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Abstract

The Kawahara equation is a higher-order Korteweg-de

Vries equation with an additional fifth order derivative term. It

was derived by Hasimoto as a model of capillary-gravity waves in

an infinitely long canal over a flat bottom in a long wave regime

when the Bond number is nearly one third. In this paper, we give

a mathematically rigorous justification of this modeling and show

that the solution of the Kawahara equation approximates that of

the full problem of capillary-gravity waves in an appropriate sense

for a long time interval. We also consider the case where the bot-

tom is not flat and derive coupled Kawahara type equations whose

solution approximates that of the full problem in that case.

1. Introduction

We are concerned with a two-dimensional, irrotational flow of an incom-

pressible ideal fluid with a free surface under the gravitational field. The

domain occupied by the fluid is bounded from below by a solid bottom and

above by an atmosphere of constant pressure. The upper surface is a free

boundary and we take the influence of the surface tension into account on

the free surface. Our main interest is the motion of the free surface, which
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is called a capillary-gravity wave. In the case without the surface tension, it

is called a gravity wave or a water wave.

Mathematically, the problem is formulated as a free boundary problem

for the incompressible Euler equation with the irrotational condition. After

rewriting the equations in an appropriate non-dimensional form, we have

two non-dimensional parameters δ and ε the ratio of the water depth h

to the wave length λ and the ratio of the amplitude of the free surface a

to the water depth h, respectively, and another non-dimensional parameter

µ called the Bond number, which comes from the surface tension on the

free surface. The waves characterized by the physical condition δ ≪ 1 are

called long waves or shallow water waves, but there are several long wave

approximations according to relations between ε and δ. For example, we

have the following three long wave regimes.

(I) The shallow water regime: ε = 1 and δ ≪ 1.

(II) The Korteweg-de Vries regime: ε = δ2 ≪ 1 and µ 6= 1
3 .

(III) The Kawahara regime: ε = δ4 ≪ 1 and µ = 1
3 + νε1/2.

In the shallow water regime we obtain the so-called shallow water equa-

tions as the limit δ → 0. The shallow water equations have the same form

as one-dimensional compressible Euler equation for an isentropic flow of a

gas of the adiabatic index 2 and its solution generally has a singularity in

finite time even if the initial data are sufficiently smooth. Therefore, this

long wave regime is used to explain breaks of water waves. In the long wave

regime (II), Korteweg and de Vries [24] derived a very notable equation,

which is called the KdV equation, from the equations for capillary-gravity

waves. The KdV equation takes of the form

±2ut + 3uux +
(1
3
− µ

)
uxxx = 0.

When µ = 1
3 , this equation degenerates to the inviscid Burgers equation. In

connection with this critical Bond number, Hasimoto [10] derived a higher-

order KdV equation of the form

±2ut + 3uux − νuxxx +
1

45
uxxxxx = 0

in the long wave regime (III), which is nowadays called the Kawahara equa-

tion. Historically, this type of equation was first found by Kakutani and
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Ono [18] in an analysis of magnet-acoustic waves in a cold collision free

plasma. Then, Hasimoto [10] derived the above equation from capillary-

gravity waves. Kawahara [23] studied this type of equation numerically and

observed that the equation has both oscillatory and monotone solitary wave

solutions.

There are several results giving a mathematically rigorous justification

for the long wave approximations. The justification of the shallow water

equations was given by Ovsjannikov [35] under the periodic boundary con-

dition with respect to the horizontal spatial variable, and then by Kano and

Nishida [20]. In order to guarantee the existence of the solution for the full

equations, they used an abstract Cauchy-Kowalevski theorem in a scaled Ba-

nach space due to Ovsjannikov [33, 34] and its modified version by Nirenberg

[29] and Nishida [30], so that the analyticity of the initial data is required.

Kano and Nishida [21] also established the Friedrichs expansion, which is

an expansion of the solution with respect to δ2. Similar arguments in the

three-dimensional case are found in Kano [19]. Here, it should be mentioned

that these results were given in a class of analytic functions and that the

justification in the framework of Sobolev spaces is still untouched.

Concerning the KdV approximation for water waves, Kano and Nishida

[22] gave the justification in a class of analytic functions. Based on the

existence theorem due to Nalimov [27] and Yosihara [46], Craig [6] gave the

justification in the framework of Sobolev spaces. In the long wave regime

(II), the dynamics of the free surface is approximately translation of two

waves without change of the shape, one moving to the right and the other to

the left, for a short time interval 0 ≤ t ≤ O(1). The dynamics of each waves

is very slow so that it is invisible for the short time interval. By introducing

a slow time scale τ = εt, the dynamics can be visible and described by the

KdV equation for a long time interval 0 ≤ t ≤ O(1/ε). One of the difficulties

in the justification is to obtain a uniform estimate with respect to ε of the

solution of the initial value problem for the full water waves for the long

time interval. Craig established well the estimate under a restriction on

the initial data which emphasizes that the wave is almost one-directional.

Then, Schneider and Wayne gave the justification without assuming the one-

directional motion of the wave in [38] and extended it to the capillary-gravity

waves in [40]. They showed that the interactions between two waves are

negligible so that the solution of the full water wave problem is approximated

by a sum of the solutions, which are appropriately scaled, of the decoupled

KdV equations for the long time interval. However, they treated the problem
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in unscaled variables, whereas Craig treated it in the scaled variables called

Boussinesq ones. Let η̃(x̃, t̃) and η(x, t) be the wave heights measured from

an undisturbed wave level in unscaled and the scaled variables, respectively.

In the long wave regime (II), these are related by the formula η̃(x̃, t̃) =

εη(ε1/2x̃, ε1/2 t̃), so that their norms in the Sobolev space Hm are related by

‖η̃(·, t̃)‖2m = ‖η̃(·, t̃)‖2 + ‖∂x̃η̃(·, t̃)‖2 + · · · + ‖∂m
x̃ η̃(·, t̃)‖2

= ε3/2
(
‖η(·, ε1/2 t̃)‖2+ε‖∂xη(·, ε1/2 t̃)‖2+· · ·+εm‖∂m

x η(·, ε1/2 t̃)‖2
)
.

This means that the norm of the Sobolev space in unscaled variables corre-

sponds to the weighted (with respect to ε) norm of the Sobolev space in the

Boussinesq variables and that uniform estimates of the solution in unscaled

variables do not give those in the Boussinesq ones. The latter uniform es-

timates are very important when one tries to justify the formal derivation

of the KdV equation by nonlinear perturbation methods, because in the

methods one treats the equations in the Boussinesq variables and assumes

tacitly the uniform boundedness with respect to ε of the solution and its

derivatives. Therefore, the estimates obtained by Schneider and Wayne are

somewhat weak and do not recover those by Craig even if the initial data are

restricted in order that the wave is almost one-directional. Moreover, from

the viewpoint of well-posedness of the initial value problem, one should esti-

mate the solution in the same class (Sobolev space) and in the same variables

(Boussinesq ones) as those of the initial data. Note that they assumed the

uniform boundedness in the Sobolev space of the initial data in the Boussi-

nesq variables. Recently, in [14] the author gave the justification of this KdV

approximation for capillary-gravity waves together with uniform estimates

of the solution and the estimate of the error term in the Boussinesq vari-

ables. It was shown that the norm of the error term in the Sobolev space is

of order ε, which is the optimal rate, while in Schneider and Wayne [40] the

L∞-norm of the error term is of order ε1/6. Moreover, the author considered

this KdV approximation in the case where the bottom is not flat and studied

an effect of the bottom to the approximation, and then coupled KdV type

equations were derived.

The motion of the free surface in the long wave regime (III) is somewhat

similar to that in the regime (II), that is, the dynamics of the free surface

is approximately translation of two waves without change of the shape, one

moving to the right and the other to the left, for a short time interval 0 ≤
t ≤ O(1). By introducing a slow time scale τ = εt, we see that the dynamics
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of each waves can be described by the Kawahara equation for a long time

interval 0 ≤ t ≤ O(1/ε). In [40] Schneider and Wayne also discussed the

validity of this Kawahara approximation. However, they treated the problem

in unscaled variables so that their estimates do not give uniform estimates of

derivatives of the solution in the scaled variables. One of the main purpose

of this paper is to refine the result due to Schneider and Wayne by giving

uniform estimates of the solution in the scaled variables. Another purpose

is to analyze this long wave approximation in the case where the bottom is

not flat and to derive simple equations (coupled Kawahara type equations)

whose solution approximates that of the original equations for a long time

interval 0 ≤ t ≤ O(1/ε). We remark that the time interval of existence is the

same order as that in [40] but estimates of the solution, especially those of

its derivatives, are much stronger than those in [40] and that the norm of the

error term in the Sobolev space is of order ε1/2, which is the optimal rate,

while in [40] the L∞-norm of the error term is of order ε1/8. See Remark 4.2

for the details.

There are many papers studying the effect of an uneven bottom on

the long wave approximations for water waves. By introducing appropriate

coordinate-stretching and applying a reductive perturbation method, Kaku-

tani [17] derived a KdV type equation with variable coefficients and a lowest

order term. Rosales and Papanicolaou [37] studied the effect of periodic and

random bottom topography. In the former case they derived the KdV equa-

tion with effective coefficients, which are constants, by using a perturbation

method combined with a multiscale ansatz. Moreover, they showed that the

waves are delayed with respect to a flat bottom because of an uneven pe-

riodic bottom. Recently, Craig, Guyenne, Nicholls, and Sulem [7] extended

the work of Rosales and Papanicolaou [37] to the case of bottom topography

with multiple spatial scales and the three dimensional case. They adopted

a Hamiltonian formulation of the problem, which goes back to the work of

Zakharov [48] in the case of deep water, and derived systematically the KdV

and the KP equations with effective coefficients by using an asymptotic anal-

ysis of multiple scale operators and the homogenisation. In these results they

treated the case where the amplitude of the bottom variations is of order 1,

whereas in this paper we assume that it is of order ε. Therefore, we treat

the problem in an easier case. However, we give the existence theorem of the

initial value problem for the full problem together with uniform estimates of

the solution for an appropriately long time interval, which is very important

in order to give a mathematically rigorous justification of the approximation.
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This part was untouched in the above papers, and we also leave it open in

the case where no assumptions is posed on the bottom variations.

The contents of this paper are as follows. In section 2 we formulate

the problem, rewrite it in a non-dimensional form and transform it into an

equivalent problem according to [13, 14]. In section 3 we give several prop-

erties of the Dirichlet-to-Dirichlet map K for the Cauchy-Riemann operator

which occurs in the transformed problem. In section 4 we formally derive

coupled Kawahara type equations as a long wave approximation and give

the statements of our main theorems. In section 5 we reduce the system de-

rived in section 2 to a quasi-linear system of equations. In section 6 we give

several estimates for remainder terms appearing in the quasi-linearization.

Finally, in section 7, by applying the energy estimates established in [14] to

the quasi-linear equations derived in section 5 we prove the main theorems.

In Appendix we give a priori estimates for the Kawahara equation.

Notation. For s ∈ R, we denote by Hs the Sobolev space of order s

on R equipped with the inner product (u, v)s = 1
2π

∫
R
(1 + ξ2)sû(ξ)v̂(ξ)dξ,

where û is the Fourier transform of u, that is, û(ξ) =
∫
R
u(x)e−ixξdx. We

put ‖u‖s =
√

(u, u)s, (u, v) = (u, v)0, and ‖u‖ = ‖u‖0. For a non-negative

integer m and a real γ, we denote by Hm,γ the weighted Sobolev space

on R equipped with the norm ‖u‖m,γ =
(∑m

l=0 ‖〈x〉γ
(

d
dx

)l
u‖2

)1/2
, where

〈x〉 = (1+x2)1/2. For 1 ≤ p ≤ ∞, we denote by |·|p the norm of the Lebesgue

space Lp = Lp(R). For a non-negative integer m, we denote by Wm,∞ the

Banach space of all functions u = u(x) on R such that
(

d
dx

)l
u ∈ L∞ for

0 ≤ l ≤ m with the norm ‖u‖Wm,∞ = max0≤l≤m |
(

d
dx

)l
u|∞. For 0 < T < ∞,

a non-negative integer j, and a Banach space X, we denote by Cj([0, T ];X)

the Banach space of all functions of Cj-class on the interval [0, T ] with the

value in X. A pseudo-differential operator P (D), D = −i d
dx , with a symbol

P (ξ) is defined by P (D)u(x) = 1
2π

∫
R
P (ξ)û(ξ)eixξdξ. For operators A and

B, we denote by [A,B] = AB−BA the commutator. Throughout this paper,

we denote inessential constants by the same symbol C.

