-known results exist in the literature.

1. Introduction

As known from the relevant literature in a sequence of results, till now,

instability behaviors of solutions for various third-, fourth-, fifth-, sixth-,

seventh and eighth order certain linear and nonlinear differential equations

have been discussed extensively by many researchers. In this connection,

ones can refer to the papers of Berketoǧlu [1], Berketoǧlu and Kart [2], Ezeilo

([3], [4], [5], [6], [7]), Kipnis [8], Krasovskii [9], Li and Yu [10], Li and Duan

[11], Liao and Lu [12], Losprime [13], Lu [14], Reissig et al [15], Sadek [16],

Skrapek ([17], [18]), Tejumola [19], Tiryaki [20], [21], [22]), C. Tunç([23], [24],

[25], [26], [27], [28], [29]), C. Tunç and E. Tunç ([30], [31], [32]), C. Tunç and

H. Şevli [33] and E. Tunç [34] and the references cited in that papers for the

related works. However, according to our observations from the literature,

the instability properties of linear and nonlinear scalar differential equations

of third order have been discussed only by Bereketoǧlu & Kart [2], Kipnis
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[8], Losprime [13], Lu [14] and Skrapek [18]. Now, these results can be

summarized as following: First, in 1966, Losprime [13] considered the third-

order scalar linear differential equation with periodic coefficients as follows

...
x + ẍ + S(t)ẋ + T (t)x = 0.

The author found the regions of stability and instability of this differential

equation by means of some expansions and using Lyapunov’s second (or

direct) method (see, Lyapunov [35]). Then, in 1974, Kipnis [8] discussed the

instability of the scalar linear differential equation

...
x + p(t)x = 0.

The author showed that if p(t) is continuous, ω-periodic, non-positive, and

satisfies an inequality involving ω, then the above equation is unstable.

Later, in 1980, Skrapek [18] studied the instability of the trivial solution

of the scalar non-linear differential equation

...
x + f1(ẍ) + f2(ẋ) + f3(x) + f4(x, ẋ, ẍ) = 0.

using Lyapunov’s second (or direct) method. Afterward, in 1995, Lu [14]

investigated a similar problem for the third order nonlinear scalar differential

equations of the form

...
x + f(x, ẋ)ẍ + g(x) = 0.

A year later, that is, in 1996, Bereketoǧlu & Kart [2] obtained sufficient con-

ditions which ensure that the trivial solution of scalar differential equation

...
x + f(ẋ)ẍ + g(x)ẋ + h(x, ẋ, ẍ) = 0.

is unstable, and also that nontrivial solutions of this equation are not peri-

odic. Besides these works, recently, E. Tunç [34] analyzed instability of zero

solution of the non-linear vector differential of the form

...
X + F (Ẋ)Ẍ + G(X)Ẋ + H(X, Ẋ, Ẍ) = 0.

Furthermore, it has not been founded another research on the instability of

solutions of certain nonlinear vector differential equations of the third order
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in the relevant literature. This paper is interested in the instability of the

zero solution X = 0 of the third-order nonlinear vector differential equations

of the form:
...
X + F (Ẋ)Ẍ + G(Ẋ) + H(X) = 0. (1)

in which X ∈ R
n; F is an n × n-symmetric matrix function; G : R

n → R
n,

H : Rn→ Rn and G(0) = H(0) = 0. Let F , G and H be continuous and so

constructed such that the uniqueness theorem is valid. Let JF (Ẋ), JG(Ẋ)

and JH(X), respectively, denote the linear operators from the matrix F (Ẋ)

and vectors G(Ẋ), H(X) to the matrices

JF (Ẋ) =
(∂fik

∂ẋj

)

, JG(Ẋ) =
( ∂gi

∂ẋj

)

and JH(X) =
(∂hi

∂xj

)

,

(i, j, k = 1, 2, . . . , n),

where (x1, x2, . . . , xn), (ẋ1, ẋ2, . . . , ẋn), (fik), (i, k = 1, 2, . . . , n), (g1, g2, . . . ,

gn) and (h1, h2, . . . , hn) are components of X, Ẋ, F , G and H, respectively.

