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Abstract

Recent progress on the derivation of macroscopic quan-

tum models, particularly used in semiconductor device model-

ing, is reviewed. The first part of the survey is concerned with

collisionless models, namely quantum hydrodynamic equations.

These models are derived from the mixed-state Schrödinger sys-

tem or from the Wigner equation. In the second part, start-

ing from a Wigner-Boltzmann-type equation, quantum diffusion

models like the viscous quantum hydrodynamic and the quantum

drift-diffusion equations are derived. For these quantum diffu-

sion models, new numerical results for a simple semiconductor

resonant tunneling diode are presented. Moreover, some hybrid

macroscopic-microscopic models for semiconductor devices are re-

viewed.

1. Introduction

The success of the computer industry relies on the miniaturization of

semiconductor devices. In order to produce such devices at low cost and to

save production time, efficient computer simulations are necessary. As the

characteristic dimensions of modern devices are nowadays much smaller than

100nm, the physical models should include quantum mechanical approaches.

However, the simulation of semiconductors usingmicroscopicmodels, like the
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Schrödinger or Wigner equation, is numerically very time consuming. In the

literature, macroscopic quantum models have been proposed [2, 38, 45] which

seem to represent a compromise between the two contradicting requirements

of physical accuracy and computational efficiency. Roughly speaking, these

models belong either to the class of quantum hydrodynamic equations or to

the class of quantum drift-diffusion models. Also quantum energy-transport

equations have been derived [29] but we do not discuss these models here

since their properties have still to be studied.

The zero-temperature quantum hydrodynamic model consists of the (di-

mensionless) equations

∂tn− divJ = 0, ∂tJ − div

(

J ⊗ J

n

)

+ n∇V +
ε2

2
n∇

(

∆
√
n√
n

)

= 0,

λ2∆V = n− C(x), x ∈ R
d, t > 0,

together with initial conditions for n and J . Here, the unknowns are the

electron density n(x, t), the electron current density J(x, t), and the elec-

trostatic potential V (x, t). The parameters are the (scaled) Planck constant

ε and the Debye length λ. The doping profile C(x) models charged fixed

background ions in the semiconductor device. The matrix J ⊗ J consists of

the elements JiJk, i, k = 1, . . . , d. We refer to, e.g., [9, 18, 88] for textbooks

on semiconductor physics.

The above equations are the quantum analogue of the zero-temperature

Euler equations under an electric force. The quantum term can be inter-

preted either as an internal self-potential, the so-called Bohm potential,

∆
√
n/

√
n, or as a non-diagonal pressure tensor, (∇ ⊗ ∇) log n. Formally,

the above equations are equivalent to the Schrödinger equation. They are

also referred to as the Madelung equations [77], used in plasma physics [75,

76]. The equivalence will be made more precise in Section 2.1.

Temperature terms can be obtained from a mixed-state Schrödinger

system or from the Wigner equation via the moment method. We refer to

sections 2.2 and 2.3 for details. When using the moment method, the mo-

ment equations have to be closed. Typical closures are given by imposing a

condition on the heat flux [45] or the temperature [51]. Recently, the quan-

tum moment equations have been closed by extending Levermore’s entropy

minimization principle [32]. We review this method in Section 2.4.
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The common feature of the above models is that they do not describe

collisions of the electrons with phonons of the semiconductor lattice or with

other particles. In fact, there is no complete quantum collision theory up

to now. There are many derivations of collision operators modeling the

interaction of electrons with phonons [6, 10, 31, 37, 40] but none of them

lead to a form which is computationally tractable and is usable for fluid

approximations. Moreover, the quantum thermal equilibrium distribution

function, which is a Maxwellian in the classical case, is much more complicate

[47].

However, some simple collision models have been derived in the liter-

ature. For instance, Caldeira and Leggett [22] derived a Wigner-Fokker-

Planck equation in the large-temperature limit, describing the interaction of

the electrons with a heat bath of oscillators (modeling the semiconductor lat-

tice). Applying the moment method to the Wigner-Fokker-Planck equation,

we arrive to a quantum hydrodynamic model containing viscous terms [54,

69]. This so-called viscous quantum hydrodynamic model will be studied in

Section 3.1.

Another simple collision operator is given by a BGK approach (Bhat-

nagar, Gross, Krook [15]; see (28)). From the corresponding Wigner-BGK

equation, in the diffusion limit, quantum drift-diffusion equations can be

derived [30]. In the O(ε2) approximation, these equations read as follows:

∂tn− divJ = 0, J = −ε
2

6
n∇

(

∆
√
n√
n

)

+ T∇n− n∇V, x ∈ R
3, t > 0,

with an initial condition for n and coupled to the Poisson equation for V .

Here, T is the constant lattice temperature. Another derivation of this model

starts from the quantum hydrodynamic equations including a momentum

relaxation-time term. Performing the limit of vanishing relaxation time in

the diffusively scaled equations, we also obtain the quantum drift-diffusion

model. It will be studied in detail in Section 3.2.

In Sections 3.1 and 3.2 we present some new numerical results for a

one-dimensional resonant tunneling diode using the viscous quantum hydro-

dynamic and the quantum drift-diffusion models.