2. Formulation of the Problem

We assume that the domain Ω(t) occupied by the fluid at time t ≥ 0,

the free surface Γ(t), and the bottom Σ are of the forms

Ω(t) =
{
(x, y) ∈ R2 ; b(x) < y < h+ η(x, t)

}
,
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Γ(t) =
{
(x, y) ∈ R2 ; y = h+ η(x, t)

}
,

Σ =
{
(x, y) ∈ R2 ; y = b(x)

}
,

where h is the mean depth of the fluid. In this paper b is a given function,

while η is the unknown. The motion of the fluid is described by the velocity

v = (v1, v2) and the pressure p satisfying the equations

{
ρ
(
vt + (v · ∇)v

)
+∇p = −ρ(0, g),

∇ · v = 0, ∇⊥ · v = 0 in Ω(t), t > 0,
(2.1)

where ρ is the constant density and g is the gravitational constant. It is

assumed that both ρ and g are positive constants. The dynamical and the

kinematical boundary conditions on the free surface are given by

{
p = p0 − σH,
(
∂t + v · ∇

)(
y − η(x, t)

)
= 0 on Γ(t), t > 0,

(2.2)

where p0 is the atmospheric pressure, σ is the surface tension coefficient, and

H is the curvature of the free surface. It is assumed that p0 is a constant

and σ is a positive constant. In our parametrization of the free surface the

curvature H at the point
(
x, h+ η(x, t)

)
is written as

H(x, t) =
((
1 +

(
ηx(x, t)

)2)−1/2
ηx(x, t)

)
x
.

The boundary condition on the bottom is given by

v ·N = 0 on Σ, t > 0, (2.3)

where N is the unit normal vector to Σ. Finally, we impose the initial

conditions

η(x, 0) = η0(x), v(x, y, 0) = v0(x, y). (2.4)

It is assumed that the initial data satisfy the compatibility conditions, that

is,
{

∇ · v0 = 0, ∇⊥ · v0 = 0 in Ω(0),

v0 ·N = 0 on Σ.

We proceed to rewrite the equations (2.1)–(2.4) in an appropriate non-

dimensional form. Let λ be a horizontal characteristic length of the wave
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and a the maximum vertical amplitude of the free surface. We introduce

three non-dimensional parameters δ, ε, and µ by

δ =
h

λ
, ε =

a

h
, and µ =

σ

ρgh2

respectively. In this paper we will consider an asymptotic behavior of capill-

ary-gravity waves when δ and ε tend to zero keeping the relations

δ4 = ε and µ =
1

3
+ νε1/2,

where ν is a constant. We rescale the independent and dependent variables

by




x = λx̃, y = hỹ, t =
λ√
gh

t̃,

v1 =
a

h

√
gh ṽ1, v2 =

a

λ

√
gh ṽ2,

p = p0 + ρghp̃, η = aη̃, b = ab̃.

(2.5)

We call these new variables Boussinesq ones. Here, we note that the function

b of the bottom is rescaled by a the maximum vertical amplitude of the free

surface. Putting these into (2.1)–(2.4) and dropping the tilde sign in the

notation we obtain




εv1t + ε2(v1v1x + v2v1y) + px = 0,

ε3/2v2t + ε5/2(v1v2x + v2v2y) + py + 1 = 0,

v1x + v2y = 0, v1y − ε1/2v2x = 0 in Ωε(t), t > 0,

(2.6)

{
p = −ε3/2µ

(
(1 + ε5/2η2x)

−1/2ηx
)
x
,

ηt + εv1ηx − v2 = 0 on Γε(t), t > 0,
(2.7)

εb′v1 − v2 = 0 on Σε, t > 0, (2.8)

η(x, 0) = η0(x), v(x, y, 0) = v0(x, y), (2.9)

where

Ωε(t) =
{
(x, y) ∈ R2 ; εb(x) < y < 1 + εη(x, t)

}
,

Γε(t) =
{
(x, y) ∈ R2 ; y = 1 + εη(x, t)

}
,
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Σε =
{
(x, y) ∈ R2 ; y = εb(x)

}
.

The function b and the initial data η0 and v0 may depend on ε.

According to [13, 14], we reformulate the initial value problem (2.6)–

(2.9) as a problem on the free surface. Put

u(x, t) = v(x, 1 + εη(x, t), t),

which is the boundary value of the velocity on the free surface. Then, we

see that the unknowns η and u = (u1, u2) are governed by the equations





u1t + ηx + εu1u1x + ε3/2ηx(u2t + εu1u2x)

= ε1/2µ
(
(1 + ε5/2η2x)

−1/2ηx
)
xx
,

ηt + εu1ηx − u2 = 0,

u2 = K(η, b, ε)u1 for t > 0,

(2.10)

η = η0, u1 = u0 at t = 0, (2.11)

where K = K(η, b, ε) is a linear operator depending on η, b, and ε, whose

explicit form will be given in the next section. We refer to [14] for the

derivation of these equations. This is the initial value problem that we are

going to investigate in this paper. Here, we emphasize that the initial value

problem (2.10) and (2.11) is equivalent to (2.6)–(2.9) and that we did not

neglect any terms in the derivation of (2.10).

3. The Operator K

The Dirichlet-to-Dirichlet map K for the Cauchy-Riemann equations

can be written explicitly in terms of integral operators as

K = −ε−1/4
(1
2
−B2

)−1
B1, (3.1)

where




B1 = A2 + (ε5/4A5b
′ −A6)

(1
2
+A3 + ε5/4A4b

′
)−1

A7,

B2 = A1 − (ε5/4A5b
′ −A6)

(1
2
+A3 + ε5/4A4b

′
)−1

A8.

(3.2)
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Here, A1, . . . , A8 are integral operators, which map real valued functions to

real valued ones, defined by




(A1 + iA2)f(x) =
i

2
(i sgnD)f(x)

+
1

2πi

∫

R

log

(
1 + iε5/4

η(y, t) − η(x, t)

y − x

)
df

dy
(y)dy,

(A3 + iA4)f(x) =
i

2
(i sgnD)f(x)

+
1

2πi

∫

R

log

(
1 + iε5/4

b(y)− b(x)

y − x

)
df

dy
(y)dy,

(A5 + iA6)f(x) =
1

2
e−ε1/4|D|

(
−1 + i(i sgnD)

)
f(x)

+
1

2πi

∫

R

log

(
1 + iε5/4

b(y)− η(x, t)

y − x− iε1/4

)
df

dy
(y)dy,

(A7 + iA8)f(x) =
1

2
e−ε1/4|D|

(
1 + i(i sgnD)

)
f(x)

+
1

2πi

∫

R

log

(
1 + iε5/4

η(y, t) − b(x)

y − x+ iε1/4

)
df

dy
(y)dy.

(3.3)

We can expand this operator K = K(η, b, ε) in terms of (η, b) as

K =

n−1∑

k=0

Kk + K̃n, (3.4)

where the linear operator Kk is homogeneous of degree k in (η, b) and can

be written in terms of pseudo-differential operators. In fact, it holds that





K0 = −ε−1/4i tanh(ε1/4D),

K1 = −ε
(
η + i tanh(ε1/4D)η i tanh(ε1/4D)

)
(iD)

+ ε sech (ε1/4D)(iD)b sech (ε1/4D).

(3.5)

Remark 3.1. Under suitable assumptions on η and b, for each positive

ε the operator K1 possesses a smoothing property so that we do not need the

expression of K1 when we fix ε. However, in order to get uniform estimates

of the solution for the initial value problem (2.10) and (2.11) with respect

to ε the above explicit formula for K1 plays an important role.

In the next lemma, the time t is arbitrarily fixed, so that η(x, t) is simply

denoted by η(x). We refer to [14] for the proof.
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Lemma 3.1. Let m, m0, and n be positive integers satisfying m,m0 ≥ 2

and n +m ≥ m0. Put m1 = max{m,m0 − 1} and m2 = max{m,m0} + 1.

There exist constants C > 0 and δ1 > 0 such that for any η ∈ Hm1 , b ∈
Wm2,∞, and ε ∈ (0, 1] satisfying ε(‖η‖m1

+ ‖b‖Wm2,∞) ≤ δ1 we have

‖K̃nf‖m ≤ Cε−(m−m0+1)/4
(
ε(‖η‖m1

+ ‖b‖Wm2,∞)
)n‖f‖m0

.

Remark 3.2. This estimate says that K̃n has a smoothing property,

which is very important to the existence theory for the initial value problem

(2.10) and (2.11). But, if we use the smoothing property, then we lose a

power of ε and we shall face a difficulty when we try to get uniform estimates

of the solution with respect to ε. However, taking n sufficiently large, we

gain a power of ε. As we will see later, it is sufficient to expand the operator

K up to n = 2.

Remark 3.3. By virtue of Taylor’s formula we have tanhx = x− 1
3x

3+
2
15x

5 +O(x7) and sech x = 1 +O(x2) so that (3.5) implies

{
K0 = −(iD)− ε1/2

3 (iD)3 − 2
15ε(iD)5 +O(ε3/2),

K1 = −εη(iD) + ε(iD)b +O(ε3/2).

By Lemma 3.1 K̃2 = O(ε2), so that we obtain

K = −(1 + εη)(iD) + ε(iD)b − ε1/2

3
(iD)3 − 2

15
ε(iD)5 +O(ε3/2).

Here, we should note that the remainder term O(ε3/2) contains higher-order

derivatives. This is one of the reason why we require much differentiability

on the data.

It is easy to see that the commutators of the operator K̃n and the

differential operators ∂x = ∂
∂x and ∂k

t =
(
∂
∂t

)k
have similar forms as K̃n, so

that we can show the following lemmas.

Lemma 3.2. Let m, m0, and n be positive integers satisfying m,m0 ≥ 2

and n +m ≥ m0. Put m1 = max{m,m0 − 1} and m2 = max{m,m0} + 1.

There exist constants C > 0 and δ1 > 0 such that for any η ∈ Hm1+1,

b ∈ Wm2+1,∞, and ε ∈ (0, 1] satisfying ε(‖η‖m1
+ ‖b‖Wm2,∞) ≤ δ1 we have

‖
[
∂x, K̃n

]
f‖m ≤ Cε−(m−m0+1)/4

(
ε(‖η‖m1+1 + ‖b‖Wm2+1,∞)

)
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×
(
ε(‖η‖m1

+ ‖b‖Wm2,∞)
)n−1‖f‖m0

.

Lemma 3.3. Let m and m0 be positive integers satisfying m,m0 ≥ 2

and m+ 1 ≥ m0. Put m2 = max{m,m0} + 1. There exist constants C > 0

and δ1 > 0 such that for any η ∈ C2([0, T ];Hm), b ∈ Wm2,∞, and ε ∈ (0, 1]

satisfying ε(‖η‖m + ‖b‖Wm2,∞) ≤ δ1 we have

{
‖
[
∂t, K̃1

]
f‖m ≤ Cε−(m−m0+1)/4

(
ε‖ηt‖m

)
‖f‖m0

,

‖
[
∂t,

[
∂t, K̃1

]]
f‖m ≤ Cε−(m−m0+1)/4

(
ε‖ηtt‖m + (ε‖ηt‖m)2

)
‖f‖m0

.

4. Formal Asymptotic Analysis and Main Results

In this section we begin to study formally an asymptotic behavior of

the solution (ηε, uε) to the initial value problem (2.10) and (2.11) when ε

tends to 0 and derive the Kawahara equation, whose solution approximates

(ηε, uε) in a suitable sense. Then, we state our main results.

