
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 2 (2007), No. 2, pp. 123-138

TRAFFIC CONGESTION - AN INSTABILITY IN

A HYPERBOLIC SYSTEM

BY

J. M. GREENBERG

Abstract

In this paper we analyze a class of second order traffic

models and show these models support stable oscillatory traveling

waves typical of the waves observed on a congested roadway. The

basic model has trivial or constant solutions where cars are uni-

formly spaced and travel at a constant equilibrium velocity that

is determined by the car spacing. The stable traveling waves arise

because there is an interval of car spacing for which the constant

solutions are unstable. These waves consist of a smooth part where

both the velocity and spacing between successive cars are increas-

ing functions of a Lagrange mass index. These smooth portions

are separated by shock waves that travel at computable negative

velocity.

1. Introduction

In the last several years there has emerged an extensive literature [1-

11] on “higher order” traffic models. These models were developed in an

attempt to explain the strong permanent waves which appear in congested

traffic. At the continuum level all of these models are of the form:

∂s

∂t
−

∂u

∂m
= 0 (1.1)
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and

ǫ

(

∂u

∂t
− P ′(s)

∂u

∂m

)

= V (s)− u. (1.2)

Here, t ≥ 0 is time, m is a “continuous” car index, and ǫ > 0 has the

interpretation of a relaxation time. The velocity of the mth car at time t

is u(m, t) and the trajectory of the mth car, t → x(m, t), is given as the

solution of
∂x

∂t
= u and x(m, 0) = x0(m) (1.3)

where x0(m) is the position of the mth car at t = 0. s(m, t) is related to

x(m, t) by

s(m, t) =
∂x

∂m
(m, t) (1.4)

and measures the spacing between successive cars. The function s → V (s)

in (1.2) represents an “equilibrium” velocity and typically it is assumed that

V (·) is defined on s ≥ L and satisfies

V (L) = 0, 0 < V ′(s) for L < s, and lim
s→∞

V (s) = v∞ < ∞. (1.5)

The parameter L > 0 has the interpretation of the length of a car on

the roadway. Finally, the term P ′(s) ∂u
∂m appearing in (1.2) is referred to as

the “anticipatory” acceleration and all modelers assume that P ′(s) ≥ 0 on

s ≥ L.

An equivalent system to (1.1) and (1.2) is

∂s

∂t
−

∂

∂m
(P (s) + α) = 0 (1.6)

and

ǫ
∂α

∂t
+ α = (V (s)− P (s)). (1.7)

Here, P (s) is an indefinite integral of P ′(·) normalized so that P (L) = 0

and, of course,

u(m, t) = P (s(m, t)) + α(m, t). (1.8)

The hypothesis P ′(s) ≥ 0 implies that the system (1.1) and (1.2) or equiv-

alently (1.6) and (1.7) is hyperbolic with wave speeds c = −P ′(s) ≤ 0 and
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c = 0 and thus information propogates from right to left. This observation

implies that when constructing finite difference schemes the appropriate spa-

tial differences should be downwind, i.e., that

s(m, t)=̇
x(m+∆m, t)− x(m, t)

∆m
(1.9)

and

∂u

∂m
(m, t) =

∂

∂m
(P (s) + α)(m, t)

=̇
(P (s(m+∆m, t))+α(m+∆m, t)−P (s(m, t))−α(m, t))

∆m
.(1.10)

If one chooses to discretize (1.1)-(1.4) spatially, keeps time continuous, and,

moreover, chooses ∆m = 1 (recalling that cars are really discrete entities)

one is led to the classic follow-the-leader system

dxm
dt

= um (1.11)

and

ǫ
dum
dt

= ǫP ′(xm+1 − xm)(um+1 − um) + V (xm+1 − xm)− um (1.12)

studied by traffic engineers. Moreover, if we let

sm = xm+1 − xm (1.13)

we see that solving (1.11) and (1.12) is equivalent to solving

dsm
dt

= (P (sm+1) + αm+1 − P (sm)− αm) (1.14)

ǫ
dαm

dt
+ αm = (V (sm)− P (sm)) (1.15)

and

um = P (sm) + αm (1.16)

and this latter system is nothing more than the appropriate spatial dis-

cretization of (1.6) and (1.7) with ∆m = 1.
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On the other hand, if one lets

ρ(x, t) =
1

s(m, t)
and v(x, t) = u(m, t) (1.17)

when

x = x(m, t), (1.18)

one finds that as functions of x and t the functions ρ and v satisfy

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (1.19)

and

ǫ

(

∂v

∂t
+ (v + ρR,ρ (ρ))

