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Abstract

In this paper, we will address some recent progress on the

L
1-stability of the Boltzmann equation near vacuum. We discuss

a kinetic Glimm type interaction potential measuring the possible

crossings of projected particle trajectories in physical space, and

a nonlinear functional equivalent to the L
1-distance between two

classical solutions. These functionals are employed to establish

the large-time behavior and L
1-stability of classical solutions.

1. Introduction

The study of collisional kinetic equations was first started by Boltzmann

[9] in 1872 and since then, there has been much progress on the existence

theory and applications of Boltzmann type kinetic equations in neighboring

sciences such as physics, chemistry, biology and civil engineering. In this

paper, we will discuss some recent progress on the L1-stability of the Boltz-

mann equation near vacuum. Since we are mainly interested in the stability

of solutions, other interesting and important issues on the existence theory

and convergence toward the equilibrium will not be pursued in this paper,

and refer them to [2, 9, 34].

Let f = f(x, v, t) be the number density function of dilute gas parti-

cles in phase space, and x ∈ R
3 and v ∈ R

3 denote position and velocity

respectively. The Boltzmann equation in the absence of external forces is

{
∂tf + v · ∇xf = Q(f, f),

f(x, v, 0) = f0(x, v).
(1.1)
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Here Q(f, f) is an integral operator which takes account of binary collisions

between particles.

Q(f, f) :=
1

κ

∫ ∫

R3×S2
+

B(v − v∗, ω)
(

f(v′)f(v′∗)− f(v)f(v∗)
)

dωdv∗, (1.2)

Here κ denotes the knudsen number proportional to the mean free path,

S
2
+ := {ω ∈ S

2 : (v − v∗) · ω ≥ 0} and we used abbreviated notations:

f(v′) :=f(x, v′, t), f(v′∗) :=f(x, v′∗, t), f(v) :=f(x, v, t), f(v∗) :=f(x, v∗, t).

Scattered velocities (v′, v′∗) are given by the incident velocities (v, v∗) and

ω ∈ S
2
+:

v′ = v − [(v − v∗) · ω]ω and v′∗ = v∗ + [(v − v∗) · ω]ω. (1.3)

Throughout the paper, we use the following simplified notations:

f ♯(x, v, t) := f(x+ tv, v, t) and Q♯(f, f)(x, v, t) := Q(f, f)(x+ tv, v, t).

We integrate (1.1) along the particle path (x + sv, v, s) to get a mild form

of (1.1):

f ♯(x, v, t)=f0(x, v)+

∫ t

0
Q♯(f, f)(x, v, s)ds, (x, v, t)∈R

3×R
3×R+. (1.4)

We define a mild solution and a classical solution for (1.1) as follows.

Definition 1.1. 1. Let T be a given positive number. A nonnegative

function f ∈ C([0, T );L1
+(R

3×R
3)) is a mild solution of (1.1) with a nonneg-

ative initial datum f0 if and only if for all t ∈ [0, T ) and a.e (x, v) ∈ R
3×R

3,

f satisfies the integral equation (1.4) pointwise.

2. A function f = f(x, v, t) ∈ C(R3 ×R
3 × [0, T )) is a classical solution

of (1.1) with a nonnegative initial datum f0 if and only if f is continuously

differentiable with respect to (x, t) and f satisfies the equation (1.1) point-

wise.

There are extensive literatures on the initial value problem for the Boltz-

mann equation (1.1), for example, the local and global existence of solutions,

uniqueness and qualitative properties of solutions such as H-theorem, time-

asymptotic behavior, etc. The local existence of mild solutions to (1.1) has
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been studied in [15, 24], while initial datum is a small perturbation of vac-

uum, the global existence of mild solutions and renormalized solutions to

(1.1) was investigated in [3, 21, 23, 27, 29, 31, 32, 33].

The purpose of this paper is to present the uniform in time L1-stability:

sup
0≤t<∞

||f(t)− f̄(t)||L1 ≤ G||f0 − f̄0||L1 , (1.5)

where f(t) and f̄(t) are classical solutions to (1.1) corresponding to initial

data f0 and f̄0 respectively, and G is a generic positive constant independent

of t, moreover we used a simplified notation for L1-norm:

||f(t)||L1 := ||f(·, ·, t)||L1(R3×R3).