It follows from (2.10) and Remark 3.3 that





u1t + ηx + εu1u1x − ε1/2µηxxx = O(ε3/2),

ηt + u1x + ε
(
(η − b)u1

)
x
+

ε1/2

3
u1xxx +

2

15
εu1xxxxx = O(ε3/2),

(4.1)

which approximate the equations in (2.10) up to order O(ε3/2).

Now, let us consider the limiting case ε = 0. Then, the equations in

(4.1) become
{

u1t + ηx = 0,

ηt + u1x = 0.

Under the initial condition (2.11) this system can be easily solved and the

solution has the form
(

u1(x, t)

η(x, t)

)
=

(
α1(x− t)− α2(x+ t)

α1(x− t) + α2(x+ t)

)
,

where the functions α1 and α2 are determined from the initial data η0 and

u0 by

α1(x) =
1

2

(
η0(x) + u0(x)

)
, α2(x) =

1

2

(
η0(x)− u0(x)

)
. (4.2)
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For the case 0 < ε ≪ 1 we can show that under suitable assumptions on

the data the initial value problem (2.10) and (2.11) has a unique solution

(η, u) = (ηε, uε) on some time interval and that the solution satisfies

(
uε1(x, t)

ηε(x, t)

)
≃

(
α1(x− t)− α2(x+ t)

α1(x− t) + α2(x+ t)

)
(4.3)

in an appropriate sense. Therefore, the dynamics of the free surface is ap-

proximately as follows: the free surface divides into two waves, one moving

to the right and the other to the left with the same speed 1 without changing

their shapes. Here we should note that the approximation (4.3) is valid only

for the short time interval 0 ≤ t ≤ O(1). Roughly speaking, this means that

the dynamics is only translation for such a time interval.

In order to study the dynamics for a long time interval 0 ≤ t ≤ O(1/ε)

we have to take account of dynamics of the shapes of the two waves. Since

the dynamics is very slow, it is convenient to use a slow time scale τ = εt

in order to make the dynamics to be visible. It is natural to expect that

the shapes of the two waves shall change in this time scale τ so that the

functions α1(x) and α2(x), which describe the shapes of the waves in moving

coordinates, should be replaced by the functions α1(x, τ) and α2(x, τ). These

considerations lead the ansatz




u1(x, t) = α1(x− t, εt)− α2(x+ t, εt)

− ε1/2
(
β1(x− t, εt)− β2(x+ t, εt)

)

− ε
(
γ1(x− t, εt)− γ2(x+ t, εt)

)
+ εφ̄1(x, t),

η(x, t) = α1(x− t, εt) + α2(x+ t, εt) + εφ̄2(x, t).

(4.4)

Putting these into (4.1) and using the relation µ = 1
3 + νε1/2 we obtain

(α1τ + α1α1x − να1xxx + γ1x)− (α2τ − α2α2x + να2xxx − γ2x)

+ε−1/2
{(

β1−
1

3
α1xx

)
+

(
β2−

1

3
α2xx

)}
x
−(α1α2)x+φ̄1t+φ̄2x = O(ε1/2)

and
(
α1τ + 2α1α1x +

2

15
α1xxxxx −

1

3
β1xxx − γ1x

)

+
(
α2τ − 2α2α2x −

2

15
α2xxxxx +

1

3
β2xxx + γ2x

)

−ε−1/2
{(

β1−
1

3
α1xx

)
−
(
β2−

1

3
α2xx

)}
x
−
(
b(α1−α2)

)
x
+φ̄2t+φ̄1x=O(ε1/2),



192 TATSUO IGUCHI [June

which are equivalent to the equations

2α1τ + 3α1α1x − να1xxx +
2

15
α1xxxxx −

1

3
β1xxx

+
(
2γ2 −

1

2
α2
2 − να2xx −

2

15
α2xxxx +

1

3
β2xx

)
x
+ 2ε−1/2

(
β2 −

1

3
α2xx

)
x

−
(
α1α2 + b(α1 − α2)

)
x
+ (φ̄1 + φ̄2)t + (φ̄1 + φ̄2)x = O(ε1/2)

and

2α2τ − 3α2α2x + να2xxx −
2

15
α2xxxxx +

1

3
β2xxx

−
(
2γ1 −

1

2
α2
1 − να1xx −

2

15
α1xxxx +

1

3
β1xx

)
x
− 2ε−1/2

(
β1 −

1

3
α1xx

)
x

+
(
α1α2 − b(α1 − α2)

)
x
− (φ̄1 − φ̄2)t + (φ̄1 − φ̄2)x = O(ε1/2).

Here, we define the corrective terms β = (β1, β2), γ = (γ1, γ2), and φ̄ =

(φ̄1, φ̄2) by

β1(x, τ) =
1

3
α1xx(x, τ), β2(x, τ) =

1

3
α2xx(x, τ), (4.5)





γ1(x, τ) =
1

4
α1(x, τ)

2 +
ν

2
α1xx(x, τ) +

1

90
α1xxxx(x, τ),

γ2(x, τ) =
1

4
α2(x, τ)

2 +
ν

2
α2xx(x, τ) +

1

90
α2xxxx(x, τ),

(4.6)

and 



φ̄1(x, t) + φ̄2(x, t) = b(x)α1(x− t, εt)− 1

2
b(x)α2(x+ t, εt)

+
1

2
α1(x− t, εt)α2(x+ t, εt),

φ̄1(x, t)− φ̄2(x, t) =
1

2
b(x)α1(x− t, εt)− b(x)α2(x+ t, εt)

− 1

2
α1(x− t, εt)α2(x+ t, εt).

(4.7)

Then, the above equations become

(
2α1τ + 3α1α1x − να1xxx +

1

45
α1xxxxx

)
(x− t, εt)

−
(
b(x) + α2(x+ t, εt)

)
α1x(x− t, εt) +

1

2
b′(x)α2(x+ t, εt) = O(ε1/2)

and
(
2α2τ − 3α2α2x + να2xxx −

1

45
α2xxxxx

)
(x+ t, εt)

+
(
b(x) + α1(x− t, εt)

)
α2x(x+ t, εt)− 1

2
b′(x)α1(x− t, εt) = O(ε1/2).
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Neglecting the terms O(ε1/2) in the above equations we arrive at the follow-

ing coupled Kawahara type equations





2α1τ + 3α1α1x − να1xxx +
1

45
α1xxxxx

−
(
(Tτ/εb) + (T2τ/εα2)

)
α1x +

1

2
(Tτ/εb

′)(T2τ/εα2) = 0,

2α2τ − 3α2α2x + να2xxx −
1

45
α2xxxxx

+
(
(T−τ/εb) + (T−2τ/εα1)

)
α2x −

1

2
(T−τ/εb

′)(T−2τ/εα1) = 0,

(4.8)

where Tθ is the translation operator with respect to the spatial variable

defined by (Tθα)(x, τ) = α(x + θ, τ). If the functions α1, α2, and b decay

at spatial infinity, then we can expect that the coupling terms in the above

equations converge to zero when ε tends to zero and that the equations in

(4.8) are reduced to the Kawahara equation





2α1τ + 3α1α1x − να1xxx +
1

45
α1xxxxx = 0,

2α2τ − 3α2α2x + να2xxx −
1

45
α2xxxxx = 0.

(4.9)

In view of (4.2) it is natural to specify the initial conditions in the form

α1 =
1

2
(η0 + u0), α2 =

1

2
(η0 − u0) at τ = 0. (4.10)

Now, we are ready to give our main theorems in this paper.

Theorem 4.1. Let M be a positive constant, ν a constant, and m

an integer such that m ≥ 4. There exist positive constants T , C, and ε0

such that the following holds. For any ε ∈ (0, ε0], η0, u0 ∈ Hm+17, and

b ∈ Wm+13,∞ satisfying

‖(η0, u0)‖m+17 + ‖b‖Wm+13,∞ ≤ M,

the initial value problem (2.10) and (2.11) with µ = 1
3 + νε1/2 has a unique

solution (η, u) = (ηε, uε) on the time interval [0, T/ε] such that

{
ηε ∈ C([0, T/ε];Hm+2) ∩C1([0, T/ε];Hm+1),

uε ∈ C([0, T/ε];Hm+1) ∩ C1([0, T/ε];Hm).
(4.11)
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Moreover, the solution satisfies

sup
0≤t≤T/ε

(∥∥ηε(t)−
(
αε
1(· − t, εt) + αε

2(·+ t, εt)
)∥∥

m+2

+
∥∥uε1(t)−

(
αε
1(· − t, εt)− αε

2(·+ t, εt)
)∥∥

m+1

)
≤ Cε1/2, (4.12)

where αε = (αε
1, α

ε
2) is a unique solution of the initial value problem for

coupled Kawahara type equations (4.8) and (4.10).

Theorem 4.2. Let T and M be positive constants, ν a constant, and

m an integer such that m ≥ 4. There exist positive constants C and ε0 such

that the following holds. For any ε ∈ (0, ε0], η0, u0 ∈ Hm+17 ∩Hm+3,2, and

b ∈ Wm+13,∞ ∩Hm+2,2 satisfying

‖(η0, u0)‖m+17 + ‖(η0, u0)‖m+3,2 + ‖b‖Wm+13,∞ + ‖b‖m+2,2 ≤ M,

the initial value problem (2.10) and (2.11) with µ = 1
3 + νε1/2 has a unique

solution (η, u) = (ηε, uε) on the time interval [0, T/ε] satisfying (4.11) and

sup
0≤t≤T/ε

(∥∥ηε(t)−
(
α1(· − t, εt) + α2(·+ t, εt)

)∥∥
m+2

+
∥∥uε1(t)−

(
α1(· − t, εt)− α2(·+ t, εt)

)∥∥
m+1

)
≤ Cε1/2, (4.13)

where α = (α1, α2) is a unique solution of the initial value problem for the

Kawahara equation (4.9) and (4.10).

Theorem 4.3. Let T and M be positive constants, ν a constant, and m

an integer such that m ≥ 4. There exist positive constants C and ε0 such that

the following holds. For any ε ∈ (0, ε0], η0, u0 ∈ Hm+17, and b ∈ Wm+13,∞

satisfying

‖(η0, u0)‖m+17 + ‖b‖Wm+13,∞ + ε−1/2‖η0 − u0‖m+17 ≤ M

or

‖(η0, u0)‖m+17 + ‖b‖Wm+13,∞ + ε−1/2‖η0 + u0‖m+17 ≤ M,

the initial value problem (2.10) and (2.11) with µ = 1
3 + νε1/2 has a unique

solution (η, u) = (ηε, uε) on the time interval [0, T/ε] satisfying (4.11) and

sup
0≤t≤T/ε

(
‖ηε(t)− α1(· − t, εt)‖m+2 + ‖uε1(t)− α1(· − t, εt)‖m+1

)
≤ Cε1/2
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or

sup
0≤t≤T/ε

(
‖ηε(t)− α2(·+ t, εt)‖m+2 + ‖uε1(t) + α2(·+ t, εt)‖m+1

)
≤ Cε1/2,

respectively, where α = (α1, α2) is a unique solution of the initial value

problem for the Kawahara equation (4.9) and (4.10).

Remark 4.1. Concerning the initial value problem (4.8) and (4.10),

we merely know a local existence theorem in time of solution, so that in

Theorem 4.1 the time T may be small. On the contrary, the initial value

problem for the Kawahara equation (4.9) and (4.10) has a global solution in

time, so that in Theorems 4.2 and 4.3 we can take T as an arbitrarily large

constant. It seems that there are not any literature discussing the global

existence of the solution for the initial value problem. Therefore, we give a

global existence theorem for the problem in Appendix.

Remark 4.2. Theorem 4.2 is a refined version of the result of Schnei-

der and Wayne [40], where they studied the equations (2.6)–(2.9) in the

case ε = 1 with the initial data of the forms η0(x) = εΦ1(ε
1/4x) and

u0(x) = εΦ2(ε
1/4x). Note that the solutions (η, u) of (2.10) for general

ε > 0 are related to the solutions (η̃, ũ) of (2.10) for ε = 1 by the for-

mulas η̃(x, t) = εη(ε1/4x, ε1/4t), ũ1(x, t) = εu1(ε
1/4x, ε1/4t), and ũ2(x, t) =

ε5/4u2(ε
1/4x, ε1/4t) in the case b = 0. In [40], the following estimate was

obtained:

sup
0≤t≤T/ε5/4

(∥∥η̃ε(t)− ε
(
α1(ε

1/4(· − t), ε5/4t) + α2(ε
1/4(·+ t), ε5/4t)

)∥∥
W l,∞

+
∥∥ũε1(t)−ε

(
α1(ε

1/4(· − t), ε5/4t)−α2(ε
1/4(·+ t), ε5/4t)

)∥∥
W l,∞

)
≤Cε9/8.