Recently, hybrid quantum models including collisional effects have been

derived. The idea of these models is that in regions where quantum effects

are expected to be dominant, highly accurate models are used, whereas in

the remaining regions, simpler (diffusion) models are employed. For instance,
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the mixed-state Schrödinger system is coupled to classical drift-diffusion or

quantum drift-diffusion models [28, 35]. Collisional effects in the Schrödinger

part have been modeled via the Pauli master equation [11]. These models

are reviewed in section 3.3.

2. Macroscopic Models without Collisions

In this section we derive various versions of quantum hydrodynamic

models, either from the Schrödinger or the Wigner equation.

2.1. Zero-temperature models

The evolution of a single electron is governed by the (dimensionless)

Schrödinger equation for the wave function ψ,

iε∂tψ = −ε
2

2
∆ψ − V ψ, x ∈ R

d, t > 0, (1)

ψ(0, x) = ψI(x), x ∈ R
d. (2)

We assume that the initial datum is given by the WKB state (Wentzel [89],

Kramers [72] and Brillouin [19])

ψI =
√
nI exp(iSI/ε). (3)

Then a simple computation [49] shows that the solution of (1)-(3) is given

by ψ(t, x) =
√

n(t, x) exp(iS(t, x)/ε), where (n, S) is a solution of the zero-

temperature quantum hydrodynamic equations

∂tn− divJ = 0, (4)

∂tJ − div

(

J ⊗ J

n

)

+ n∇V +
ε2

2
n∇

(

∆
√
n√
n

)

= 0, x ∈ R
d, t > 0, (5)

with the current density J = −n∇S and the initial conditions

n(x, 0) = nI(x), J(x, 0) = −nI(x)∇SI(x), x ∈ R
d.

The system (4)-(5) is the quantum analogue of the classical pressureless

Euler equations of gas dynamics. In the classical limit ε→ 0, (4)-(5) reduce

to the classical equations. Notice that this derivation requires an irrotational

initial velocity.
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In physics textbooks, often the flow equations

∂tn+ div(n∇S) = 0, ∂tS +
1

2
|∇S|2 − V − ε2

2

∆
√
n√
n

= 0

are derived instead of the formulation (4)-(5). In fact, (5) is obtained from

the second equation of the above system after spatial differentiation and mul-

tiplication by n. The above system also occurs in the derivation of quantum-

classical equations for molecular dynamics [20]. It has the disadvantage that

it is not defined if vacuum n = 0 occurs. Then the phase S is not defined

and the Bohm potential becomes singular. As shown in [49], the formulation

(4)-(5) has in general better properties due to the multiplication with the

density n.

We remark that this derivation has been recently extended to a two-band

quantum hydrodynamic model in [1].

The quantum hydrodynamic model is derived for a single particle and

therefore, it does not contain a temperature term. In order to include tem-

perature, many-particle systems need to be studied. For such systems,

quantum hydrodynamics is not so well established. The starting point is

a statistical mixture of particles each of which is described by a single-state

quantum hydrodynamic system. Then averaged quantities over the ensem-

ble of quantum states are needed. This leads to a closure problem, also

occuring in the passage from kinetic to classical hydrodynamic equations.

In the literature, several closure assumptions have been proposed, for in-

stance, small-temperature asymptotics, use of the Fourier law, or entropy

minimization. In the following sections, we review these closure strategies

in detail.

2.2. Small-temperature models

In the previous section we have derived a relation between the

Schrödinger and the fluid dynamical picture. Another point of view is

given by the Wigner formalism. More precisely, let ψ be a solution of the

Schrödinger equation (1)-(2) and let

ρ(r, s, t) = ψ(r, t)ψ(s, t),

where ψ is the complex conjugate of ψ, denote the so-called density matrix.

A computation shows that it satisfies the Heisenberg (or von Neumann)
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equation

iε∂tρ = −ε
2

2
(∆s −∆r)ρ− (V (s, t)− V (r, t))ρ, r, s ∈ R

d, t > 0, (6)

with the initial condition ρ(r, s, 0) = ψI(r)ψI(s). Let w(x, v, t) be the Fourier

transform of the density matrix in the variables r = x+ εη/2, s = x− εη/2,

w(x, v, t) =
1

(2π)d

∫

Rd

ρ
(

x+
ε

2
η, x− ε

2
η, t

)

eiη·vdη, x, v ∈ R
d, t ∈ R.

Then, Fourier transforming the Heisenberg equation for the density matrix

(which is equivalent to the Schrödinger equation (1)), we obtain the (one-

particle) Wigner equation

∂tw + v · ∇xw +Θ[V ]w = 0, x, v ∈ R
d, t > 0, (7)

w(x, v, 0) = wI(x, v), x, v ∈ R
d, (8)

where Θ[V ] is a pseudo-differential operator [85] defined by

(Θ[V ]w)(x, v, t) =
1

(2π)d

∫

Rd

∫

Rd

i

ε

[

V
(

x+
ε

2
η, t

)

− V
(

x− ε

2
η, t

)]

× w(x, v′, t)eiη·(v−v′)dv′dη. (9)

We refer to [78] for details of the computation.

In order to derive a quantum hydrodynamic model, we prescribe the

initial density matrix

ρI(r, s) = ψI(r)ψI(s) exp

(

−θ|r− s|2
2ε2

)

, r, s ∈ R
d,

where ψI(x) =
√

nI(x) exp(iSI(x)/ε) and θ is the initial temperature. No-

tice that the initial Wigner function corresponding to this density matrix

equals

wI(x, v) =
1

(2π)d

∫

Rd

ψI

(

x+
ε

2
η
)

ψI

(

x− ε

2
η
)

eiη·v−θ|η|2/2dη.