∂v

∂x

)

= W (ρ)− v, (1.20)

where

R(ρ)
def
= P (1/ρ) and W (ρ)

def
= V (1/ρ). (1.21)

Of course

ρ2R,ρ (ρ) = −P ′(s = 1/ρ) ≤ 0 and ρ2W,ρ (ρ) = −V ′(s = 1/ρ) ≤ 0. (1.22)

In the parlance of continuum mechanic the system (1.1) and (1.2) is

the Lagrangian description of the traffic and (1.19) and (1.20) the Eulerian

description. We shall work with the Lagrangian description in the remainder

of this paper.

We start with a number of observations about solutions of (1.1) and

(1.2). The first is that for any number seq > L the functions

(s(m, t), u(m, t)) ≡ (seq, V (seq)), −∞ < m < ∞ (1.23)

are constant solutions of (1.1) and (1.2).

One of the issues before us is under what conditions are these solutions

stable and more importantly what happens if they are unstable. For defi-

niteness we shall confine our attention to the ring-road scenario; that is we

shall assume that all solutions satisfy the periodic boundary conditions:

(s, u)(m+M, t) = (s, u)(m, t), −∞ < m < ∞. (1.24)
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Here, M > 0 represents the number of cars on our ring-road. The conserva-

tion structure of (1.1) also guarantees that for all t > 0

∫ M

0
s(m, t)dm ≡

∫ M

0
s(m, 0)dm

def
= ℓ (1.25)

and ℓ represents the length of the ring-road. For the discrete system (1.11)

and (1.12) (or equivalently (1.14) and (1.15)) we impose the discrete analog

of (1.24) and (1.25), namely the conditions that

(sm+M , um+M )(t) = (sm, um)(t) (1.26)
M
∑

j=0

sj(t) =
M
∑

j=0

sj(0) = ℓ. (1.27)

The latter condition implies that xm+M (t) = xm(t) + ℓ.

In [7] the following Theorem was established for solutions of (1.1) - (1.4)

satisfying the boundary conditions (1.24) and (1.25) which assume the initial

conditions

s(m, 0+) = s0(m) and u(m, 0+) = u0(m),−∞ < m < ∞. (1.28)

Theorem 1. Suppose s → P (s) satisfies

P (L) = 0 and 0 < P ′(s), P ′′(s) < 0, and P (s) > V (s) for s > L. (1.29)

Suppose further that at t = 0 the initial data satisfies

L ≤ s0(m) and 0 ≤ u0(m) ≤ P (s0(m)) (1.30)

for all m. Then, for any t > 0 the same inequalities hold; that is for all m

L ≤ s(m, t) and 0 ≤ u(m, t) ≤ P (s(m, t)). (1.31)

Moreover, the analogus result is true for solutions of the discrete system

(1.11) and (1.12).

These a-priori estimates form the basis for establishing an existence

theorem for the system (1.1) and (1.2).

In the remainder of this paper we shall limit ourselves to the analysis of

(1.1)-(1.2) when P (·) and V (·) satisfy (1.29) and (1.5). We shall also assume
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that V ′(·) has an isolated maximum at s∗ > L, that

V ′′(s) > 0, L ≤ s < s∗ and V ′′(s) < 0, s∗ < s < ∞, (1.32)

that the difference (P ′ − V ′) (·) has two isolated zeros at points s1 and s2

satisfying L < s1 < s∗ < s2 < ∞, and finally that (P ′ − V ′)(·) > 0 on

(L, s1) ∪ (s2,∞).

In section 2 we shall give a simple argument that shows that for seq in

(s1, s2), the constant solution defined in (1.23) is unstable. This latter results

will be established by using a Chapman-Enskog expansion of the solutions

of (1.1) and (1.2). Section 3 will be devoted to numerical simulations. Here

we shall limit ourselves to

P (s) = λ(1− L/s) , L ≤ s (1.33)

and V (·) given by

V (s) =
v∞

(

tanh
(

s−rL
δ

)

+ tanh
(

(r−1)L
δ

))

(

1 + tanh
(

(r−1)L
δ

)) (1.34)

when

r > 1, v∞ > 0, and δ > 0. (1.35)

We shall demonstrate that for nonconstant initial data taking on values in

the unstable interval (s1, s2) solutions converge to traveling waves. These

simulations will be run on the follow-the-leader model (1.11)-(1.12). In sec-

tion 4 we shall show how to construct the large amplitude periodic traveling

wave solutions to (1.1)-(1.2) reminiscent of the waves seen in congested traf-

fic.