In the Boussinesq variables this estimate can be written as

sup
0≤t≤T/ε

l∑

j=0

εj/4
(∣∣∂j

xη
ε(t)−

(
∂j
xα1(· − t, εt) + ∂j

xα2(·+ t, εt)
)∣∣

∞

+
∣∣∂j

xuε1(t)−
(
∂j
xα1(· − t, εt)− ∂j

xα2(·+ t, εt)
)∣∣

∞

)
≤ Cε1/8.

From this estimate one can not obtain any uniform estimates for derivatives

of the error terms in the Boussinesq variables. On the contrary, it follows
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from our estimate (4.13) that

sup
0≤t≤T/ε

m∑

j=0

(∣∣∂j
xη

ε(t)−
(
∂j
xα1(· − t, εt) + ∂j

xα2(·+ t, εt)
)∣∣

∞

+
∣∣∂j

xuε1(t)−
(
∂j
xα1(· − t, εt)− ∂j

xα2(·+ t, εt)
)∣∣

∞

)
≤ Cε1/2.

Remark 4.3. The conditions ‖η0 + u0‖m+17 ≤ Mε1/2 and ‖η0 −
u0‖m+17 ≤ Mε1/2 in Theorem 4.3 imply that there exists a positive constant

C1 depending only on µ, m, M , and T such that the solution α = (α1, α2) of

(4.9) and (4.10) satisfies ‖α1(τ)‖m+17 ≤ C1ε
1/2 and ‖α2(τ)‖m+17 ≤ C1ε

1/2

for 0 ≤ τ ≤ T and 0 < ε ≤ 1, respectively. For the proof we refer to Ap-

pendix. Therefore, the conditions in Theorem 4.3 assure that the wave is

approximately one directional.

5. Reduction to a Quasi-Linear System

In this section we reduce the system (2.10) to a quasi-linear system of

equations, which leads long time (0 ≤ t ≤ O(1/ε)) existence of the solution.

Although this reduction will be carried out in almost the same way as in [14],

we will show it for the completeness. Throughout this and next sections we

assume that (η, u) is a solution of the system (2.10) and sufficiently smooth.

Putting ζ = ηx, we are going to derive quasi-linear equations for u1 and ζ.

We differentiate the first equation in (2.10) with respect to t and obtain

u1tt + ζt + εu1u1tx + εu1tu1x + ε3/2ζ(u2tt + εu1u2tx)

= ε1/2µ(1 + ε5/2ζ2)−3/2ζtxx + 2ε1/2µ
(
(1 + ε5/2ζ2)−3/2

)
x
ζtx + ε3/2f1,(5.1)

where

f1 = µε−1
(
(1 + ε5/2ζ2)−3/2

)
xx
ζt − ζt(u2t + εu1u2x)− εζu1tu2x.

It follows from the second and the third equations in (2.10) that

ηt = (K − εζ)u1. (5.2)

Differentiation of this gives

{
ζtx = (K0 − εζ)u1xx + (K̃1u1)xx − ε(2ζxu1x + ζxxu1),

ζtxx = (K0 − εζ)u1xxx + (K̃1u1)xxx − ε(3ζxu1xx + 3ζxxu1x + ζxxxu1).
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In order to express ζxxx in terms of derivatives of u1 we use the first equation

in (2.10). Differentiation of it with respect to x gives

u1tx + ζx + εu1u1xx + εu1xu1x + ε3/2ζ(u2tx + εu1u2xx) + ε3/2ζxu2t

= ε1/2µ(1 + ε5/2ζ2)−3/2ζxxx + ε3/2f2, (5.3)

where

f2 = 2µε−1
(
(1+ε5/2ζ2)−3/2

)
x
ζxx+µε−1

(
(1+ε5/2ζ2)−3/2

)
xx
ζx−ε(ζu1)xu2x.

Therefore, we can rewrite (5.1) as

u1tt + 2εu1u1tx + ε2u21u1xx + ε3/2ζ(u2tt + 2εu1u2tx + ε2u21u2xx)

+εu1tu1x + ζt + εu1ζx + 3µε3/2(1 + ε5/2ζ2)−3/2(ζxu1xx + ζxxu1x)

−ε1/2µ(1 + ε5/2ζ2)−3/2
(
(K0 − εζ)u1xxx + (K̃1u1)xxx

)

−2ε1/2µ
(
(1 + ε5/2ζ2)−3/2

)
x
(K0 − εζ)u1xx = ε3/2f3,

where

f3 = f1 + u1(εf2 − ε1/2u1xu1x − εζxu2t)

+2µε−1
(
(1 + ε5/2ζ2)−3/2

)
x

(
(K̃1u1)xx − ε(2ζxu1x + ζxxu1)

)
.

Differentiation of the third equation in (2.10) gives





u2tt = Ku1tt + 2
[
∂t, K̃1

]
u1t +

[
∂t,

[
∂t, K̃1

]]
u1,

u2tx = K0u1tx +
(
K̃1u1t +

[
∂t, K̃1

]
u1

)
x
,

u2xx = K0u1xx + (K̃1u1)xx,

(5.4)

so that we obtain

(1 + ε3/2ζK)(u1tt + 2εu1u1tx + ε2u21u1xx)

+εu1tu1x + ζt + εu1ζx + 3µε2(1 + ε3ζ2)−3/2(ζxu1xx + ζxxu1x)

−εµ(1 + ε3ζ2)−3/2
(
(K0 − εζ)u1xxx + (K̃1u1)xxx

)

−2εµ
(
(1 + ε3ζ2)−3/2

)
x
(K0 − εζ)u1xx = ε3/2f4,

where

f4 = f3 − ζ
{
2
[
∂t, K̃1

]
u1t +

[
∂t,

[
∂t, K̃1

]]
u1

+ 2εu1
(
K̃1u1t +

[
∂t, K̃1

]
u1

)
x
+ ε2u21(K̃1u1)xx

}

+2εζ
(
K̃1u1u1tx +

[
K0, u1

]
u1tx

)
+ ε2ζ

(
K̃1u

2
1u1xx +

[
K0, u

2
1

]
u1xx

)
.
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It is easy to see that

(1 + ε3/2ζK)−1 = (1 + ε5/2ζ2)−1(1− ε3/2ζK0)− ε3/2P1,

where

P1 = (1 + ε5/2ζ2)−1ζ
{
(1− ε3/2K0ζ)K̃1 − εζ(ε1/2K2

0 + 1)

−ε3/2
[
K0, ζ

]
K0

}
(1 + ε3/2ζK)−1. (5.5)

Therefore, we arrive at the equation

u1tt + 2εu1u1tx + ε
(
εu21 + 3ε1/2µ(1 + ε5/2ζ2)−5/2ζx

)
u1xx

−ε1/2µ(1 + ε5/2ζ2)−3/2K0u1xxx − ε1/2µ
(
(1 + ε5/2ζ2)−3/2

)
x
K0u1xx

−ε1/2µ(K̃1u1)xxx + ε3/2µζ(ε1/2K2
0 + 1)u1xxx

+(1− ε3/2ζK0)ζt + εu1tu1x + εζxu1 + 3ε3/2µζxxu1x = ε3/2f5, (5.6)

where

f5 = (1 + ε3/2ζK)−1f4

+P1

{
εu1tu1x + ζt + εu1ζx + 3µε3/2(1 + ε5/2ζ2)−3/2(ζxu1xx + ζxxu1x)

− ε1/2µ(1 + ε5/2ζ2)−3/2
(
(K0 − εζ)u1xxx + (K̃1u1)xxx

)

− 2ε1/2µ
(
(1 + ε5/2ζ2)−3/2

)
x
(K0 − εζ)u1xx

}

+(1 + ε5/2ζ2)−1
{

εζ(εζ +K0)(u1tu1x + ζxu1 + 3ε1/2µ(1 + ε5/2ζ2)−3/2ζxxu1x
)

+ εζ2(1− ε3/2ζK0)ζt + 3ε3/2µζ
[
K0, (1 + ε5/2ζ2)−3/2ζx

]
u1xx

+ ε1/2µ(1 + ε5/2ζ2)−3/2ζ
(
ε
[
K0, ζ

]
u1xxx −K0(K̃1u1)xxx

)

− ε1/2µζ
[
K0, (1 + ε5/2ζ2)−3/2

](
(K0 − εζ)u1xxx + (K̃1u1)xxx

)

− 2µε−1
(
(1 + ε5/2ζ2)−3/2

)
x
ζ
(
ε(ε1/2K2

0 + 1)− ε5/2
[
K0, ζ

])
u1xx

− 2ε1/2µζ
[
K0,

(
(1 + ε5/2ζ2)−3/2

)
x

]
(K0 − εζ)u1xx

}

−3µ
(
(1 + ε5/2ζ2)−3/2 − 1

)
ζxxu1x

−µε−1
(
(1 + ε5/2ζ2)−5/2 − 1

)(
εζ(ε1/2K2

0 + 1)u1xxx − (K̃1u1)xxx
)
.

In the next section we will show that f5 contains lower order terms only and

that an appropriate norm of f5 is uniformly bounded with respect to small

ε.
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We proceed to drive a quasi-linear equation for ζ. It follows from (5.3)

and (5.4) that

u1tx+εu1u1xx+(1+ε3/2ζK0)
−1

{
ζx + εu1xu1x−ε1/2µ(1 + ε5/2ζ2)−3/2ζxxx

+ε3/2ζ(K1u1t)x + ε3/2ζxK0u1t
}
= ε3/2f6, (5.7)

where

f6 = (1 + ε3/2ζK0)
−1

{
f2 + εζ

[
K0, u1

]
u1xx

−ζ
(
(K̃2u1t +

[
∂t, K̃1

]
u1)x + εu1(K̃1u1)xx

)
−ζx

(
K̃1u1t + [∂t, K̃1]u1

)}
.

Differentiation of (5.2) gives





ζtx = (K − εζ)u1xx + 2([∂x, K̃1]− εζx)u1x + ([∂x, [∂x, K̃1]]− εζxx)u1,

ζtt = (K − εζ)u1tx + ([∂x, K̃1]− εζx)u1t
+ ([∂t, K̃1]− εζt)u1x + ([∂x, [∂t, K̃1]]− εζtx)u1.

We also have

(K − εζ)(1 + ε3/2ζK0)
−1 = K − εζ(1 + ε1/2K2

0 )− ε3/2[K0, ζ]K0 − ε3/2P2,

where

P2 = ε
(
K̃1 − εζ(1 + ε1/2K2

0 )− ε3/2[K0, ζ]K0

)
ζ2(1 + ε5/2ζ2)−1

+(ε[K0, ζ
2] + K̃1ζK0)(1 + ε5/2ζ2)−1 − (K − εζ)(1 + ε3/2ζK0)

−1

×
(
εζ2(1 + ε1/2K2

0 ) + ε3/2ζ[K0, ζ]K0

)
(1 + ε5/2ζ2)−1. (5.8)

Applying the operator K− εζ on both side of the equation (5.7) we see that

ζtt + 2εu1ζtx − ε1/2µ(1 + ε5/2ζ2)−3/2K0ζxxx − ε1/2µK1ζxxx

+K(ζx + εu1xu1x) + ε(ζxu1t + ζtu1x) + ε[K,u1]u1xx − ε1/2µK̃2ζxxx

−
(
[∂x, K̃1]u1t + [∂t, K̃1]u1x + [∂x, [∂t, K̃1]]u1

)

−εu1
(
2[∂x, K̃1]u1x + [∂x, [∂x, K̃1]]u1

)
+ ε3/2K0

(
ζ(K1u1t)x + ζxK0u1t

)

−
(
εζ(1 + ε1/2K2

0 ) + ε3/2[K0, ζ]K0

)
(ζx − ε1/2µζxxx) = ε3/2f7, (5.9)

where

f7 = (K−εζ)f6−ε1/2u21ζxx−2ε1/2ζxu1u1x+µε−1[K0, (1+ε5/2ζ2)−3/2]ζxxx

+µε−1K̃1

(
(1 + ε5/2ζ2)−3/2 − 1

)
ζxxx − K̃1

(
ζ(K1u1t)x + ζxK0u1t

)

+
(
ζ(1 + ε1/2K2

0 ) + ε1/2[K0, ζ]K0

){
ε1/2u1xu1x
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− µ
(
(1 + ε5/2ζ2)−3/2 − 1

)
ζxxx + εζ(K1u1t)x + εζxK0u1t

}

+P2

{
ζx + εu1xu1x − ε1/2µ(1 + ε5/2ζ2)−3/2ζxxx

+ ε3/2ζ(K1u1t)x + ε3/2ζxK0u1t
}
.