Other than these, it is also assumed that G(Ẋ) and H(X) are gradient

vector fields, that is, there are scalar functions g and h such that G = ∇g

and H = ∇h and the matrices JF (Ẋ), JG(Ẋ) and JH(X) exist and are

continuous. Given any X, Y in R
n. Throughout the paper, the symbol

〈X,Y 〉 is used to denote the usual scalar product in R
n, that is, 〈X,Y 〉 =

∑n
i=1

xiyi, thus ‖X‖2 = 〈X,Y 〉. The matrix A is said to be negative-definite,

when 〈AX,X〉 < 0 for all non-zero X in R
n, and λi(A), (i = 1, 2, . . . , n),

are eigenvalues of the n × n-matrix A.

In what follows it will be convenient to use the equivalent differential

system:

Ẋ = Y, Ẏ = Z,

Ż = −F (Y )Z − G(Y ) − H(X) (2)

which is obtained from the equation (1) by setting Ẋ = Y , Ẍ = Z.

It should be clarified that, nearly through all of the papers just stated

above based on Krasovskii’s criterion-properties (see Miller & Michel [36]

or Krasovskii [9]), the Lyapunov’s second (or direct) method has been used

to prove the results established there. In this paper, we use this method

in the proof of our main results. The motivation for the present work has
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been inspired basically by the paper of Skrapek [18] and that just mentioned

above. It should also be remarked that the assumptions established and the

Lyapunov’s function used here are completely different than that used in

[34].

2. Main Results

For the first time we need the following algebraic result.

Lemma. Let A be a real symmetric n × n-matrix and

a′ ≥ λi(A) ≥ a > 0, (i = 1, 2, . . . , n),

where a′, a are constants.

Then

a′〈X,X〉 ≥ 〈AX,X〉 ≥ a〈X,X〉

and

a′
2
〈X,X〉 ≥ 〈AX,AX〉 ≥ a2〈X,X〉.

Proof. See [26]. �

Next, the first main result is the following theorem.

Theorem 1. In addition to the fundamental assumptions imposed on

F , G and H, it is assumed that JG(Y ) and JH(X) are symmetric matrices

and there are constants a1, a2, a2 and a3 such that the following conditions

are satisfied:

(i) λi(F (Y )) ≤ a1, − a2 ≤ λi(JG(Y )) ≤ −a2 < 0 and λi(JH(X)) ≥

a3 > 0 for all X,Y ∈ R
n

or

(i)′ λi(F (Y )) ≤ a1, −a2 ≤ λi(JG(Y )) ≤ −a2 < 0 and λi(JH(X)) ≤

−a3 < 0 for all X,Y ∈ R
n, (i = 1, 2, . . . , n).

Then the zero solution X = 0 of the system (2) is unstable.
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Remark 1. In respect of Krasovskii’s criterion-properties the kernel of

the proof of Theorem 1 will be to show that, under the conditions stated in

Theorem 1, there exists a continuous function V0 = V0(X,Y,Z) which has

the following three properties:

(p1) In every neighborhood of (0, 0, 0) there exists a point (ξ, η, ζ) such that

V0(ξ, η, ζ) > 0.

(p2) The time derivative V̇0 = d
dt

V0(X,Y,Z) along solution paths of the

system (2) for Theorem 1 is positive semi definite.

(p3) The only solution (X(t), Y (t), Z(t)) of the system (2) for Theorem 1

which satisfies

V0(X(t), Y (t), Z(t)) = 0, (t ≥ 0),

is the trivial solution (0, 0, 0).

The existence of a V0 with the properties (p1), (p2) and (p3) is sufficient, in

view of the instability criterion of Krasovskii [9], for the instability of the

zero solution of the equation (1).

Proof of Theorem 1. For the proof of first part of Theorem 1 we consider

the function V0 = V0(X,Y,Z) defined as follows:

2V0 = 2α

∫

1

0

〈H(σX),X〉dσ + 2α〈Y,Z〉 + 2α

∫

1

0

σ〈F (σY )Y, Y 〉dσ

+〈Y, Y 〉 − 2〈X,Z〉, (3)

where α is a positive constant. It is clear from (3) that V0(0, 0, 0) = 0. Since

H(0) = 0,
∂

∂σ
H(σX) = JH(σX)X,

then

H(X) =

∫

1

0

JH(σX)Xdσ.