2. Stability of the Equilibrium Solution (1.23)

Here we seek a simple criterion indicating whether the equilibrium so-

lution defined in (1.23) is stable or not. For simplicity we assume that the

relaxation time 0 < ǫ is small. We focus on obtaining a solution of (1.6) and

(1.7) where the α component of the solution is of the form

α ∼ α0 + ǫα1 + · · ·+ ǫnαn + · · · (2.1)
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and each of the αi’s is independent of ǫ and, moreover, is a functional s

and its spatial derivatives. Instead of examining the stability of the solution

(seq, V (seq)) of the original system we shall examine whether seq is a stable

solution of

∂s

∂t
=

∂

∂m

(

P (s) +

∞
∑

i=0

ǫiαi

)

. (2.2)

Insertion of the ansatz (2.1) into (1.7) yields

α0 = V (s)− P (s) and αi = −
∂αi−1

∂t
(2.3)

which is not exactly a solution of the desired type. But, if we exploit (2.3)1
and (2.2) we find that

∂s

∂t
= V ′(s)

∂s

∂m
+ 0(ǫ) (2.4)

and from this latter relation we readily obtain

α1 = V ′(s)(P ′(s)− V ′(s))
∂s

∂m
. (2.5)

If desired, the remaining αi’s may be obtained from (2.3) by exploiting the

fact that (2.4) implies

∂p+1s

∂t(∂m)p
=

∂p

(∂m)p

(

V ′(s)(P ′(s)− V ′(s))
∂s

∂m

)

+ 0(ǫ). (2.6)

Rather than carry through the infinite process of determining all of the

αi’s we shall truncate the series at order 1, that is insist that

α = V (s)− P (s) + ǫV ′(s)(P ′(s)− V ′(s))
∂s

∂m
(2.7)

and examine whether or not s ≡ seq is a stable solution of

∂s

∂t
=

∂

∂m

(

V (s) + ǫV ′(s)
(

P ′(s)− V ′(s)
) ∂s

∂m

)

. (2.8)

This latter equation has a strong maximum principle so long as the initial

data for s satisfies either

L ≤ s(m, 0) < s1 for all m (2.9)

or
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s2 ≤ s(m, 0) < ∞ for all m (2.10)

because in either of these cases the diffusion coefficient, V ′(s)(P ′(s)−V ′(s)),

is positive. On the other hand, when s1 < s < s2, the diffusion coefficient

is negative and this yields explosive growth of the solution. Thus, if seq ∈

(s1, s2), the interval where (P ′ − V ′)(s) < 0, the constant solution s ≡ seq is

an unstable solution of (2.8). It is easily checked that this same conclusion

is valid as regards the linear instability of (1.23) for the full system (1.6) and

(1.7).

3. Simulations

In this section we present some numerical simulations for the follow-the-

leader system (1.11) and (1.12). We choose non-constant initial data which

lies wholly within the unstable interval. Throughout we shall work with

P (s) = λ

(

1−
L

s

)

, L ≤ s (3.1)

and

V (s) = v∞

(

tanh
(

s−rL
δ

)

+ tanh
(

(r−1)L
δ

))

(

1 + tanh
(

(r−1)L
δ

)) . (3.2)

The specific parameters used were

L = 15 feet (3.3)

λ = 150 feet/sec = 102.2727 . . . mph, (3.4)

v∞ = 100 feet/sec = 68.1818 . . . mph, (3.5)

δ = 15 feet (3.6)

and

r = 3. (3.7)

For initial data, we choose three sets of data

x(k)m (0) = 45m+ 4

m−1
∑

j=0

sin

(

kjπ

200

)

(3.8)

and

u(k)m (0) = 35 feet/sec (3.9)
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for m = 0,±1,±2, . . . and k = 1, 2 and 3. The observation that

x
(k)
m+400(0) = x(k)m (0) + 18000 (3.10)

implies that we may interpret the data as initial data for a ring-road with

400 cars which is of length 18000 feet.

For our choice of parameter values the unstable region for (P ′−V ′)(·) is

the interval 33.59625. . . < s < 69.8215 and our data has initial car spacings

s(k)m (0) = x
(k)
m+1(0) − x(k)m (0) (3.11)

which lie in that interval. A graph of s → (P ′−V ′)(s) is shown in the fourth

panel of Figures 1-3. Simulations were run with relaxation times

ǫ = 1, 5, and 10. (3.12)

We show the spatially periodic solutions at time t = 1 hour when ǫ =

10 seconds. Figures 1, 2 and 3 correspond to the initial data indexed by

k = 1, 2, and 3 respectively. The solution indexed by each particular k has

k discontinuities per period after one hour. Run over a longer period, they

all revert to a solution with one discontinuity per period.