Here, f7 has the same property as f5.

Next, we derive equations for an approximate solution φ = (φ1, φ2),

which is defined as follows. Let α = (α1, α2) be the solution of the initial

value problem for coupled Kawahara type equations (4.8) and (4.10) and

define β = (β1, β2), γ = (γ1, γ2), and φ̄ = (φ̄1, φ̄2) by (4.5), (4.6), and (4.7),

respectively. In view of the ansatz (4.4) we define an approximate solution

φ = (φ1, φ2) by





φ1(x, t) = α1(x− t, εt)− α2(x+ t, εt)

− ε1/2
(
β1(x− t, εt)− β2(x+ t, εt)

)

− ε
(
γ1(x− t, εt)− γ2(x+ t, εt)

)
+ εφ̄1(x, t),

φ2(x, t) = α1(x− t, εt) + α2(x+ t, εt) + εφ̄2(x, t).

(5.10)

Then, we have





φ1t + φ2x + εφ1φ1x − ε1/2µφ2xxx = ε3/2g1,

φ2t + φ1x + ε
(
(φ2 − b)φ1

)
x
+

ε1/2

3
φ1xxx +

2

15
εφ1xxxxx = ε3/2g2,

(5.11)

where

g1 = β2τ − β1τ + ε1/2
(
γ2τ − γ1τ +

3

4
b(α1τ − α2τ )

)
− µφ̄2xxx

+
(
(α1 − α2)

(
β2 − β1 + ε1/2(γ2 − γ1 + φ̄1)

)

+
ε1/2

2

(
β2 − β1 + ε1/2(γ2 − γ1 + φ̄1)

)2)
x
,

g2 =
ε1/2

4

(
(b+ 2α2)α1τ + (b+ 2α1)α2τ

)
+

1

3
(γ2 − γ1 + φ̄1)xxx

+
2

15

(
β2 − β1 + ε1/2(γ2 − γ1 + φ̄1)

)
xxxxx

+
(
(α1 + α2 − b+ εφ̄2)

(
β2 − β1 + ε1/2(γ2 − γ1 + φ̄1)

))
x

+
(
ε1/2φ̄2(α1 − α2)

)
x
.
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Here, α1 = α1(x− t, εt), α2 = α2(x+ t, εt), etc. By Taylor’s formula we have

tanhx = xG0(x) = x+ x3G1(x) = x− 1

3
x3 + x5G2(x)

= x− 1

3
x3 +

2

15
x5 + x7G3(x) (5.12)

and sech x = 1+ x2G4(x), where G0, . . . , G4 are bounded and smooth func-

tions on R. Therefore, it holds that

(
K0+K1(φ2, b))φ1 = −φ1x−

ε1/2

3
φ1xxx−

2

15
εφ1xxxxx−εφ2φ1x+ε(bφ1)x+ε3/2g3,

where

K1(φ2, b) = −ε
(
φ2 + i tanh(ε1/4D)φ2 i tanh(ε

1/4D)
)
(iD)

+ε sech (ε1/4D)(iD)b sech (ε1/4D),

g3 =
{
G3(ε

1/4D)(iD)7 −G0(ε
1/4D)(iD)φ2G0(ε

1/4D)(iD)2

−G4(ε
1/4D)(iD)3b sech (ε1/4D)− (iD)bG4(ε

1/4D)(iD)2
}
φ1.

Therefore, we obtain
{

φ1t + φ2x + εφ1φ1x − ε1/2µφ2xxx = ε3/2g1,

φ2t =
(
K0 +K1(φ2, b)− εφ2x

)
φ1 + ε3/2g4 = K0φ1 + εg5,

(5.13)

where g4 = g2 − g3 and g5 =
(
ε−1K1(φ2, b) − φ2x

)
φ1 + ε1/2g4. This system

is an approximate version of the first equation in (2.10) and (5.2). By the

same way as the derivation of equations (5.6) and (5.9) we get





φ1tt + 2εφ1φ1tx − ε1/2µK0φ1xxx + φ2tx + ε(φ1tφ1x + φ2xxφ1) = ε3/2g6,

φ2xtt + 2εφ1φ2xxt − ε1/2µK0φ2xxxx +
(
K0 +K1(φ2, b)

)
φ2xx

+ εK0φ1xφ1x + ε(φ2xxφ1t + φ2xtφ1x) + ε[K0, φ1]φ1xx

−
(
K1(φ2x, b

′)φ1t+K1(φ2t, 0)φ1x+K1(φ2xt, 0)φ1

)
−εφ2xφ2xx = ε3/2g7,

(5.14)

where




g6 = g1t + µg5xxx + (µφ2xxx − ε1/2φ1φ1x + εg1)xφ1,

g7 =
(
K0 +K1(φ2, b)− εφ2x

)
g1x + g4xt + ε1/2φ1g5xx

+
(
ε−1K1(φ2, b)− φ2x

)
(µφ2xxx − ε1/2φ1φ1x)x.

Here, an appropriate norm of each gj , j = 1, . . . , 7, is uniformly bounded



202 TATSUO IGUCHI [June

with respect to small ε.

By using this approximate solution φ we define remainder functions η̄

and ū1 by
{

η(x, t) = φ2(x, t) + ε1/2η̄(x, t),

u1(x, t) = φ1(x, t) + ε1/2ū1(x, t),
(5.15)

and put ζ̄ = η̄x. Main task in this paper is to derive uniform estimates of

these remainder functions η̄ and ū1 with respect to small ε for the long time

interval 0 ≤ t ≤ O(1/ε). To this end, we derive quasi-linear equations for

these remainder functions. Substituting (5.15) for (5.6) and (5.9), and using

(5.14) we see that





ū1tt + 2εu1ū1tx + ε
(
εu21 + 3ε1/2µ(1 + ε5/2ζ2)−5/2ζx

)
ū1xx

− ε1/2µ
(
(1 + ε5/2ζ2)−3/2K0ū1xx

)
x
− ε1/2µ(K1ū1)xxx + ζ̄t = εh1,

ζ̄tt + 2εu1ζ̄tx − ε1/2µ(1 + ε5/2ζ2)−3/2K0ζ̄xxx − ε1/2µK1ζ̄xxx

+ (K0 +K1)ζ̄x + ε[K0, u1]ū1xx −
(
K1(ζ, b

′)ū1t +K1(ηt, 0)ū1x
)
= εh2,
(5.16)

where

h1 = f5 − g6 − 2ū1φ1tx −
(
ε1/2u21 + 3µ(1 + ε5/2ζ2)−5/2ζx

)
φ1xx

+µ
(
ε−1((1 + ε5/2ζ2)−3/2 − 1)K0φ1xx

)
x

+µ(ε−1K1φ1 + ε−1K̃2φ1 + ε−1/2K̃2ū1)xxx − ζK0(φ2xt + ε1/2ζ̄t)

−(ū1tφ1x + u1tū1x + ζ̄xφ1 + ζxū1)− 3µ(φ2xxx + ε1/2ζ̄xx)u1x

−µζ(ε1/2K2
0 + 1)(φ1xxx + ε1/2ū1xxx),

h2 = f7 − g7 − 2ū1φ2xxt + µε−1
(
(1 + ε3ζ2)−3/2 − 1

)
K0φ2xxxx

+ε−1
(
µK1φ2xxxx − (K1(η̄, 0) + K̃2)φ2xx − K̃2ζ̄x

)

−ε−1K̃1

(
φ1xφ1x + ε1/2(φ1x + u1x)ū1x

)

−(φ2xxū1t + ζ̄xu1t + φ2xtū1x + ζ̄tu1x)

−ε−1/2[K̃1, u1](φ1xx + ε1/2ū1xx)− [K0, ū1]φ1xx

−K0

(
(φ1x + u1x)ū1x

)
+ µε−1K̃2(φ2xxxx + ε1/2ζ̄xxx)

+ε−1
(
K1(ζ̄, 0)φ1t +K1(η̄t, 0)φ1x +K1(ζ̄t, 0)φ1 +K1(ζt, 0)ū1

)

+ε−3/2
(
[∂x, K̃2](φ1t + ε1/2ū1t)

+ [∂t, K̃2](φ1x + ε1/2ū1x) + [∂x, [∂t, K̃2]]u1
)

+u1ε
−1/2

(
2[∂x, K̃1](φ1x + ε1/2ū1x) + [∂x, [∂x, K̃1]](φ1 + ε1/2ū1)

)
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−K0

(
ζ(K1(φ1t + ε1/2ū1t))x + ζxK0(φ1t + ε1/2ū1t)

)

+φ2xK
2
0φ2xx + ζ̄(ε1/2K2

0 + 1)φ2xx + ζ(ε1/2K2
0 + 1)ζ̄x

−µζ(ε1/2K2
0 + 1)(φ2xxxx + ε1/2ζ̄xxx)

+[K0, ζ]K0

(
φ2xx − ε1/2µφ2xxxx + ε1/2(ζ̄x − ε1/2µζ̄xxx)

)
.

It follows from (5.2) that ζt = Ku1x + [∂x, K̃1]u1 − ε(ζu1)x. Substituting

(5.15) for this equation and the first equation in (2.10), and using (5.13) we

obtain {
ζ̄t = (K0 +K1)ū1x + εh3,

ū1t = −ζ̄ + ε1/2µζ̄xx + εh4,
(5.17)

where

h3 = −g4x − (φ2xū1 + ζ̄u1)x +
(
ε−1K1(η̄, 0) + ε−3/2K̃2

)
φ1x + ε−1K̃2ū1x

+
(
ε−1K1(ζ̄ , 0) + ε−3/2[∂x, K̃2]

)
φ1 + ε−1

(
K1(ζ, b

′) + [∂x, K̃2]
)
ū1,

h4 = −g1 − (ū1φ1x + u1ū1x)− ζ
(
K(φ1t + ε1/2ū1t) + [∂t, K̃1]u1 + εu1u2x

)

+µ
(
ε−1((1 + ε5/2ζ2)−1/2 − 1)ζ

)
xx
.

In view of (3.5) we introduce a linear operator L1 = L1(η, b) depending on

η and b by

L1(η, b)f = −
(
η + i tanh(ε1/4D)η i tanh(ε1/4D)

)
f

+sech (ε1/4D)b sech (ε1/4D)f. (5.18)

Then, it holds that K1(η, b)f = ε
(
L1(η, b)fx + L1(0, b

′)f
)
. By this relation,

(5.16), and (5.17) we finally obtain





ū1tt + 2εu1ū1tx + ε
(
εu21 + 3ε1/2µ(1 + ε5/2ζ2)−5/2ζx

)
ū1xx

− ε1/2µ
(
(1 + ε5/2ζ2)−3/2K0ū1xx

)
x
+K0ū1x

− ε3/2µL1(η, b)ū1xxxx + εL1(η, b)ū1xx = εh5,

ζ̄tt + 2εu1ζ̄tx − ε1/2µ(1 + ε5/2ζ2)−3/2K0ζ̄xxx +K0ζ̄x

− ε3/2µL1(η, b)ζ̄xxxx + εL1(η, b)ζ̄xx = εh6,

(5.19)

where

h5 = h1 − h3 − L1(0, b
′)ū1x + ε1/2µL1(0, b

′)ū1xxx

+ε−1/2µ
(
3K1(ζ, b

′)ū1xx + 3K1(ζx, b
′′)ū1x +K1(ζxx, b

′′′)ū1
)
,
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h6 = h2 + ε1/2µL1(0, b
′)ζ̄xxx−L1(0, b

′)ζ̄x+[K0, u1]K
−1
0 (iD)(εh3+K1ū1x−ζ̄t)

+ε−1K1(ζ, b
′)(εh4+ε1/2µζ̄xx−ζ̄)−ε−1K1(ηt, 0)K

−1
0 (εh3 +K1ū1x−ζ̄t).