Elementary but lengthy calculations give the moments
∫

Rd

wIdv = nI ,

∫

Rd

vwIdv = nI∇SI ,
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1

2

∫

Rd

(v ⊗ v)wIdv = nI∇SI ⊗∇SI + nIθ Id− ε2

4
nI(∇⊗∇) lnnI ,

where Id denotes the identity matrix in R
d×d.

Now multiply the Wigner equation (7) by 1, v and 1
2(v ⊗ v), integrate

over v ∈ R
d and integrate by parts. We introduce, as in the classical case,

the particle, current and energy density, respectively, by

n =

∫

Rd

wdv, J = −
∫

Rd

vwdv, E =
1

2

∫

Rd

(v ⊗ v)wdv,

and define, motivated by the above moments of wI , the temperature tensor

T via

E =
1

2

(

J ⊗ J

n
+ nT − ε2

4
n(∇⊗∇) lnn

)

. (10)

It can be shown that T is of the order of θ. Then we obtain the quantum

hydrodynamic equations with temperature [50],

∂tn− divJ = 0, x ∈ R
d, t > 0, (11)

∂tJ − div

(

J ⊗ J

n
+ nT

)

+ n∇V +
ε2

2
n∇

(

∆
√
n√
n

)

= 0, (12)

∂tEjk − ∂xℓ

[

Jℓ
n
Ejk +

1

2
(JjTℓk + JkTjℓ)−

ε2

8

(

Jj∂
2
xkxℓ

lnn+ Jk∂
2
xjxℓ

lnn
)

]

+
1

2
(Jj∂xk

V + Jk∂xj
V ) + ∂xℓ

qjkℓ = 0, (13)

where the heat flux tensor q is defined by

qjkℓ =

∫

Rd

(vj − uj)(vk − uk)(vℓ − uℓ)w(x, v, t)dv, j, k, ℓ = 1, . . . , d,

and u = −J/n is the mean velocity of the particles. Initial conditions for n,

J , and E need to be prescribed.

Again, the above system of equations has to be closed, i.e., we have

to find an expression for q depending only on n, J or T (and their deriva-

tives). The quantum hydrodynamic equations of Gardner [45] are obtained

by replacing q in the above energy equation (13) by

qcljkℓ = −ε
2

8
n∂2xjxk

(

Jℓ
n

)

. (14)
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However, this closure condition is not asymptotically correct for θ → 0 since

the difference q−qcl = O(θ) can be seen to be of the same order as T = O(θ).

This difficulty can be overcome by assuming “almost coherent” initial

states ψI =
√
nI exp(iS

ε,θ
I /ε) with Sε,θ

I = SI + O(
√
θ) + O(ε2) as θ → 0,

ε→ 0. Then it can be shown [50] that the energy equation (13) holds with q

replaced by qcl up to order O(θ)+O(
√
θε2)+O(ε4). We stress the fact that

this quantum hydrodynamic model holds for small θ and ε. As explained

above, the equations with the closure qcl are not asymptotically correct for

small θ but fixed ε.

2.3. Quantum hydrodynamics

In this section we derive the quantum hydrodynamic equations for ar-

bitrary large temperature T . The idea of the derivation is, similar as in the

previous section, to multiply the Wigner equation by 1, v, and v ⊗ v and to

integrate over the velocity space. In the following, we set

〈g(v)〉 =
∫

Rd

g(v)dv

for any function g depending on v. The integrals 〈w〉, 〈vw〉, and 〈v⊗vw〉 are
called the zeroth, first, and second moments, respectively. Then the moment

equations read as follows:

∂t〈w〉 + div〈vw〉 = 0,

∂t〈vw〉 + div〈v ⊗ vw〉 − ∇V 〈w〉 = 0,

∂t〈12 |v|2w〉+ div〈12v|v|2w〉 − ∇V · 〈vw〉 = 0.

As a closure condition we use an O(ε4) approximation of the quantum ther-

mal equiblibrium Wigner function first derived by Wigner [92] (see [47]).

More precisely, we assume that the Wigner function equals the vector-

displaced equilibrium distribution w(t, x, v) = we(t, x, v − u(t, x)), where

u(t, x) is some group velocity and

we(x, v, t) = A(x, t) exp
(

− |v|2
2T

+
V

T

)[

1 + ε2
{ 1

8T 2
∆V

+
1

24T 3
|∇V |2 − 1

24T 3

d
∑

j,ℓ=1

vjvℓ
∂2V

∂xj∂xℓ

}

+O(ε4)
]

. (15)
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The temperature T = T (x, t) is here a scalar. The function A(x, t) is as-

sumed to be slowly varying in x and t. Notice that for ε = 0 (and V = 0) the

quantum thermal equilibrium distribution function reduces to the classical

Maxwellian. Then the first moments are 〈w〉 = n, 〈vw〉 = −J and

〈v ⊗ vw〉 =
J ⊗ J

n
+ nT Id− ε2

12T
n(∇⊗∇)V +O(ε4), (16)

〈v|v|2w〉 = 2
J

n
(e+ T )− ε2

12
((∇⊗∇)V ) · J +O(ε4), (17)

with the quantum energy density

e =
|J |2
2n

+
d

2
nT − ε2

24
n∆ lnn.