Figure 1
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Figure 2

Figure 3
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The first two frames in each figure are self-explanatory. In the third

frame of each figure we plot the curve m → (sm = xm+1 − xm, um). This

curve is shown in green. The blue curve is the equilibrium curve s →

(s, V (s)) and the black curve is a suitably normalized image of P (·). The

black dot -o- is the image of (s1, u1).

4. Large Amplitude Periodic Traveling Waves

Based on the computational evidence presented in the last section we

are led to look for traveling wave solutions to the full system (1.6) and (1.7).

These will be solutions which are functions of

ξ = m+ ct , c > 0 (4.1)

which are periodic in ξ with period M , the number of cars on the ring-road.

The conversation structure of (1.6) implies that the s(·) component of the

solution satisfies
∫ M

0
s(ξ)dξ = l (4.2)

where l is the length of the ring-road.

Insertion of the ansatz (4.1) into (1.6) implies that u(·) and s(·) satisfy

P (s) + α = u(ξ) = u# + c(s(ξ)− s#) (4.3)

and we insist that

u# = V (s#) and s(0) = s# ∈ (s1, s2). (4.4)

The relations (4.3) and (4.4) further imply (1.7) reduces to that

ǫc
(

c− P ′(s)
) ds

dξ
= (V (s)− V (s#)− c(s− s#)) . (4.5)

We seek a solution to (4.4) and (4.5) which is increasing on −ma < ξ < Ma

where −ma < 0 < Ma. For speeds 0 < c < V ′(s#), we see that the right

hand side of (4.5) satisfies

sign (V (s)− V (s#)− c(s− s#)) = sign (s− s#) (4.6)

for |s− s#| small enough and thus to obtain an increasing solution to (4.4)

and (4.5) on some interval containing ξ = 0 in its interior we are compelled
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to choose

c = P ′(s#). (4.7)

This choice of c, together with the hypothesis that P ′′(·) < 0, guarantees

that

sign
(

P ′(s#)− P ′(s)
)

= sign (s− s#) (4.8)

and thus, with this choice of c, we are guaranteed a solution of (4.4) and (4.5)

defined in some interval −m̃a < ξ < M̃a where −m̃a < 0 < M̃a. Moreover,

this solution satisfies

ds

dξ
(0) =

− (V ′(s#)− P ′(s#))

ǫP ′(s#)P ′′(s#)
> 0 (4.9)

for s1 < s# < s2.

We shall now refine the observations of the preceding paragraphs. If

V (L)− V (s2)− P ′(s2)(L− s2) > 0 (4.10)

we let s̄ in (s1, s2) be the unique solution of

V (L)− V (s̄)− P ′(s̄)(L− s̄) = 0 (4.11)

whereas, if

V (L)− V (s2)− P ′(s2)(L− s2) ≤ 0 (4.12)

we let

s̄ = s2. (4.13)

In either case, for any s# in (s1, s̄) we let L < s−(s#) < s# < s+(s#) be the

other two solutions of

V (s±)− V (s#)− P ′(s∗)(s± − s#) = 0. (4.14)

We of course have

V (s)− V (s#)− P ′(s#)(s− s#) < 0 s−(s#) < s < s# (4.15)

and

V (s)− V (s#)− P ′(s#)(s − s#) > 0 , s# < s < s+(s#). (4.16)
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For any sa in (s−(s#), s#) we now let S(sa) > s# be the unique solution

of

P (S(sa))− P (sa)

S(sa)− sa
= P ′(s#) (4.17)

and note that

dS(sa)

dsa
=

(P ′(s#)− P ′(sa))

(P ′(s#)− P ′ (S(sa)))
< 0. (4.18)

We also let s(s#) be the smallest value of sa ≥ s−(s#) such that S(sa) ≤

s+(s#) and for any sa in (s(s#), s#) we let

−ma = ǫP ′(s#)

∫ s#

sa

(P ′(r)− P ′(s#)) dr

(V (r)− V (s#)− P ′(s#)(r − s#))
< 0 (4.19)

and

Ma = ǫP ′(s#)

∫ S(sa)

s#

(P ′(s#)− P ′(r))dr

(V (r)− V (s#)− P ′(s#)(r − s#))
> 0. (4.20)