The quasi-linear system (5.19) leads uniform estimates of (ū1t, ū1x, ζ̄t, ζ̄x)

with respect to small ε in appropriate Sobolev spaces. In order to obtain

uniform L2 estimate of (ū1, η̄) we have to derive another system. In deriving

the system we do not have to care the order of derivatives. It follows from

(2.10) that





u1t + ηx + εu1u1x − ε1/2µηxxx = ε3/2f8,

ηt + u1x + ε
(
(η − b)u1

)
x
+

ε1/2

3
u1xxx +

2

15
εu1xxxxx = ε3/2f9,

where




f8 = µ
(
ε−1((1 + ε5/2ζ2)−3/2 − 1)ζx

)
x
− ζ(u2t + εu1u2x),

f9 =
{
ε−3/2K̃2 −G3(ε

1/4D)(iD)7 −G0(ε
1/4D)(iD)ηG0(ε

1/4D)(iD)2

−G4(ε
1/4D)(iD)3b sech (ε1/4D)− (iD)bG4(ε

1/4D)(iD)2
}
u1.

Substituting (5.15) for the above system and using (5.11) we obtain





ū1t + η̄x − ε1/2µη̄xxx = εh7,

η̄t + ū1x +
ε1/2

3
ū1xxx = εh8,

where 



h7 = f8 − g1 − (ū1φ1x + u1ū1x),

h8 = f9 − g2 −
(
η̄φ1 + (η − b)ū1

)
x
− 2

15
ū1xxxxx.

It is better to rewrite this system in the form




ū1t + η̄x + ε1/2µū1txx = εh9,

η̄t + ū1x −
ε1/2

3
η̄txx = εh10,

(5.20)

where 



h9 = µ2η̄xxxxx + h7 + ε1/2µh7xx,

h10 =
1

9
ū1xxxxx + h8 −

ε1/2

3
h8xx.
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6. Estimates for Remainder Terms

In this section we give uniform estimates for remainder terms fj, gj , and

hj, which were introduced in the previous section, with respect to small ε in

appropriate norms.

We begin to give several estimates for Fourier multipliers and commu-

tators. We refer to [14] (see also Nalimov [27] and Yosihara [46]) for proofs

of the following lemmas.

Lemma 6.1. Let s ≥ s0. There exists a positive constant C such that

{
‖K0u‖s ≤ min

{
ε−1/4‖u‖s, ‖ux‖s

}
,

‖(ε1/2K2
0 + 1)u‖s ≤ C(1 + ε−(s−s0)/4)‖u‖s0 .

Lemma 6.2. Let s > 1/2. There exists a positive constant C such that

‖K0(uv)‖s ≤ C(‖K0u‖s‖v‖s + ‖u‖s‖K0v‖s).

Lemma 6.3. Let s ≥ s0 > 1/2. There exists a positive constant C such

that 



‖[K0, a]u‖s ≤ C(1 + ε−(s−s0+1)/4)‖a‖s‖u‖s0 ,
‖[K0, a]u‖s ≤ C(1 + ε−(s−s0)/4)‖ax‖s‖u‖s0 ,
‖[K0, a](iD)u‖s ≤ C(1 + ε−(s−s0+1)/4)‖ax‖s‖u‖s0 ,
‖[K0, a]K

−1
0 (iD)u‖s ≤ C(1 + ε−(s−s0)/4)‖ax‖s‖u‖s0 .

Lemma 6.4. Let s > 1/2. There exists a positive constant C such that

‖K1(η, 0)K
−1
0 u‖s ≤ Cε‖η‖s+1‖u‖s.

Lemma 6.5. Let m be an integer such that m ≥ 2 and δ1 the constant in

Lemma 3.1. There exists a small constant δ2 ∈ (0, δ1] such that if η ∈ Hm+1,

b ∈ Wm+1,∞, and ε ∈ (0, 1] satisfy ε(‖η‖m+1 + ‖b‖Wm+1,∞) ≤ δ2, then we

have

‖(1 + ε3/2ζK)−1f‖m ≤ 2‖f‖m.

Proof. By Lemmas 3.1 and 6.1 we have ‖ε3/2ζKf‖m ≤ Cε‖η‖m+1‖f‖m
if ε(‖η‖m + ‖b‖Wm+1,∞) ≤ δ1. Therefore, taking δ2 > 0 suitably small we
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obtain the desired estimate by the Neumann series expansion. �

For the operators P1 and P2 defined by (5.5) and (5.8) we have the

following lemma.

Lemma 6.6. Let M > 0, m and m0 be integers such that m ≥ m0 ≥ 2.

There exist positive constants ε1 and C such that if ‖η‖m+1+‖b‖Wm+1,∞ ≤ M

and 0 < ε ≤ ε1, then we have

‖P1f‖m ≤ Cε(3−(m−m0))/4‖f‖m0
, ‖P2f‖m ≤ Cε(2−(m−m0))/4‖f‖m0

.

Proof. These are simple consequences of Lemmas 3.1, 6.1, 6.3 and

6.5. �

Lemma 6.7. Let M1 > 0, m be an integer such that m ≥ 4, and

b ∈ Wm+4,∞. There exist positive constants ε2 and C such that if (η, u) is

a solution of (2.10) satisfying

{
‖η(t)‖m+2 + ‖ηt(t)‖m+1 + ‖u1(t)‖m+1 + ‖u1t(t)‖m ≤ M1,

‖K0u1(t)‖m+1 + ‖K0u1t(t)‖m ≤ M1

(6.1)

for 0 ≤ t ≤ T , then we have

‖f5(t)‖m + ‖f7(t)‖m + ‖f8(t)‖2 + ‖f9(t)‖2 ≤ C (6.2)

for 0 ≤ t ≤ T and 0 < ε ≤ ε2.

Proof. By assumption, we have ‖ζ(t)‖m+1 + ‖ζt(t)‖m ≤ M1. Since

u2 = K0u1 + K̃1u1, Lemmas 3.1 and 3.3 imply ‖u2(t)‖m+1 + ‖u2t(t)‖m ≤ C.

Since ηt = u2−εζu1, we also have ‖ηtt(t)‖m ≤ C. It follows from (2.10) that

ε1/2ζxx = µ−1(1 + ε5/2ζ2)3/2
{
u1t + ζ + εu1u1x

+ε3/2ζ(u2t + εu1u2x)− ε1/2µ
(
(1 + ε5/2ζ2)−3/2

)
x
ζx
}
,

so that we obtain ε1/2‖ζxx(t)‖m ≤ C. Using these uniform estimates and

previous lemmas, we can prove ‖f2(t)‖m ≤ Cε, ‖f6(t)‖m ≤ Cε3/4, and the

desired estimates. �

Lemma 6.8. Let M2 > 0, m be a positive integer, and b ∈ Wm+13,∞.

There exists a positive constant C such that if α = (α1, α2) is a solution of
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(4.8) satisfying ‖α(τ)‖m+17 ≤ M2 for 0 ≤ τ ≤ T , then we have

‖g6(t)‖m + ‖g7(t)‖m + ‖g1(t)‖2 + ‖g2(t)‖2 ≤ C (6.3)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ 1.

Proof. By (4.8) we have ‖ατ (τ)‖m+12 + ε‖αττ (τ)‖m+7 ≤ C, which

together with the definitions (4.5)–(4.7) and (5.10) implies in turn that

‖β(τ)‖m+15+‖βτ (τ)‖m+10+ε‖βττ (τ)‖m+5 ≤ C, ‖γ(τ)‖m+13+‖γτ (τ)‖m+8+

ε‖γττ (τ)‖m+3 ≤ C, ‖φ̄(t)‖m+13 + ‖φ̄t(t)‖m+12 ≤ C, and that

‖φ(t)‖m+13 + ‖φt(t)‖m+8 ≤ C. (6.4)

These follows easily the desired estimates. �

Lemma 6.9. Let M1,M2 > 0, m be an integer such that m ≥ 4,

and b ∈ Wm+13,∞. There exist positive constants ε3 and C such that if

‖α(τ)‖m+17 ≤ M2 for 0 ≤ τ ≤ T and (6.1) is valid for 0 ≤ t ≤ T/ε and

0 < ε ≤ ε3, then we have

‖h5(t)‖2m + ‖h6(t)‖2m + ‖h9(t)‖2 + ‖h10(t)‖2 ≤ C
(
1 + E (t)

)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε3, where

E (t) = ‖η̄(t)‖2m+2 + ‖η̄t(t)‖2m+1 + ‖ū1(t)‖2m+1 + ‖ū1t(t)‖2m.

Proof. Since the assumptions of Lemmas 6.7 and 6.8 are satisfied, we

have (6.2), (6.3), and (6.4). By the second equation in (5.17) we obtain

ε1/2‖ζ̄xx(t)‖m ≤ C
(
1 + E (t)

)1/2
. These estimates together with Lemmas

3.1–3.3 and 6.1–6.4 yield the desired estimates. �

7. Proof of Main Theorems

Since a local existence theorem in time of solution for the initial value

problem (2.10) and (2.11) for fixed ε > 0 was already given in [13], it is

sufficient to derive a priori estimates of the solution (ηε, uε) for the long

time interval 0 ≤ t ≤ O(1/ε). In view of the quasi-linear equations in (5.19)

we consider the linear equation

utt + εp1utx + εp2uxx − ε1/2aK0uxxx + ε1/2γaxK0uxx +K0ux
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+ ε3/2L1(q1, b1)uxxxx + εL1(q2, b2)uxx = F1 + εF2, (7.1)

where ε > 0 is a parameter, a, p1, p2, q1, q2, b1, b2, F1, and F2 are given

functions of (x, t) and may depend on ε, γ is a real constant, and K0 and

L1(q, b) are linear operators defined in (3.5) and (5.18), respectively.

Remark 7.1. Since the operator L1(q, b) has a smoothing property, we

can regard the last two terms of the left hand side of (7.1) as lower order

and put them into the right hand side if we fix ε > 0. However, if we use the

smoothing property, then we lose a power of ε. Therefore, in order to obtain

uniform estimates of the solution u with respect to ε, especially, for the long

time interval 0 ≤ t ≤ O(1/ε), we have to deal them as one of principal terms.

This linear equation was investigated in [14] with slight change of nota-

tion and we have the following lemma.

Lemma 7.1. Let M > 0, r > 1, and m be an integer such that m ≥ 4.

There exist positive constants ε5 and C such that if





ε−1‖ax(t)‖m + ‖
(
p1(t), p2(t), q1(t), q2(t)

)
‖m + ‖

(
b1(t), b2(t)

)
‖Wm,∞ ≤ M,

ε−1‖at(t)‖3 + ‖q1t(t)‖3 + ‖q2t(t)‖1 + |
(
p2t(t), b1t(t), b2t(t)

)
|∞ ≤ M,

M−1 ≤ a(x, t) ≤ M for (x, t) ∈ R× [0, T ],

and u ∈ Cj([0, T ];Hm+3−3j/2), j = 0, 1, 2, is a solution of (7.1), then we

have

Em(t) ≤ C

(
eCεtEm(0) +

∫ t

0
eCε(t−τ)

(
(1 + τ)r‖F1(τ)‖2m + ε‖F2(τ)‖2m

)
dτ

)

(7.2)

for 0 ≤ t ≤ T and 0 < ε ≤ ε5, where

Em(t) = ‖ut(t)‖2m +
∥∥
√

D tanh(ε1/4D)

ε1/4
u(t)

∥∥2
m

+
∥∥
√

ε1/4D3 tanh(ε1/4D)u(t)
∥∥2
m
. (7.3)

Remark 7.2. The energy function Em(t) satisfies

‖ut(t)‖2m + 4−1‖ux(t)‖2m ≤ Em(t) ≤ ‖ut(t)‖2m + ‖u(t)‖2m+2.