Hence the assumption (i) of Theorem 1 and the expression H(X)=
∫

1

0
JH(σX)
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Xdσ show that

∫

1

0

〈H(σX),X〉dσ =

∫

1

0

∫

1

0

〈σ1JH(σ1σ2X)X,X〉dσ2dσ1

≥

∫

1

0

∫

1

0

〈σ1a3X,X〉dσ2dσ1 =
a3

2
〈X,X〉 =

a3

2
‖X‖2. (4)

Obviously, in view of the assumption (i) of Theorem 1, (3) and (4), it follows

that

V0(ε, 0, 0) ≥ α
a3

2
〈ε, ε〉 = α

a3

2
‖ε‖2,

for all arbitrary ε 6= 0, ε ∈ R
n. So, in every neighborhood of (0, 0, 0)

there exists a point (ξ, η, ζ) such that V0(ξ, η, ζ) > 0. Next, let (X,Y,Z) =

(X(t), Y (t), Z(t)) be an arbitrary solution of the system (2). A straightfor-

ward calculation from (3) and (2) yields that

V̇0 =
d

dt
V0(X,Y,Z)

= α〈Z,Z〉 − α〈Y,G(Y )〉 + 〈X,H(X)〉

+〈X,F (Y )Z〉 − α〈F (Y )Z, Y 〉 + 〈X,G(Y )〉 − α〈H(X), Y 〉

+α
d

dt

∫

1

0

〈H(σX),X〉dσ + α
d

dt

∫

1

0

σ〈F (σY )Y, Y 〉dσ. (5)

Recall that

d

dt

∫

1

0

〈H(σX),X〉dσ =

∫

1

0

σ〈JH(σX)Y,X〉dσ +

∫

1

0

〈H(σX), Y 〉dσ

=

∫

1

0

σ
∂

∂σ
〈H(σX), Y 〉dσ +

∫

1

0

〈H(σX), Y 〉dσ

= σ〈H(σX), Y 〉 |10= 〈H(X), Y 〉 (6)

and

d

dt

∫

1

0

σ〈F (σY ), Y 〉dσ =

∫

1

0

〈σF (σY )Z, Y 〉dσ +

∫

1

0

σ2〈JF (σY )Y Z, Y 〉dσ

+

∫

1

0

σ〈F (σY )Y,Z〉dσ
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=

∫

1

0

〈σF (σY )Z, Y 〉dσ +

∫

1

0

σ
∂

∂σ
〈σF (σY )Z, Y 〉dσ

= σ2〈F (σY )Z, Y 〉 |10= 〈F (Y )Z, Y 〉. (7)

By collecting the estimates (6) and (7) into (5) we obtain

V̇0 = α〈Z,Z〉 − α〈Y,G(Y )〉 + 〈X,H(X)〉

+〈X,F (Y )Z〉 + 〈X,G(Y )〉. (8)

Since

G(0) = 0,
∂

∂σ
G(σY ) = JG(σY )Y,

then

G(Y ) =

∫

1

0

JG(σY )Y dσ.

Thus, the assumption (i) of Theorem 1 shows that

α〈Y,G(Y )〉 = α

∫

1

0

〈Y, JG(σY )Y 〉dσ ≤ −αa2

∫

1

0

〈Y, Y 〉dσ

= −αa2〈Y, Y 〉 = −αa2‖Y ‖2 (9)

and

〈G(Y ), G(Y )〉 =

∫

1

0

〈JG(Y )Y, JG(σY )Y 〉dσ ≤ a2

2

∫

1

0

〈Y, Y 〉dσ

= a2

2〈Y, Y 〉 = a2

2‖Y ‖2. (10)

On combining the estimate (9) with (8) we can easily obtain

V̇0 ≥ α‖Z‖2 + αa2‖Y ‖2 + a3‖X‖2

+〈X,F (Y )Z〉 + 〈X,G(Y )〉. (11)

For some constants k1 and k2, conveniently chosen later, we have

〈X,G(Y )〉 =
1

2
‖k1X + k−1

1
G(Y )‖2 −

1

2
k2

1〈X,X〉 −
1

2
k−2

1
〈G(Y ), G(Y )〉

≥ −
1

2
k2

1〈X,X〉 −
1

2
k−2

1
a2

2〈Y, Y 〉

= −
1

2
k2

1‖X‖2 −
1

2
k−2

1
a2

2‖Y ‖2 (12)
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and

〈X,F (Y )Z〉 =
1

2
‖k2X+k−1

2
F (Y )Z‖2−

1

2
k2

2〈X,X〉−
1

2
k−2

2
〈F (Y )Z,F (Y )Z〉

≥ −
1

2
k2

2〈X,X〉 −
1

2
k−2

2
〈F (Y )Z,F (Y )Z〉

≥ −
1

2
k2

2‖X‖2 −
1

4
k−2

2
a2

1‖Z‖2. (13)

By using the estimates (11)-(13), we deduce that

V̇0 ≥
[

a3 −
1

2
k2

1 −
1

2
k2

2

]

‖X‖2 +
[

αa2 −
1

2k2
1

a2

2

]

‖Y ‖2

+
[

α −
1

4k2

2

a2

1

]

‖Z‖2.