The above estimate (1.5) is well known in the community of hyperbolic

systems of conservation laws, and leads to the resolution of the uniqueness

issue in some class of BV weak solutions by the Glimm’s random choice

method [25] and a front tracking method [5]. While in the community of

kinetic equations, the estimate (1.5) was first addressed by Tartar [30] for

one-dimensional discrete velocity models and recently Ha and Tzavaras [20]

further improved Tartar’s estimate (1.5) for general one-dimensional discrete

velocity Boltzmann models using a nonlinear functional approach. In the

case of the full Boltzmann equation, the weighted L1-stability estimates was

first obtained by Arkeryd [1] for the space homogeneous setting, and was also

improved by the author and his collaborators for the space-inhomogeneous

setting [11, 18, 19].

The rest of this paper is organized as follows. In Section 2, we sum-

marize the main assumptions and some a priori estimates. In Section 3, we

discuss a kinetic Glimm type interaction potential measuring the possible

crossings of the projected particle trajectories in physical space for the pure

transport equation, and finally Section 4 is devoted to the nonlinear func-

tional approach for the L1-stability. The details presented in this paper can

be found in [18].

2. Assumptions and a Priori Estimates

In this section, we list main assumptions on initial datum, the collision

kernel B in (1.2), and present some a priori estimates to be used in Section 4.
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We introduce bounding functions decaying algebraically: For µ1, µ2 > 0,

Φµ1µ2
(x, v) := hµ1

(x)mµ2
(v), hµ1

(x) :=
1

(1 + |x|)µ1

and mµ2
(v) :=

1

(1 + |v|)µ2
.

Define a function space into set S(ε0, µ1, µ2) and a norm ||| · |||:

|||f ||| := sup
x,v,t

f ♯(x, v, t)Φ−1
µ1µ2

(x, v),

S(ε0, µ1, µ2) := {f ∈ C(R3 × R
3 × R+) : (S1) - (S2) hold} :

(S1) f is continuously differentiable in x and t.

(S2) |||f |||+

3∑

i=1

|||∂xi
f ||| ≤ ε0.

The main assumptions of this paper are

(H1) The collision kernel satisfies an inverse power law and an angular cut-off

assumption:

B(v − v∗, ω) = |v − v∗|
γbγ(θ), −2 < γ ≤ 1 and

bγ(θ)

cos θ
≤ B∗ < ∞,

where θ is a scattering angle between (v − v∗) and ω, i.e.,

θ := cos−1
((v − v∗) · ω

|v − v∗|

)

.

(H2) The parameters S(ε0, µ1, µ2) satisfy

ε0 ≪ κ, µ1 > 4 and µ2 > 7.

Remark 2.1. The existence of classical solutions in S(ε0, µ1, µ2) for

sufficiently smooth initial data was established in [29] under rather mild

decay conditions:

ε0 ≪ κ, µ1 > 1, and µ2 > 3.

We set

Q+(f, f) :=
1

κ

∫ ∫

R3×S2
+

B(v − v∗, ω)f(v
′)f(v′∗)dωdv∗.
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The key a priori estimates for the stability estimates are the phase-space

decay of f ♯ and time-phase space decay of the gain operator Q
♯
+(f, f): For

f ∈ S(ε0, µ1, µ2),

(E1) Four dimensional integral of f ♯ is finite and small; for γ ∈ (−2, 1],

∫ ∫

R3×R+

|v − v∗|
γ−1f ♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)dτdv∗ = O(1)ε0,

where n(v, v∗) ia a unit vector defined as

n(v, v∗) :=
v − v∗

|v − v∗|
, v 6= v∗. (2.1)

(E2) The gain operator Q
♯
+(f, f) satisfies a decay estimate in time-phase

space;

Q
♯
+(f, f) = O(1)

ε20
κ

[h0.5µ1−γ(x)mµ2−4(v)

(1 + t)min{γ+3,2}

]

,

where Q
♯
+(f, f) denotes the gain part of the collision operator and O(1)

denotes a bounded positive function depending only on µ1, µ2 and γ.