2007] CAPILLARY-GRAVITY WAVES AND THE KAWAHARA EQUATION 209

We proceed to prove Theorem 4.1. By standard energy method and

appropriate approximation argument of the system it is not difficult to show

that under the assumption of Theorem 4.1 there exist constants T,M2 > 0,

which depend only on µ, m, and M , such that the initial value problem (4.8)

and (4.10) has a unique solution α = αε ∈ C([0, T ];Hm+17) satisfying

‖αε(τ)‖m+17 ≤ M2 for 0 ≤ τ ≤ T, ε > 0.

Therefore, by the proof of Lemma 6.8 there exists a constant M3 > 0 such

that the approximate solution φ = φε defined by (5.10) satisfies

‖φε(t)‖2m+13 + ‖φε
t (t)‖2m+8 ≤ M2

3 for 0 ≤ t ≤ T/ε, 0 < ε ≤ 1.

Now, we assume that

E (t) = ‖η̄ε(t)‖2m+2 + ‖η̄εt (t)‖2m+1 + ‖ūε1(t)‖2m+1 + ‖ūε1t(t)‖2m ≤ N2
1 (7.4)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε0, where the constants N1 and ε0 will be

determined later. Then, by (5.15) we have

{
‖ηε(t)‖2m+2 + ‖ηεt (t)‖2m+1 + ‖uε1(t)‖2m+1 + ‖uε1t(t)‖2m ≤ (2M3)

2,

‖K0u
ε
1(t)‖2m+1 + ‖K0u

ε
1t(t)‖2m ≤ (2M3)

2

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε4, if we take ε4 ∈ (0, 1] so small that ε4 ≤ ε0

and ε
1/2
4 N1 ≤ M3. Thanks of these estimates and Lemma 6.9 we see that

there exist constants C1 > 0 independent of N1 and ε3 ∈ (0, ε4] such that

‖h5(t)‖2m + ‖h6(t)‖2m + ‖h9(t)‖2 + ‖h10(t)‖2 ≤ C1

(
1 + E (t)

)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε3. It follows from (5.10) and (5.15) that

η̄ε(x, 0) = −ε1/2φ̄ε
2(x, 0) and ūε1(x, 0) = βε

1(x, 0) − βε
2(x, 0) + ε1/2

(
γε1(x, 0) −

γε2(x, 0) − φ̄ε
1(x, 0)

)
, which together with (5.17) imply that there exists a

constant C2 > 0 independent of N1 such that

‖η̄ε(0)‖2m+3 + ‖ūε1(0)‖2m+2 + ‖η̄εt (0)‖2m+1 + ‖ūε1t(0)‖2m ≤ C2

for 0 < ε ≤ ε3. (See also the proof of Lemma 6.8.)

Since ζ̄ and ū satisfy (5.19), by Lemma 7.1 and Remark 7.2 it holds that

there exist constants C3 > 0 independent of N1 and ε5 ∈ (0, ε4] such that

‖
(
ζ̄εt (t), ζ̄

ε
x(t), ū

ε
1t(t), ū

ε
1x(t)

)
‖2m
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≤ C3e
C3εt

(
‖
(
ζ̄εt (0), ū

ε
1t(0)

)
‖2m + ‖

(
ζ̄ε(0), ūε1(0)

)
‖2m+2

)

+ C3ε

∫ t

0
eC3ε(t−τ)

(
‖h5(τ)‖2m + ‖h6(τ)‖2m

)
dτ

≤ C3C2e
C3εt + C3C1ε

∫ t

0
eC3ε(t−τ)

(
1 + E (τ)

)
dτ (7.5)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε5. Since η̄ and ū satisfy also (5.20), we see

that

d

dt

(
‖η̄ε(t)‖2 + ‖ūε1(t)‖2 +

ε1/2

3
‖η̄εx(t)‖2 − ε1/2µ‖ūε1x(t)‖2

)

= 2ε
(
(η̄ε(t), h10(t)) + (ūε1(t), h9(t))

)

≤ ε
(
‖η̄ε(t)‖2 + ‖ūε1(t)‖2 + ‖h9(t)‖2 + ‖h10(t)‖2

)
.

Therefore, Gronwall’s inequality implies that

‖η̄ε(t)‖2 + ‖ūε1(t)‖2

≤ ε1/2µ‖ūε1x(t)‖2 + eεt
(
‖η̄ε(0)‖2 + ‖ūε1(0)‖2 +

ε1/2

3
‖η̄εx(0)‖2

)

+ε

∫ t

0
eε(t−τ)

(
‖h9(τ)‖2 + ‖h10(τ)‖2 + ε1/2µ‖ūε1x(τ)‖2

)
dτ

≤ ε1/2µ‖ūε1x(t)‖2 + C2e
εt + (C1 + 1)ε

∫ t

0
eε(t−τ)

(
1 + E (τ)

)
dτ (7.6)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε5. By (5.20) we also have

‖η̄εt (t)‖2 ≤ 3‖ūε1x(t)‖2 +
ε

3
‖ζ̄εtx(t)‖2 + 3ε2‖h10(t)‖2

≤ 3‖ūε1x(t)‖2 + ε(3C1 + 1)
(
1 + E (t)

)
(7.7)

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε5. Summarizing the above estimates we see

that there exists a constant C4 depending only on ν, m, and M such that

E (t) ≤ C4e
C4εt + C4ε

∫ t

0
eC4ε(t−τ)

(
1 + E (τ)

)
dτ

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε0, by taking ε0 ∈ (0, ε5] so small that

2ε0(3C1 + 1) ≤ 1. This and Gronwall’s inequality imply that

E (t) ≤ (C4 + 1)e2C4T for 0 ≤ t ≤ T/ε, 0 < ε ≤ ε0.

Therefore, by setting N1 = (C4 + 1)1/2eC4T we see that (7.4) holds for
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0 ≤ t ≤ T/ε and 0 < ε ≤ ε0. This easily follows (4.12). The proof of

Theorem 4.1 is complete.

We proceed to prove Theorem 4.2. One of strategies for the proof is

to compare the solution of (4.8) and (4.10) and that of (4.9) and (4.10).

However, we do not know whether the solution of (4.8) and (4.10) exists

globally in time or not, so that we can not take the time T arbitrarily large

if we use the solution. In order to take T as an arbitrarily large time, we use

the global existence theorem for the initial value problem of the Kawahara

equation, which will be given in Appendix, and we should not use the solution

of (4.8). Therefore, we have to modify the quasi-linearization carried out in

section 5.

Let α = (α1, α2) be the solution of the initial value problem for the

Kawahara equation (4.9) and (4.10) and define β = (β1, β2) and γ = (γ1, γ2)

by (4.5) and (4.6) as before. We define an approximate solution φ = (φ1, φ2)

by





φ1(x, t) = α1(x− t, εt)− α2(x+ t, εt)− ε1/2
(
β1(x− t, εt)− β2(x+ t, εt)

)

− ε
(
γ1(x− t, εt)− γ2(x+ t, εt)

)
,

φ2(x, t) = α1(x− t, εt) + α2(x+ t, εt),

in place of (5.10). Then, we have





φ1t + φ2x + εφ1φ1x − ε1/2µφ2xxx = −ε(α1α2)x + ε3/2g̃1,

φ2t + φ1x + ε
(
(φ2 − b)φ1

)
x
+ ε1/2

3 φ1xxx +
2
15εφ1xxxxx

= −ε
(
b(α1 − α2)

)
x
+ ε3/2g̃2,

where




g̃1 = β2τ − β1τ + ε1/2(γ2τ − γ1τ )

+
(
(α1 − α2)

(
β2 − β1 + ε1/2(γ2 − γ1)

))
x

+ ε1/2

2

((
β2 − β1 + ε1/2(γ2 − γ1)

)2)
x
,

g̃2 =
(
(α1 + α2 − b)

(
β2 − β1 + ε1/2(γ2 − γ1)

))
x

+ 1
3(γ2 − γ1)xxx +

2
15

(
β2 − β1 + ε1/2(γ2 − γ1)

)
xxxxx

,

and that

φ2t =
(
K0 +K1(φ2, b)− εφ2x

)
φ1 − ε

(
b(α1 − α2)

)
x
+ ε2g̃4

= K0φ1 + εg̃5,
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where g̃4 = g̃2 − g3 and g̃5 =
(
ε−1K1(φ2, b)− φ2x

)
φ1 −

(
b(α1 − α2)

)
x
+ εg̃4.

Therefore, in place of (5.14) we have





φ1tt + 2εφ1φ1tx − ε1/2µK0φ1xxx + φ2tx + ε(φ1tφ1x + φ2xxφ1)

= ε(α1xα2 − α1α2x)x + ε3/2g̃6,

φ2xtt + 2εφ1φ2xxt − ε1/2µK0φ2xxxx +
(
K0 +K1(φ2, b)

)
φ2xx

+ εK0φ1xφ1x + ε(φ2xxφ1t + φ2xtφ1x) + ε[K0, φ1]φ1xx

−
(
K1(φ2x, b

′)φ1t +K1(φ2t, 0)φ1x +K1(φ2xt, 0)φ1

)
− εφ2xφ2xx

= ε
(
b(α1 + α2)x −K0(α1α2)

)
xx

+ ε3/2g̃7,
(7.8)

where




g̃6 = g̃1t + µg̃5xxx − ε1/2(α1τα2 + α1α2τ )x
+

(
µφ2xxx − ε1/2φ1φ1x − ε1/2(α1α2)x + εg̃1

)
x
φ1,

g̃7 =
(
K0 +K1(φ2, b)− εφ2x

)
g̃1x

+ g̃4xt + ε1/2φ1g̃5xx − ε1/2
(
b(α1τ − α2τ )

)
xx

+
(
ε−1K1(φ2, b)− φ2x

)(
µφ2xxx − ε1/2φ1φ1x − ε1/2(α1α2)x

)
x
.

As before, we define remainder functions η̄ and ū1 by (5.15) and put ζ̄ = η̄x.

Then, in place of (5.16) we have





ū1tt + 2εu1ū1tx + ε
(
εu21 + 3ε1/2µ(1 + ε5/2ζ2)−5/2ζx

)
ū1xx

− ε1/2µ
(
(1 + ε5/2ζ2)−3/2K0ū1xx

)
x
− ε1/2µ(K1ū1)xxx + ζ̄t

= ε1/2(α1α2x − α1xα2)x + εh̃1,

ζ̄tt + 2εu1ζ̄tx − ε1/2µ(1 + ε5/2ζ2)−3/2K0ζ̄xxx − ε1/2µK1ζ̄xxx

+ (K0 +K1)ζ̄x + ε[K0, u1]ū1xx −
(
K1(ζ, b

′)ū1t +K1(ηt, 0)ū1x
)

= ε1/2
(
K0(α1α2)− b(α1 + α2)x

)
xx

+ εh̃2,
(7.9)

where h̃1 = h1 + g6 − g̃6 and h̃2 = h2 + g7 − g̃7. Moreover, in place of (5.17)

we have {
ζ̄t = (K0 +K1)ū1x + ε1/2

(
b(α1 − α2)

)
xx

+ εh̃3,

ū1t = −ζ̄ + ε1/2µζ̄xx + ε1/2(α1α2)x + εh̃4,
(7.10)

where h̃3 = h3 + g4x − g̃4x and h̃4 = h4 + g1 − g̃1. Therefore, in place of
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(5.19) and (5.20) we obtain