Notice that e is the trace of the energy tensor (10) except of the factor ε2/24

which is 1/3 of the factor in (10) (see the discussion below). The formula for

we implies that n equals, up to terms of order O(ε2), eV/T times a constant

and therefore, if the temperature is slowly varying,

∂2 lnn

∂xj∂xk
=

1

T

∂2V

∂xj∂xk
+O(ε2). (18)

Clearly, this approximation is only valid for smooth functions and excludes

discontinuous potentials arising at heterojunctions (see the discussion be-

low). Under this condition we can replace all second derivatives of V by

second derivatives of lnn, only making an error of order O(ε4) in the formu-

las (16) and (17). This yields the quantum hydrodynamic equations

∂tn− divJ = 0, x ∈ R
d, t > 0, (19)

∂tJ − div

(

J ⊗ J

n

)

−∇(nT ) +
ε2

6
n∇

(

∆
√
n√
n

)

+ n∇V = 0, (20)

∂te− div

(

J(e+ T )− ε2

12
((∇⊗∇) lnn) · J

)

+ J · ∇V = 0, (21)

together with initial conditions for n, J , and e. We remark that, compared

to the quantum hydrodynamic model (11)-(13), we obtain a scalar energy

equation instead of an energy tensor equation as in (13) since we assumed

here a scalar temperature.

Another difference to the equations derived in the previous section are

the factors in front of the third-order derivative of n which are 1/3 of the

factors in (12) and (13). We remark that the factor 3 is not related to the
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space dimension since we are working with arbitrary dimension d. The phys-

ical reason of this discrepancy between the two models is not understood;

see also the discussion in [46].

Let us mention another approach for the derivation of the quantum hy-

drodynamic equations starting from a mixed-state Schrödinger system [51].

A mixed quantum mechanical state consists of a sequence of single states

with occupation probabilities λk ≥ 0 (k ∈ N) for the k-th state described by

iε∂tψk = −ε
2

2
∆ψk − V ψk, x ∈ R

d, t > 0,

ψk(x, 0) = ψI,k(x), x ∈ R
d,

and each initial wave function is given by a WKB state

ψI,k =
√
nI,k exp(iSI,k/ε), k ∈ N.

The occupation probabilities satisfy
∑∞

k=1 λk = 1. We define the electron

density nk = |ψk|2 and the current density Jk = −εIm(ψk∇ψk) of the k-th

state and assume that the wave function can be decomposed as

ψk(t, x) =
√

nk(t, x) exp(iSk(t, x)/ε).

Then the single-particle current flow is irrotational since Jk = −nk∇Sk.
Using this ansatz for ψk in the above Schrödinger equation gives the zero-

temperature quantum hydrodynamic equations (cf. (4)-(5))

∂tnk − divJk = 0,

∂tJk − div

(

Jk ⊗ Jk
nk

)

+ nk∇V +
ε2

2
nk∇

(

∆
√
nk√
nk

)

= 0, x ∈ R
d, t > 0,

with the initial conditions

nk(0, x) = nI,k(x), Jk(0, x) = −nI,k(x)∇SI,k(x), x ∈ R
d.

Now we define the total particle density n and current density J by

n =

∞
∑

k=1

λknk, J =

∞
∑

k=1

λkJk.

The flow generated by the mixed state is generally not irrotational anymore.

Summation of the k-th state quantum hydrodynamic equations multiplied
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by λk leads to the quantum hydrodynamic equations (11)-(13) where the

energy tensor Ejk and the heat flux tensor qjℓm are given by (10), (14),

respectively [51]. The temperature T is a tensor defined as the sum of the

so-called current temperature Tc and osmotic temperature Tos, where

Ti =

∞
∑

k=1

λk
nk
n
(ui,k − ui)⊗ (ui,k − ui), i = c, os,

and the “current velocities” uc,k and “osmotic velocities” uos,k are given by

uc,k = −Jk
nk
, uc = −J

n
, uos,k =

ε

2
∇ lnnk, uos =

ε

2
∇ lnn.

The system of equations (11)-(13) has to be closed since the heat flux

tensor cannot (in general) be expressed in terms of n, J , and T only. In the

literature, we are aware of two choices. One choice is just to assume that the

temperature is a constant scalar (times the identity matrix) such that the

energy equation (13) does not need to be considered [60]. Another choice is

to set q = κ∇T , where κ > 0 denotes the heat conductivity. This closure

has been used in classical hydrodynamics [84] and in quantum hydrodynamic

simulations [27, 45] We also cite [48] where a dispersive heat flux q has been

derived for a different quantum hydrodynamic model.

The quantum hydrodynamic model is used for the simulation of quan-

tum devices, like the resonant tunneling diode [27, 45, 53], which consists

of different materials. At the interface of the materials (heterojunctions),

the (mean-field) potential is calibrated by a barrier potential which models

the gap between the conduction bands of each material. The barrier poten-

tial is a given function which is constant inside each material. Thus, the

sum of the (mean-field) potential and the barrier potential is discontinuous.

The approximation (18) therefore does not make sense for such potentials.

Gardner and Ringhofer [46] have overcome this problem by deriving so-called

“smooth” quantum hydrodynamic equations. More precisely, they obtain in

the Born approximation to the Bloch equation the equations (19)-(21) in

which the terms

ε2

6
n∇

(

∆
√
n√
n

)

and
ε2

12
(∇⊗∇) ln n
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are replaced by

ε2

4
div(n(∇⊗∇)V ) and

ε2

4
(∇⊗∇)V ,

and V = V (x, T ) depends non-locally on x and T (see [46] for details).