3. Kinetic Glimm Type Interaction Potential

In this part, we present a kinetic version of Glimm’s interaction poten-

tial introduced by Feldmann and Ha for multi-dimensional discrete velocity

Boltzmann models in [13]. The origin of such an interaction potential can

be traced back to Glimm’s fundamental paper [17], where Glimm intro-

duced an interaction potential measuring the possible future interactions

between elementary nonlinear waves. In contrast, in the context of kinetic

equations, Glimm type functional was first constructed by Bony [4] for one-

dimensional discrete velocity Boltzmann models (see [6, 7, 8] for the 1D-

Boltzmann model). It is well known [23, 30] that the pure transport equation

is close to the Boltzmann equation near vacuum time-asymptotically, hence

we motivate the functional and its time-decay for the pure linear transport

equation:
{

∂tf(x, v, t) + v · ∇xf(x, v, t) = 0,

f(x, v, 0) = f0(x, v).
(3.1)
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where initial datum f0 satisfies a decay and smoothness properties:

f0(x, v) ≤
ε0

(1 + |x|)µ1(1 + |v|)µ2
, µ1, µ2 > 3 and f0 ∈ C1(R3 ×R

3).

Then the unique classical solution is given by

f(x, v, t) = f0(x− vt, v, t) or equivalently f ♯(x, v, t) = f0(x, v), (3.2)

and satisfies a pointwise bound:

f ♯(x, v, t) ≤
ε0

(1 + |x|)µ1(1 + |v|)µ2
. (3.3)

Below, we give a hueristic construction of the kinetic interaction functional

D(f). Unlike the one-dimensional case, it is very difficult to identify inter-

acting pairs of particles in phase space. However, in the absence of external

forces, we can identify the interacting pairs as follows. For given positive

times t and τ , assume that a group A of particles with strength f(x+tv, v, t)

will interact with unknown group B of particles with velocities v∗ at future

time s = t+ τ . Then the physical space location y of this unknown group B

at time t is

y = x+ (t+ τ)v
︸ ︷︷ ︸

the location of the group A at time s = t+ τ

−τv∗

= x+ tv + τ(v − v∗).

Hence all particles located on the half ray {(y, v∗) ∈ R
3 × R

3 : y = x+ tv +

τ(v − v∗), τ > 0} will collide with a group A in future. Since f is invariant

along the particle path, we simply define interaction potential between two

groups A and B by

W (|v − v∗|)f(x+ tv, v, t)

∫

R+

f(x+ tv + τn(v, v∗), v∗, t)dτ,

where W (·) is a weight to be chosen later. Once two groups of particles

cross in physical space, they will not cross anymore, hence their interaction

potentials are zero after they pass by so that interaction potentials decrease

in time.

Based on the above observation and the choice of a weight W (|v −

v∗|) = |v−v∗|
γ−1, we define an interaction potential D(f) and its production
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functional Λ(f) as follows:

D(f(t)) :=

∫ ∫

R3×R3

f ♯(x, v, t)

×
[ ∫ ∫

R3×R+

|v − v∗|
γ−1f ♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)dτdv∗

]

dvdx;

Λ(f(t)) :=

∫∫∫

R3×R3×R3

|v − v∗|
γf ♯(x, v, t)f ♯(x+ t(v − v∗), v∗, t)dv∗dvdx,

where n(v, v∗) was defined in (2.1). Note that (E1) in Section 2 and conser-

vation of mass imply

D(f(t)) ≤ C(ε0, γ, µ1, µ2) < ∞.

Proposition 3.1. Let f be a classical solution of (3.1) satisfying a point-

wise bound (3.1) corresponding to smooth initial datum f0. Then D(f(t))

satisfies a priori bound:

D(f(t)) +

∫ t

0
Λ(f(s))ds = D(f(0)), t ≥ 0.

Proof. It follows from (3.1) that

∂tf
♯(x, v, t) = 0,

∂tf
♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)

= |v − v∗|n(v, v∗) · ∇xf
♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)

= ∂τ

(

|v − v∗|f
♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)

)

.

Then above two equations yield

∂t

(

|v − v∗|
γ−1f ♯(x, v, t)f ♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)

)

= ∂τ

(

|v − v∗|
γf ♯(x, v, t)f ♯(x+ t(v − v∗) + τn(v, v∗), v∗, t)

)

.