Let

k2

1 = min
{a3

2
,

a2

2

a2α

}

, k2

2 = min
{a3

2
, a2

1α
−1

}

.

Then

V̇0 ≥
(a3

2

)

‖X‖2 +
(αa2

2

)

‖Y ‖2 +
(3α

4

)

‖Z‖2

≥ k
(

‖X‖2 + ‖Y ‖2 + ‖Z‖2

)

> 0,

where

k = min
{a3

2
,
αa2

2
,
3α

4

}

.

Thus, the assumption (i) of Theorem 1 shows that V̇0(t) ≥ 0 for all t ≥ 0,

that is, V̇0 is positive semi-definite. Furthermore, V̇0 = 0 (t ≥ 0) necessarily

implies that Y = 0 for all t ≥ 0; and therefore also that X = ξ (a constant

vector), Z = Ẏ = 0 for all t ≥ 0. Substituting the estimates

X = ξ, Y = Z = 0

in (2) it follows that H(ξ) = 0 which necessarily implies (only) that ξ = 0

because of H(0) = 0. So

X = Y = Z = 0 for all t ≥ 0.

Therefore, the function V0 has the entire requisite Krasovskii criterion [9] if
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the assumption (i) of Theorem 1 holds. This proves the proof of the first

part of Theorem 1. Similarly, for the proof of second part of Theorem 1, we

consider the Lyapunov function V1 = V1(X,Y,Z) defined by:

2V1 = −2α

∫

1

0

〈H(σX),X〉dσ + 2α〈Y,Z〉 + 2α

∫

1

0

σ〈F (σY )Y, Y 〉dσ

−〈Y, Y 〉 + 2〈X,Z〉, (14)

where α is a positive constant.

Evidently, the assumption (i)′ of Theorem 1 shows that

V1(0, 0, 0) = 0 and V1(ε, 0, 0) ≥
a3

2
‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ R
n. Thus, in every neighborhood of (0, 0, 0)

there exists a point (ξ, η, ζ) such that V1(ξ, η, ζ) > 0. Next, let (X,Y,Z) =

(X(t), Y (t), Z(t)) be an arbitrary solution of the system (2). By using (14)

and (2), an elementary differentiation shows that

V̇1 = −〈X,H(X)〉 + α〈Z,Z〉 − α〈Y,G(Y )〉

−2α〈H(X), Y 〉 − 〈X,F (Y )Z〉 − 〈X,G(Y )〉

≥ a3‖X‖2 + αa2‖Y ‖2 + α‖Z‖2

−2α〈H(X), Y 〉 − 〈X,F (Y )Z〉 − 〈X,G(Y )〉.

Proceeding exactly along the lines indicated in the proof of first part of

Theorem 1 just above we deduce that

V̇1 ≥ k
(

‖X‖2 + ‖Y ‖2 + ‖Z‖2

)

> 0,

where k is a certain positive constant. Similarly, it can be shown that the

function V1 has the entire requisite Krasovskii criterion [9] if the assumption

(i)′ of Theorem 1 holds. This proves the proof of the second part of Theorem

1. Thus, the basic properties of V0(X,Y,Z) and V1(X,Y,Z), which we have

proved just above, justify that the zero solution of the system (2) is unsta-

ble.(See Theorem 1.15 in [15], see also [9], [36]). The system (2) is equivalent

to the differential equation (1). It follows thus the original statement of the

theorem. �

The second main result is the following theorem.
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Theorem 2. Further to the basic assumptions imposed on F , G and

H, it is being tacitly assumed that JG(Y ) and JH(X) are symmetric matri-

ces and there are constants a1, a2 and a3 such that the following that the

following conditions are satisfied:

(i) λi(F (Y )) ≤ −a1 < 0, 0 ≤ λi(JG(Y )) ≤ a2 and λi(JH(X)) ≥ a3 > 0

for all X,Y ∈ R
n

or

(i)′ λi(F (Y )) ≥ a1 > 0, 0 ≤ λi(JG(Y )) ≤ a2 and λi(JH(X)) ≤ −a3 < 0

for all X,Y ∈ R
n.