The quantum hydrodynamic equations (19)-(21) are recovered in the O(ε2)

approximation

V =
1

3
V +O(ε2), ∇ lnn = −∇V

T
+O(ε2),

if n, J and T are varying very slowly [46].

We mention that engineers were the first to give (formal) derivations of

quantum hydrodynamic models for the use in semiconductor modeling (see,

for instance, [53] for an isothermal model and [38] for the full model).

The existence of solutions to the quantum hydrodynamic equations (usu-

ally including a momentum-relaxation term −J/τ with the relaxation time

τ on the right-hand side of (20)) has been achieved only under a smallness

condition on the current density similar to classical subsonic flow; see [42,

43, 57, 59, 61, 94] for the stationary equations and [58, 62, 64, 74] for the

transient model. Non-existence results for supersonic-type flow using spe-

cial boundary conditions have been proved in [42, 44] indicating that the

subsonic-type condition may be necessary.

The one-dimensional quantum hydrodynamic equations have been solved

numerically with the aim to simulate resonant tunneling diodes. Gardner

[45] used the second upwind method to discretize the equations, thus treat-

ing the third-order quantum term as a perturbation of the classical Euler

equations. Chen [26] employed a finite element method based on a shock-

capturing Runge-Kutta discontinuous Galerkin method for the quantum hy-

drodynamic conservation laws. Caussignac et al. [25] wrote the stationary

equations as a first-order system and used a general-purpose solver. Pietra

and Pohl [81, 83] discretized the model using central finite differences; they

also studied the behavior of the solutions in the semi-classical limit ε→ 0. A

comparison of a central finite-difference scheme and a hyperbolic relaxation

scheme applied to the quantum hydrodynamic equations has been presented

in [69].
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2.4. Quantum moment hydrodynamics

In the previous section we have derived the quantum hydrodynamic

equations by a moment method using an approximation of the quantum

thermal equilibrium as a closure condition. In this section we present another

closure ansatz. More precisely, we choose the function which minimizes

the entropy (or maximizes according to the physical convention) subject

to the constraint that its moments are given. This approach is based on

Levermore’s methodology for classical systems [73]. For this, we proceed as

in [32].

We start with the Heisenberg equation (6) for the density matrix oper-

ator ρ, written here in the form

iε∂tρ = [Hq, ρ], (22)

where Hq = −(ε2/2)∆ − V (x, t) is the quantum Hamiltonian and [Hq, ρ] =

Hqρ − ρHq the commutator of Hq and ρ. The quantum Hamiltonian Hq

is the inverse Wigner transform of the classical Hamiltonian H = |p|2/2 −
V (x, t), Hq = W−1[H]. Here, p denotes the momentum. Introducing the

integral kernel ρ(x, x′) of the density matrix ρ by the formula (ρφ)(x) =
∫

ρ(x, x′)φ(x′)dx′ (omitting the argument t), the Wigner transform W [ρ] is

defined by

W [ρ](x, p) =

∫

Rd

ρ
(

x− η

2
, x+

η

2

)

eiη·p/εdη.

(This definition differs from the definition of the Wigner function in Section

2.2 by the factor (2πε)−d.) The Wigner function w = W [ρ] satisfies the

Wigner equation (7).

We introduce the moments

mi[ρ](x) =

∫

Rd

κi(p)w(x, p)
dp

(2πε)d
, i = 0, . . . , d+ 1, (23)

where κi(p) are some monomials. The moment equations are obtained from

(22) by multiplying the equation formally by the inverse Wigner transform

W−1[λ · κ] (with κ = (κi)) and taking the trace operator,

∂tTr[ρW
−1[λ · κ]] = Tr[−(i/ε)[Hq , ρ]W

−1(λ · κ)], (24)
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where the trace of the product of two operators ρ and σ is given by

Tr[ρσ] =

∫

R2d

W [ρ]W [σ]
dxdp

(2πε)d
.

The left-hand side of (24) equals, by the definition (23) of the moments,

Tr[ρW−1[λ · κ]] =
∫

R2d

w(x, p)λ · κ dxdp

(2πε)d
=

∫

Rd

m[ρ] · λdx.

The right-hand side of (24) cannot in general be expressed in terms of the

moments m[ρ] (which is the closure problem). We close the system by choos-

ing for ρ the solution ρ∗ of the minimization problem

Sq(ρ
∗) = min

{

Sq(ρ) :

∫

R2d

w(x, p)λ · κ dxdp

(2πε)d
=

∫

Rd

λ ·mdx for all λ(x)

}

,

for given moments m = (mi), where Sq(ρ) = Tr[ρ(ln ρ− 1)] is the quantum

entropy and ln ρ the operator logarithm. With this solution the moment

equations (24) become

∂t

∫

Rd

λ ·m[ρ∗]dx = Tr[−(i/ε)[Hq , ρ
∗]W−1((λ · κ)]. (25)

We call this closure system quantum moment hydrodynamics.