We integrate the above equation over R
3 × R

3 × R
3 × R+ with respect to

(x, v, v∗, τ) to find

d

dt
D(f(t)) = −Λ(f(t)).

Finally we integrate the above equality with respect to t to get the desired

result. �
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Similar to the above estimates, the interaction potential D(f) works for

the full Boltzmann equation as well.

Proposition 3.2. ([18]) Suppose the main assumptions (H) in Section

2 hold, and let f be a classical solution of (1.1) to initial datum f0. Then

D(f(t)) satisfies

D(f(t)) + C0

∫ t

0
Λ(f(s))ds ≤ D(f0),

where C0 is a positive constant independent of time t.

Proof. We use the same argument in Proposition 3.1 and a priori esti-

mate (E1). The details can be found in [18]. �

Remark 3.1. Above kinetic Glimm type interaction potentials can

be constructed for the Boltzmann equation with quantum effects and the

Vlasov-Poisson equations (see [10, 11]).

The interaction potential D(f(t)) can be used to the study of time-

asymptotic behavior toward the collision free flow. For this, we set the

time-asymptotic state f∞ as follows.

f∞(x, v) := f0(x, v) +

∫ ∞

0
Q♯(f, f)(x, v, t)dt.

Then it is easy to see that as t → ∞,

||f(x, v, t) − f∞(x− tv, v)||L1(R3×R3)

≤

∫ ∞

t

∫ ∫

R3×R3

|Q♯(f, f)|dvdxds ≤ C1

∫ ∞

t

Λ(f(s))ds → 0,

where C1 is a positive constant independent of time t, and we used
∫ ∫

R3×R3

Q
♯
+(f, f)(x, v, t)dvdx =

∫ ∫

R3×R3

Q
♯
−(f, f)(x, v, t)dvdx and

∫ ∫

R3×R3

Q
♯
−(f, f)(x, v, t)dvdx ≤ O(1)Λ(f(t)) using angular cut-off (H1).

4. Uniform L1-Stability

In this section, we present a robust nonlinear functional approach for

the uniform L1-stability. This approach was originally motivated by the
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recent progress in the hyperbolic system of conservation laws in one-space

dimension [5, 25].

Let f and f̄ be two classical solutions in S(ε0, µ1, µ2) of (1.1) corre-

sponding to initial data f0 and f̄0 respectively. Define a nonlinear functional

H as the weighted linear combination of two sub-functionals ||f(t)− f̄(t)||L1 ,

Dd(t) and its production functional Λd(t):

Dd(t) :=

∫ ∫

R3×R3

|f − f̄ |♯(x, v, t)

×
[ ∫ ∫

R3×R+

|v−v∗|
γ−1(f ♯ + f̄ ♯)(x+ t(v − v∗) + τn(v, v∗), v∗, t)dτdv∗

]

dvdx,

Λd(t) :=

∫∫∫

R3×R3×R3

|v−v∗|
γ |f−f̄ |♯(x, v, t)(f ♯+f̄ ♯)(x+t(v−v∗), v∗, t)dv∗dvdx,

H(t) := ||f(t)− f̄(t)||L1 +KDd(t),

where K is a positive constant to be determined later.

The functional Dd measures potential interactions between |f−f̄ |, f and

f̄ . On the other hand, note that the functional H can be rewritten as

H(t) =

∫ ∫

R3×R3

|f − f̄ |♯(x, v, t)

×
[

1+K

∫ ∫

R3×R+

|v−v∗|
γ−1(f ♯+f̄ ♯)(x+t(v−v∗)+τn(v, v∗), v∗, t)dτdv∗

︸ ︷︷ ︸

W1(x,v,t)

]

dvdx.

It follows from a priori estimates (E1) that

W1(x, v, t) ≤ C̄1(γ, ε0, µ1, µ2) < ∞.

Now we set

C2 := 1 +KC̄1

to see the equivalence between H(t) and ||f(t)− f̄(t)||L1 :

||f(t)− f̄(t)||L1 ≤ H(t) ≤ C2||f(t)− f̄(t)||L1 .

Notice that the difference |f−f̄ |♯(x, v, t) satisfies a differential inequality.