Then the zero solution X = 0 of the system (2) is unstable.

Proof of Theorem 2. Consider the function V2 = V2(X,Y,Z) defined by:

2V2 = β〈Z,Z〉 + 2β〈Y,H(X)〉 + 2β

∫

1

0

〈G(σY ), Y 〉dσ

+〈Y, Y 〉 − 2〈X,Z〉, (15)

where β is a positive constant. It is clear that V2(0, 0, 0) = 0. It is also clear

from the assumption (i) of Theorem 2 and the above lemma that

V2(0, 0, ε) ≥ β〈ε, ε〉 = β‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ R
n, so that in every neighborhood of (0, 0, 0)

there exists a point (ξ, η, ζ) such that V2(ξ, η, ζ) > 0. Next, let (X,Y,Z) =

(X(t), Y (t), Z(t)) be an arbitrary solution of the system (2). An easy calcu-

lation from (15) and (2) yields that

V̇2 =
d

dt
V2(X,Y,Z) = −β〈Z,F (Y )Z〉 + β〈Y, JH (X)Y 〉 + 〈X,H(X)〉

+〈X,F (Y )Z〉 + 〈X,G(Y )〉 − β〈G(Y ), Z〉

+β
d

dt

∫

1

0

〈G(σY ), Y 〉dσ.
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Recall that

d

dt

∫

1

0

〈G(σY ), Y 〉dσ =

∫

1

0

σ〈JG(σY )Z, Y 〉dσ +

∫

1

0

〈G(σY ), Z〉dσ

=

∫

1

0

σ
∂

∂σ
〈G(σY ), Z〉dσ +

∫

1

0

〈G(σY ), Z〉dσ

= σ〈G(σY ), Z〉 |10= 〈G(Y ), Z〉. (16)

Therefore, by using (16) and the assumption (i) of Theorem 2, we deduce

that

V̇2 = −β〈Z,F (Y )Z〉 + β〈Y, JH (X)Y 〉 + 〈X,H(X)〉

+〈X,F (Y )Z〉 + 〈X,G(Y )〉

≥ βa1‖Z‖2 + βa3‖Y ‖2 + a3‖X‖2 + 〈X,F (Y )Z〉 + 〈X,G(Y )〉. (17)

Similarly, as is shown just above for some constants k1 and k2 conveniently

chosen later, we can easily obtain from (17) that

V̇2≥
(

a3−
1

2
k1

2
−

1

2
k2

2
)

‖X‖2+
(

βa3−
1

2
k1

−2
a2

2

)

‖Y ‖2+
(

βa1−
1

4
k2

−2
a2

1

)

‖Z‖2.

Let

k1
2 = min

{a3

2
,

a2
2

βa3

}

, k2

2
= min

{a3

2
,
a1

β

}

.

Hence

V̇2 ≥
(a3

2

)

‖X‖2 +
(βa3

2

)

‖Y ‖2 +
(3βa1

4

)

‖Z‖2

≥ k
(

‖X‖2 + ‖Y ‖2 + ‖Z‖2

)

> 0,

where

k = min
{a3

2
,
βa3

2
,
3βa1

4

}

.

The rest of the proof of first part of Theorem 2 is the same as the proof of

part (i) of Theorem 1 just proved above and hence it is omitted.

Finally, for the proof of second part of Theorem 2 we consider the Lya-
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punov function V3 = V3(X,Y,Z) defined as

V3 = V2(X,Y,Z) − 2β

∫

1

0

〈H(σX),X〉dσ,

where V2(X,Y,Z) is defined as the same the function in (15). The remaining

of the proof can be verified proceeding exactly along the lines indicated just

in the proof of Theorem 1. Hence we omit the detailed proof. �

Remark 2. If we take f4(x, ẋ, ẍ) = 0 and f1(ẋ)ẍ instead of f1(ẍ)

in [18], then our assumptions are less restrictive then those established by

Skrapek [18], and our theorems also give n-dimensional extensions for the

results established in ([8], [18]).
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