Now we take the monomials κ(p) = 1, p1, . . . , pd, |p|2 and pass from the

moment variables m0, . . . ,md+1 to the particle density n, current density J ,

and energy density e (compare with (19)-(21)). The resulting equations are

∂tn− divJ = 0, x ∈ R
d, t > 0,

∂tJ − div

(

J ⊗ J

n
− P

)

+ n∇V = 0,

∂te− div

[

J

(

e+
P

n

)

− q

]

+ J · ∇V = 0,

where the pressure tensor P and the heat flux q are defined through ρ∗ (see

(5.8) in [32]). Unfortunately, P and q cannot be easily expressed in terms

of n, J , and e since P and q are non-local and P is generally non-diagonal.

In the isothermal case, the model can be simplified, giving essentially the

quantum hydrodynamic equations (19)-(20) with T = const. but including

some “vorticity term” (see [65] for details).

Finally, we notice that the entropy minimization process of [32] has some
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similarities with the theory of non-equilibrium statistical operator mechanics

of Zubarev et al. [80, 95]. For a comparison of both approaches, see Remark

4.2 in [32].

3. Macroscopic Models with Collisions

In this section we derive quantum diffusion models from a Wigner-

Boltzmann equation including collisional effects. Furthermore, numerical

results for these models are presented.

3.1. Viscous quantum hydrodynamics

We consider an ensemble of electrons interacting with a heat bath of

oscillators in thermal equilibrium (which models the semiconductor crys-

tal). Caldeira and Leggett [22] introduced a Hamiltonian which consists

of the sum of the Hamiltonians of a test particle, the reservoir particles

and the interactions. Using the Feynman path integral formalism and scal-

ing arguments, they derived a Wigner-Fokker-Planck equation in the large-

temperature limit,

∂tw + v · ∇xw +Θ[V ]w = Q(w), x, v ∈ R
d, t > 0, (26)

w(x, v, 0) = wI(x, v), x, v ∈ R
d,

with the operator

(Q(w))(x, v, t) = ∆vw(x, v, t) + divv(vw(x, v, t)),

and Θ[V ] is defined in (9). However, this equation is not in Lindblad form

and hence, the positivity of the density matrix is not preserved under tem-

poral evolution. Castella et al. [24] improved the derivation of the Caldeira-

Leggett model and derived a Wigner-Fokker-Planck model belonging to the

Lindblad class. This model reads as (26) with the collision operator

Q(w) = ν0∆xw + ν1∆vw + ν2divx(∇vw) +
1
τ divv(vw).

The parameters ν0, ν1, ν2 ≥ 0 constitute the phase-space diffusion matrix of

the system, and τ > 0 is a friction parameter, the relaxation time. Although

a mathematically rigorous derivation of such quantum Fokker-Planck equa-

tions from many-particle quantum mechanics is still missing, a particular

case of the above equation has been justified in [24]. We notice that in the



266 ANSGAR JÜNGEL AND JOSIPA-PINA MILIŠIĆ [June

semi-classical limit ε → 0, it holds ν0 → 0 and ν2 → 0, and the scattering

operator reduces to the Caldeira-Leggett operator,

Q(w) → ν1∆vw + 1
τ divv(vw).

From the Wigner-Fokker-Planck equation (26) a macroscopic quantum

model via the moment method can be derived as in Section 2.3. In fact,

the (formal) derivation is the same as in Section 2.3, only taking care of the

terms on the right-hand side of (26). The resulting equations (for constant

temperature) are termed the viscous quantum hydrodynamic equations:

∂tn− divJ = ν0∆n,

∂tJ − div
(J ⊗ J

n

)

− T∇n+ n∇V +
ε2

2
n∇

(∆
√
n√
n

)

= ν0∆J − J

τ
,

coupled to the Poisson equation λ2∆V = n−C(x), to be solved in R
d×(0,∞)

with initial conditions for n and J .

The existence of weak stationary solutions in one space dimension with

Dirichlet-Neumann boundary conditions has been shown in [54] under the

assumption of “weakly subsonic” flows. This assumption is in fact a small-

ness condition on the current density which can be relaxed if ν0/τ is “large”.

The long-time behavior of transient solutions is studied in [55].

The one-dimensional transient equations have been numerically dis-

cretized using a central finite-difference scheme in space and a second-order

Runge-Kutta method in time, and stationary solutions are obtained by let-

ting numerically t → ∞ [69]. The disadvantage of this strategy is that the

scheme is extremely time consuming, even in one space dimension. Here

we discretize directly the stationary equations using central finite differences

and solve the resulting nonlinear system with a damped Newton method.

More precisely, we choose the interval (0, 1) and the boundary conditions

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

Jx(0) = Jx(1), V (0) = 0, V (1) = U,

where U > 0 is the applied voltage. The numerical scheme is applied to

the simulation of a one-dimensional resonant tunneling diode. The device

consists of highly doped GaAs regions near the contacts and a lightly doped
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middle region. The middle region contains a quantum well sandwiched be-

tween two AlGaAs barriers (see Figure 1). The double barrier heterostruc-

ture is placed between two GaAs spacer layer with a doping of 5 ·1015 cm−3.

These spacers are enclosed by two layers with doping 1018 cm−3. The double

barrier height is 0.209 eV. The physical effect of the barriers is a shift in the

quasi-Fermi potential level which we model by an additional step function

Vext added to the electrostatic potential.
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Figure 1. Geometry of the resonant tunneling diode. The Al mole fraction

is x = 0.3.

In Figure 2 current-voltage characteristics for different choices of the

temperature are shown. The effective mass is considered here as a fitting

parameter in order to see its influence on the behavior of the curves (also see

the discussion in Section 3.2). The viscosity depends on the effective mass.