∂t

(

|f − f̄ |♯(x, v, t)
)

≤ R♯
2(f, f̄)(x, v, t),
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where

R♯
2(f, f̄)(x, v, t) : =

1

2ε

∫ ∫

R3×S2
+

|v − v∗|
γbγ(θ)

(

|f − f̄ |♯(x+ t(v − v′), v′, t)

×(f ♯ + f̄ ♯)(x+ t(v − v′∗), v
′
∗, t)

+|f−f̄ |♯(x+t(v−v′∗), v
′
∗, t)(f

♯+f̄ ♯)(x+ t(v − v′), v′, t)

+|f−f̄ |♯(x, v, t)(f ♯ + f̄ ♯)(x+ t(v − v∗), v∗, t)

+|f−f̄ |♯(x+ t(v−v∗), v∗, t)(f
♯ + f̄ ♯)(x, v, t)

)

dωdv∗.

We set

E(f(t)) :=sup
x,v

∫ ∫

R3×R+

|v−v∗|
γ−1Q

♯
+(f, f)(x+t(v−v∗)+τn(v, v∗), v∗, t)dτdv∗.

Below, we present some lemmas without proofs. Details can be found in

[18].

Lemma 4.1.([18]) Suppose that the main assumption (H) in Section 2

hold. Let f be a classical solution in S(ε0, µ1, µ2). Then E(f(t)) is integrable,

i.e.,
∫ ∞

0
E(f(t))dt ≤ O(1)

ε20
κ
,

where O(1) is a bounded function.

Lemma 4.2.([18]) Suppose the main assumptions (H) in Section 2 hold,

and let f and f̄ be two classical solutions corresponding to initial data f0 and

f̄0 respectively. Then ||f(t)− f̄(t)||L1 and Dd(t) satisfy

(a)
d

dt
||f(t)− f̄(t)||L1 ≤

O(1)

κ
Λd(t).

(b)
d

dt
Dd(t) ≤ −C3Λd(t) +

(

E(f(t)) + E(f̄(t))
)

||f(t)− f̄(t)||L1 ,

where C3 is a positive constant independent of t, and O(1) is a bounded

function.

Theorem 4.1.([18]) Assume that the main assumptions (H) in Section

2 hold, and let f and f̄ be two classical solutions corresponding to initial

data f0 and f̄0 respectively. Then uniform L1-stability estimate holds:

sup
0≤t<∞

||f(t)− f̄(t)||L1 ≤ G||f0 − f̄0||L1 ,
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where G is a positive constant independent of t.

Proof. By definition of H and Lemma 3.2, we have

d

dt
H(t) =

d

dt
||f(t)− f̄(t)||L1 +K

d

dt
Dd(t)

≤ K
(

E(f(t)) + E(f̄(t))
)

||f(t)− f̄(t)||L1 +
(O(1)

κ
− C3K

)

Λd(t).

We now choose K sufficiently large so that

O(1)

κ
− C3K < −C4, for some positive constant C4.

For such K and C4, we have

dH(t)

dt
+ C4Λd(t) ≤ K

(

E(f(t)) + E(f̄(t))
)

H(t).

Here we used ||f(t) − f̄(t)||L1 ≤ H(t). The above differential inequality

implies

H(t) + C4

∫ t

0
Λd(s)ds ≤ exp

(∫ t

0
(E(f(s)) + E(f̄(s)))ds

)

H(0)

≤ exp
(

||E(f)||L1 + ||E(f̄)||L1

)

H(0)

≤ exp
(

O(1)
ε20
κ

)

H(0).

For some positive constant C5, we have

exp
(

O(1)
ε20
κ

)

≤ C5.

Then for such C5, we have

H(t) + C4

∫ t

0
Λd(s)ds ≤ C5H(0).

The L1 stability of classical solutions can be obtained as follows.

||f(t)− f̄(t)||L1 ≤ H(t) ≤ C5H(0) ≤ C2C5||f0 − f̄0||L1 .

Finally we set

G := C2C5
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to obtain the desired result. �

Remark 4.1. In [26], Lu obtained the following a priori L1-stability

estimate [26] without smallness assumption on the size of initial data ε0:

||f(t)− f̄(t)||L1 ≤ G||f0 − f̄0||
θ
L1 for some θ ∈ (0, 1).
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