We note that one of the integrals (4.19) or (4.20) or both diverge as sa →

s(s#)
+. For any ξ in (−ma,Ma), the solution to (4.4) and (4.5) is given by

the quadrature formula

ǫP ′(s#)

∫ s(ξ)

s#

(P ′(s#)− P ′(r)) dr

(V (r)− V (s#)− P ′(s#)(r − s#))
= ξ (4.21)

and the solution is extended to (−∞,∞) by insisting that the periodicity

condition

s (ξ ± n(ma +Ma)) = s(ξ), n = 0, 1, . . . (4.22)

holds. As constructed, the solution has jump discontinuities as the points

Ma ± n(ma + Ma), n = 0, 1, . . ., and (4.17), (4.19), and (4.20) guarantee

that the Rankine Hugoinot condition for (1.6) and (1.7) holds across these

discontinuities. The Lax entropy condition that s− (Ma ± n(ma +Ma)) >

s+ (Ma ± n(ma +Ma)) is also guaranteed since

s−(Ma ± n(ma +Ma)) = S(sa) > sa = s+(Ma ± n(ma +Ma)). (4.23)

What remains to be shown is that for integers k = 1, 2, . . . we can choose
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sa in (s(s#), s#) and s# in (s1, s) so that

k(ma +Ma) = M (4.24)

and
∫ M

0
s(ξ)dξ = l. (4.25)

The integer k represents the number of increasing segments per period.

In [10] the author gave an exhaustive analysis of the system (4.24) and

(4.25). These equations are equivalent to showing the existence of a pair

sa ∈ (s(s#), s#) and s# ∈ (s1, s)

satisfying

kǫP ′(s#)

∫ S(sa)

sa

(P ′(s#)− P ′(r)) dr

(V (r)− V (s#)− P ′(s#)(r − s#))
= M. (4.26)

kǫP ′(s#)

∫ S(sa)

sa

(P ′(s#)− P ′(r)) rdr

(V (r)− V (s#)− P ′(s#)(r − s#))
= l. (4.27)

For the simulations run in section 3 we had M = 400 and l = 18, 000 and

s# was 0(40). The interested reader may consult [10] for the details.

5. Concluding Remarks

We note in passing that many of the results obtained for the traffic

system (1.1) and (1.2) obtain for any one-dimensional continuum system of

the form:

∂s

∂t
−

∂u

∂m
= 0 (5.1)

and
∂u

∂t
−

∂σ(s)

∂m
= (V (s)− u)/ǫ (5.2)

provided s → σ(s) and s → V (s) satisfy

σ′(s) > 0 and σ′′(s) < 0 , 0 < s, (5.3)

V (s) > 0 and V ′(s) < 0 , 0 < s, (5.4)
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and there is a number 0 < s2 so that

sign (σ′(s)− (V ′)2(s)) = sign (s− s2). (5.5)

One typically further assumes that

lim
s→0+

σ(s) = −∞ and lim
s→0+

V (s) = ∞. (5.6)

In particular, one finds that the equilibrium solutions

(s, u)(m, t) ≡ (seq, V (seq)), −∞ < m < ∞

are unstable if 0 < seq < s2 and linearly stable if s2 < seq < ∞. These

systems also support large amplitude periodic traveling waves of the type

seen in sections 3 and 4. These waves are functions of ξ = m+ ct and satisfy

V ′(s#) < c = −(σ′(s#))
1/2 < 0, (5.7)

(c2 − σ′(s))
ds

dξ
= V (s)− V (s#)− c(s − s#), (5.8)

and

s(0) = s#. (5.9)

The smooth portions of these solutions are monotone decreasing on a < ξ < b

and the numbers

sa = lim
ξ→a+<0

s(ξ) and sb = lim
ξ→b−>0

s(ξ)

satisfy

c2 = σ′(s#) =
σ(sa)− σ(sb)

sa − sb

which is the Rankine-Hugoniot condition for the system. On the interval

a < ξ < b, u is given by

u(ξ) = V (s#) + c(s(ξ)− s#)

and the solutions are extended to −∞ < ξ < ∞ by insisting that

s(ξ ± n(b− a)) = s(ξ) , n = 0, 1 . . .

holds. At each of the jump points these solutions satisfy the Lax entropy
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condition for the system, namely the condition that

lim u(ξ)
ξ→(b±n(b−a))−

> limu(ξ)
ξ→(b±n(b−a))+

.

Roll waves are an interesting example of such waves; for details see [12] and

[13].
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