The characteristics show several features. First, the current density de-

pends non-monotonously on the applied voltage and there are regions with

negative differential resistance, i.e., the current density decreases although

the applied voltage increases. The numerical results show that the equations

are very sensitive to changes of the parameters. A larger viscosity constant

gives a “smoother” curve. Furthermore, as already observed in [69], the

curves have a sharp gradient just before the region of negative differential

resistance. Physically, a sharp gradient just after the local maximum of the

current is expected. The reason of this phenomenon is under investigation.

Finally, we mention that the characteristics using the viscous or inviscid

quantum hydrodynamic model show hysteresis, i.e., there are applied volt-

ages for which two states exist [27, 69].
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Figure 2. Current-voltage characteristics of a tunneling diode. Left: tem-

perature T = 300K, meff = 0.067m0, ν0 = 4.89 (solid) and meff = 0.126m0,

ν0 = 2.60 (dashed). Right: temperature T = 77K, meff = 0.067m0, ν0 =

1.59 (solid), meff = 0.067m0, ν0 = 4.77 (dash-dotted), meff = 0.126m0,

ν0 = 2.53 (dashed). The viscosity ν0 is in units of 10−5 m2/s and m0 is the

electron mass at rest.

3.2. Quantum drift-diffusion models

The quantum drift-diffusion model has been recently derived by a diffu-

sion limit from the Wigner equation [29]. We review the main ideas of the

derivation using the quantum entropy minimization principle of Section 2.4.

After introducing the diffusion scaling t → t/δ and Q(w) → Q(w)/δ,

the Wigner equation can be written as

δ2∂twδ + δ(p · ∇xwδ +Θ[V ]wδ) = Q(wδ), (27)

where p is the crystal momentum. We are interested in the limit δ → 0, pro-

vided the initial condition wδ(·, ·, 0) = wI is given and the quantum collision

operator is of BGK-type. In order to make this precise, we introduce first

the so-called relative quantum entropy for the density matrix ρ = W−1[w]

(see Section 2.4) by

Sq(ρ) = Tr[ρ(ln ρ− 1 +Hq/T )] =

∫

R2d

w(Ln(w) − 1 +H/T )
dxdp

(2πε)d
,

where H and Hq are the classical and quantum Hamiltonians, respectively,

defined in Section 2.4, T > 0 is a fixed temperature, and Ln(f) :=W [ln(W−1

[f ])] for suitable functions f is the “quantum logarithm”. We wish to find,
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for given n(x), the minimizer of

Sq(ρ
∗) = min

{

Sq(ρ) :

∫

Rd

W [ρ]dp = n(x) for all x

}

.

The solution (if it exists) is given by ρa =W−1[wa], where wa = Exp(a(x)−
H/T ). The “quantum exponential” Exp is defined, for suitable functions f ,

by Exp(f) :=W [exp(W−1[f ])]. The function a(x) is such that
∫

wa(x, p)dp

= n(x). For given w(x, p) we introduce the quantum Maxwellian M [w] by

M [w] := Exp(a−H/T ) such that
∫

(M [w]−w)dp = 0, and we assume that

this integral constraint fixes the function a(x) uniquely. Now we can make

precise the BGK-type collision operator:

Q(w) =M [w] −w. (28)

It models the interaction of the particles with a background heat bath of

fixed temperature T .

In the limit δ → 0 we see from (27) that the formal limit w0 = limδ→0 wδ

satisfies Q(w0) = 0, hence w0 = M [w0] = Exp(a0 − H/T ) for some a0(x),

and n0(x) =
∫

w0(x, p)dp/(2πε)
d. In [30] it has been further proved by a

Chapman-Enskog expansion for wδ that n0 satisfies the equations

∂tn0 − divJ0 = 0, J0 = Tn0∇a0 − n0∇V,

and n0 and a0 are related by

n0 =

∫

Exp

(

a0(x)−
|p|2
2T

)

dp

(2πε)d
.

There are up to now no existence results for this model which is of quantum

drift-diffusion type. However, some analytical results for a discretized version

are shown in [41].

We can expand Exp[a0(x) − |p|2/2T ] and thus n0 and J0 in terms of

the scaled Planck constant ε. Then n0 = n + O(ε4), J0 = J + O(ε4),

a0 = lnn−(ε2/6T )∆
√
n/

√
n+O(ε4), and n, J satisfy the so-called quantum

drift-diffusion equations (up to order ε2) [30]

∂tn−divJ=0, J=−ε
2

6
n∇

(

∆
√
n√
n

)

+T∇n−n∇V, x∈R
d, t>0. (29)

Another derivation starts from the isothermal quantum hydrodynamic

model (19)-(20), where the right-hand side of (20) is replaced by the mo-



270 ANSGAR JÜNGEL AND JOSIPA-PINA MILIŠIĆ [June

mentum relaxation-time term −J/τ . Using the diffusive scaling t→ t/τ and

J → τJ and the relaxation-time limit τ → 0, n and J are formally satis-

fying the quantum drift-diffusion equations (29). This limit has been made

rigorous for smooth solutions close to the steady state in [63].

The existence of solutions to the stationary equations with mixed

Dirichlet-Neumann boundary conditions for the electron density, the quan-

tum quasi-Fermi potential, and the electrostatic potential is shown in [14].

Existence results on the transient equations in one space dimension have

been obtained for different choices of boundary conditions in [67, 71]. For

numerical results, we refer to [67, 68].