ū1tt + 2εu1ū1tx + ε
(
εu21 + 3ε1/2µ(1 + ε5/2ζ2)−5/2ζx

)
ū1xx

− ε1/2µ
(
(1 + ε5/2ζ2)−3/2K0ū1xx

)
x
+K0ū1x

− ε3/2µL1(η, b)ū1xxxx + εL1(η, b)ū1xx = ε1/2g̃8 + εh̃5,

ζ̄tt + 2εu1ζ̄tx − ε1/2µ(1 + ε5/2ζ2)−3/2K0ζ̄xxx +K0ζ̄x

− ε3/2µL1(η, b)ζ̄xxxx + εL1(η, b)ζ̄xx = ε1/2g̃9 + εh̃6

(7.11)

and {
ū1t + η̄x + ε1/2µū1txx = ε1/2g̃10 + εh̃9,

η̄t + ū1x − ε1/2

3 η̄txx = ε1/2g̃11 + εh̃10,
(7.12)

respectively, where h̃5 = h5 − (h1 − h̃1) + (h3 − h̃3),

h̃6 = h̃2 + ε1/2µL1(0, b
′)ζ̄xxx − L1(0, b

′)ζ̄x

+
(
[K0, u1]K

−1
0 (iD)− ε−1K1(ηt, 0)K

−1
0

)

×
{
εh̃3 +K1ū1x + ε1/2

(
b(α1 − α2)

)
xx

− ζ̄t
}

+ε−1K1(ζ, b
′)
(
εh̃4 + ε1/2µζ̄xx + ε1/2(α1α2)x − ζ̄

)
,

h̃7 = h7 + g1 − g̃1, h̃8 = h8 + g2 − g̃2,
{

h̃9 = µ2η̄xxxxx + µ(α1α2)xxx + h̃7 + ε1/2µh̃7xx,

h̃10 =
1
9 ū1xxxxx − 1

3

(
b(α1 − α2)

)
xx

+ h̃8 − ε1/2

3 h̃8xx,

and




g̃8(x, t) =
(
α1(x− t, εt)α2x(x+ t, εt)− α1x(x− t, εt)α2(x+ t, εt)

)
x

+
(
b(x)

(
α1(x− t, εt)− α2(x+ t, εt)

))
xx
,

g̃9(x, t) = K0

(
α1(x− t, εt)α2(x+ t, εt)

)
xx

−
(
b(x)

(
α1(x− t, εt) + α2(x+ t, εt)

)
x

)
xx
,

g̃10(x, t) =
(
α1(x− t, εt)α2(x+ t, εt)

)
x
,

g̃11(x, t) =
(
b(x)

(
α1(x− t, εt)− α2(x+ t, εt)

))
xx
.

It is not difficult to check that h̃5, . . . , h̃10 satisfy the same estimate in Lemma

6.9 as h5, . . . , h10. For g̃8, . . . , g̃11, we have the following lemma. We refer to

[14] for the proof.

Lemma 7.2. Let m be a positive integer. There exists a positive con-
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stant C such that

‖g̃8(t)‖m + ‖g̃9(t)‖m + ‖g̃10(t)‖+ ‖g̃11(t)‖
≤ C(1 + t)−2

(
‖α(εt)‖m+3,2 + ‖b‖m+2,2

)
‖α(εt)‖m+3,2

for t ≥ 0 and ε > 0.

Under the assumption of Theorem 4.2, there exists a constant M1 > 0

such that the initial value problem for the Kawahara equation (4.9) and

(4.10) has a unique solution α ∈ C([0, T ];Hm+17 ∩Hm+3,2) satisfying

‖α(τ)‖m+17 + ‖α(τ)‖m+3,2 ≤ M1 for 0 ≤ τ ≤ T, ε > 0,

(see Appendix for the proof) so that by Lemma 7.2 we have

‖g̃8(t)‖2m + ‖g̃9(t)‖2m + ‖g̃10(t)‖2 + ‖g̃11(t)‖2 ≤ C1(1 + t)−4

for 0 ≤ t ≤ T/ε and ε > 0. Now, we suppose (7.4) as before. In this case, in

place of (7.5), (7.6), and (7.7) we obtain

‖
(
ζ̄εt (t), ζ̄

ε
x(t), ū

ε
1t(t), ū

ε
1x(t)

)
‖2m

≤ C3e
C3εt

(
‖
(
ζ̄εt (0), ū

ε
1t(0)

)
‖2m + ‖

(
ζ̄ε(0), ūε1(0)

)
‖2m+2

)

+C3

∫ t

0
eC3ε(t−τ)

{
(1 + τ)2

(
‖g̃8(τ)‖2m + ‖g̃9(τ)‖2m

)

+ ε
(
‖h̃5(τ)‖2m + ‖h̃6(τ)‖2m

)}
dτ

≤ C3C2e
C3εt + C3C1

∫ t

0
eC3ε(t−τ)

{
(1 + τ)−2 + ε

(
1 + E (τ)

)}
dτ,

‖
(
η̄ε(t), ūε1(t)

)
‖2

≤ ε1/2µ‖ūε1x(t)‖2 + e1+εt
(
‖η̄ε(0)‖2 + ‖ūε1(0)‖2 +

ε1/2

3
‖η̄εx(0)‖2

)

+

∫ t

0
e1+ε(t−τ)

(
(1 + τ)2

(
‖g̃10(τ)‖2 + ‖g̃11(τ)‖2

)

+ ε
(
‖h̃9(τ)‖2 + ‖h̃10(τ)‖2 + ε1/2µ‖ūε1x(τ)‖2

))
dτ

≤ ε1/2µ‖ūε1x(t)‖2 + C2e
1+εt

+ (C1 + µ)

∫ t

0
e1+ε(t−τ)

{
(1 + τ)−2 + ε

(
1 + E (τ)

)}
dτ,
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and

‖η̄εt (t)‖2 ≤ 4‖ūε1x(t)‖2 +
4

9
ε‖ζ̄εtx(t)‖2 + 4‖g̃11(t)‖2 + 4ε2‖h̃10(t)‖2

≤ 4‖ūε1x(t)‖2 + (4C1 + 1)
{
(1 + τ)−2 + ε

(
1 + E (t)

)}
,

respectively. Summarizing the above estimates we see that

E (t) ≤ C4e
C4εt + C4

∫ t

0
eC4ε(t−τ)

{
(1 + τ)−2 + ε

(
1 + E (τ)

)}
dτ

≤ 2C4e
C4εt + εC4

∫ t

0
eC4ε(t−τ)

(
1 + E (τ)

)
dτ

for 0 ≤ t ≤ T/ε and 0 < ε ≤ ε0. This and Gronwall’s inequality imply that

E (t) ≤ (2C4 + 1)e2C4T for 0 ≤ t ≤ T/ε, 0 < ε ≤ ε0.

Therefore, by setting N1 = (2C4 + 1)1/2eC4T we see that (7.4) holds for

0 ≤ t ≤ T/ε and 0 < ε ≤ ε0. This easily follows (4.13). The proof of

Theorem 4.2 is complete.

It remains to prove Theorem 4.3. As explained in Remark 4.3, under

the assumption of Theorem 4.3 the solution α = (α1, α2) of (4.9) and (4.10)

satisfies ‖α1(τ)‖m+17 ≤ Cε1/2 or ‖α2(τ)‖m+17 ≤ Cε1/2, so that we have

‖g̃8(t)‖m + ‖g̃9(t)‖m + ‖g̃10(t)‖ + ‖g̃11(t)‖ ≤ Cε1/2

for 0 ≤ t ≤ T/ε and ε > 0. Therefore, we can show Theorem 4.3 in the same

way as the proof of Theorem 4.1.

Appendix. A Priori Estimates for the Kawahara Equation

By an appropriate change of variables it is sufficient to consider the

equation

ut + uux + νuxxx + uxxxxx = 0, (A.1)

where ν is a real constant, under the initial condition

u(x, 0) = u0(x). (A.2)
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Lemma A.1. Let u ∈ C([−T, T ];H5) ∩ C1([−T, T ];H2) be a solution

of (A.1). Then, it holds that

d

dt
‖u(t)‖2 = 0,

d

dt

(
‖uxx(t)‖2 − ν‖ux(t)‖2 +

1

3

∫

R

u(x, t)3dx
)
= 0.

Proof. By making use of the differential equation and integration by

parts we can prove the desired equalities. �

Lemma A.2. Let s ≥ 2 and u ∈ C([−T, T ];Hs) ∩ C1([−T, T ];H2) be

a solution of (A.1)–(A.2). There exists a positive constant C = C(s, ν) such

that

‖u(t)‖s ≤ ‖u0‖s exp
(
C‖u0‖2(1 + ‖u0‖4/7)|t|

)
(A.3)

holds for t ∈ [−T, T ].

Proof. We will derive estimate (A.3) assuming u ∈ C([−T, T ];Hs+5) ∩
C1([−T, T ];Hs). This assumption will be removed by the standard technique

of mollifier. By Lemma A.1, interpolation inequality ‖ux‖2 ≤ ε‖uxx‖2 +

Cε‖u‖2, and the Sobolev imbedding theorem |u|∞ ≤ C‖u‖1/2‖ux‖1/2, we
obtain ‖u(t)‖2 ≤ C‖u0‖2(1+‖u0‖4/7). Put v = (1+ |D|)su. Multiplying the

operator (1 + |D|)s on both sides of equation (A.1) we have

vt + uvx + νvxxx + vxxxxx = f,

where f = −[(1 + |D|)s, u]ux. It is easy to see that ‖f‖ ≤ C‖u‖2‖v‖, and
that

d

dt
‖v(t)‖2 = (v(t), ux(t)v(t)) + 2(v(t), f(t))

≤ C‖u(t)‖2‖v(t)‖2.

This and Gronwall’s inequality imply the desired estimate. �

Lemma A.3. Let s > 5+1/2 and u ∈ C([−T, T ];Hs)∩C1([−T, T ];H2)

be a solution of (A.1)–(A.2). There exists a positive constant C = C(‖u0‖s,
T, ν, s) such that if u0 ∈ Hs−4,1, then

‖u(t)‖s−4,1 ≤ C(‖u0‖s−4,1 + ‖u0‖s) (A.4)
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holds for t ∈ [−T, T ].

Proof. We will derive estimate (A.4) assuming u ∈ C([−T, T ];Hs+1,1)∩
C1([−T, T ];Hs−4,1). This assumption will be removed by considering the

function u(x, t) exp
(
− 1

n

√
1 + x2

)
instead of u(x, t) and letting n → +∞, and

by the standard technique of mollifier. Put w = (1+ |D|)s−4(xu). Then, by

(A.1) we have wt + uwx + νwxxx + wxxxxx = f , where

f = (1 + |D|)s−4(u2 + 3νuxx + 5uxxxx)− [(1 + |D|)s−4, u](1 + |D|)−(s−4)wx.

It is easy to see that ‖f‖ ≤ C(‖u‖2s−4 + ‖u‖s + ‖u‖s−4‖w‖), and that

d

dt
‖w(t)‖2 ≤ C

(
(‖u(t)‖s−4 + 1)‖w(t)‖2 + (‖u(t)‖2s−4 + ‖u(t)‖s)2

)
.

Therefore, Lemma A.2 and Gronwall’s inequality yield the desired es-

timate. �

Similarly, we can show the following lemma.

Lemma A.4. Let s > 9+1/2 and u ∈ C([−T, T ];Hs)∩C1([−T, T ];H2)

be a solution of (A.1)–(A.2). There exists a positive constant C = C(‖u0‖s,
T, ν, s) such that if u0 ∈ Hs−4,1 ∩Hs−8,2, then

‖u(t)‖s−8,2 ≤ C(‖u0‖s−8,2 + ‖u0‖s−4,1 + ‖u0‖s) (A.5)

holds for t ∈ [−T, T ].

A local existence theorem for the initial value problem (A.1)–(A.2) can

be proved by approximating equation (A.1) by an appropriate one. Since this

technique is standard, we omit it. Combining the local existence theorem

and a priori estimates in Lemmas A.2–A.4, we obtain the following global

existence theorem.

Theorem A.1. Let s ≥ 7. For any u0 ∈ Hs the initial value problem

(A.1)–(A.2) has a unique global solution u ∈ C(R;Hs) ∩ C1(R;Hs−5) sat-

isfyig (A.3). If, in addition, s > 9 + 1/2 and u0 ∈ Hs−4,1 ∩Hs−8,2, then the

solution u satisfies (A.4) and (A.5).

Remark A.1. The condition s ≥ 7 is not optimal. However, this

theorem gives sufficient information for our purpose.
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