In this context, we mention that the zero-temperature zero-electric field

quantum drift-diffusion equation

∂tn+

(

n

(√
nxx√
n

)

x

)

x

= 0, t > 0, n(·, 0) = nI , x ∈ R
d,

also appears in the modeling of interface fluctuations of certain spin systems

[33] and has recently attracted the interest of several mathematicians since

it possesses some remarkable properties. For instance, the solutions are non-

negative, there are several Lyapunov functionals, and related logarithmic

Sobolev inequalities can be proved [34]. The existence and uniqueness of

solutions, their long-time behavior and numerical solution has been studied

in [17, 21, 23, 34, 52, 56, 66, 70].

Quantum drift-diffusion models have been first used by electro-engineers

for the simulation of strong inversion layers near the oxide of MOS transistors

[2, 4]. It has been also employed for the simulation of source-drain tunneling

in MOS transistors [87]. In the engineering literature the quantum drift-

diffusion equations are called density-gradient models, and there exists a

large number of publications on this subject; see, e.g., [3, 5, 8, 86, 91, 93].

Density-gradient models are also able to predict negative differential

resistance effects (i.e. non-monotone behavior) in current-voltage character-

istics of tunneling diodes [25, 27, 45, 67, 79, 82]. One important parameter

is the so-called peak-to-valley ratio, i.e. the ratio between the maximal and

the minimal current value in the current-voltage characteristic. It is well

known that the model gives unsatisfactory numerical results at room tem-

perature and with physical (but constant) effective electron mass (see, for

instance [35]). Another view point could be to employ the two constants

“temperature” and “effective mass” as parameters to fit experimental data.
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As an example we present in Figure 3 the current-voltage curve of a

tunneling diode using the parameters as in [67] with temperature T = 77K

and effective mass meff = 0.067m0, where m0 is the electron mass at rest.

The geometry of the diode is similar to Figure 1 (see [67] for details). The

equations are discretized by standard finite differences, and the nonlinear

discrete system is solved using Newton’s method. For these parameters the

current-voltage curve shows a region with negative differential resistance.

The electrons accumulate in the quantum well if the current density is min-

imal.
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Figure 3. Left: current-voltage characteristic of a tunneling diode at T =

77K. Right: electron densities at the current peak (solid) and current valley

(dashed).
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tunneling diode versus temperature (with constant effective mass meff =

0.067m0; left figure) and effective electron mass (with constant temperature

T = 77K; right figure).
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In Figure 4 the peak-to-valley ratio (PVR) versus temperature (left)

and effective mass (right) is displayed. It turns out that the effective mass

appears to be an appropriate parameter to fit the PVR, whereas a change

of temperature modifies the ratio only weakly. For temperatures larger than

about 130K, there is no region of negative differential resistance anymore

and the PVR is one. We notice that a non-constant effective mass would

be much more physical but the modeling and numerical approximation are

more involved (see [90, 91]).

3.3. Hybrid models

Only recently, hybrid quantum models have been derived. In this sec-

tion, we review two approaches: the coupling of the Schrödinger system with

the classical drift-diffusion equations and with the quantum drift-diffusion

model. Also other hybrid models exist. For instance, we mention the coupled

kinetic-quantum model of [13] and the hybrid classical-quantum equations

in [12, 16]. Another approach is to use different models in different spatial

directions in order to account for quantum transport in special directions

[36].

We assume that the one-dimensional semiconductor domain consists of

two parts: a ballistic quantum region, in which the mixed-state Schrödinger-

Poisson system with Lent-Kirkner boundary conditions [39, Appendix D] is

solved (see [28, 35] for details), and two diffusion regions near the interval

boundary, in which the classical or quantum drift-diffusion model is em-

ployed.

We have to specify the connection conditions at the two interface points.

Consider first the case in which the classical drift-diffusion equations are used

in the diffusion regions. A natural condition is to assume the continuity of

the current density at the interface. The second condition is derived from

a diffusion approximation and a boundary-layer analysis of the reflection-

transmission conditions at the interface, based on the model of [13]. This

yields a relation between the particle density at the two interface points and

the current density [28]. We mention that collisions via the Pauli master

equation are included in the ballistic region in [11].

Another approach is to replace the classical drift-diffusion model by the

quantum drift-diffusion equations in order to have a consistent quantum de-

scription in the whole device. Here, the electron and current densities are
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assumed to be continuous across the interface points. The current density

computed from the Schrödinger system depends on the statistics (or “al-

imentation function”) used in the mixed-state formula. We assume that

the statistics of the incoming particles equal the O(ε4) approximation of

the quantum Maxwellian, introduced in Section 3.2, which is related to the

quantum drift-diffusion model. This yields nonlinear boundary conditions

for the macroscopic electron density and current density.
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Figure 5. Current-voltage characteristics for a resonant tunneling diode

using the Schrödinger-Poisson (SP), quantum drift-diffusion Schrödinger-

Poisson (QDD-SP), and drift-diffusion Schrödinger-Poisson (DD-SP) models

[35].

In Figure 5 the current-voltage characteristics of a resonant tunneling

diode using the two hybrid models and the mixed-state Schrödinger-Poisson

system in the whole device are shown. The figure is taken from [35]. For

all three models, the same parameters have been used: temperature 300K,

momentum relaxation time 10−12 s, barrier height 0.3V, spacer layers 10 nm,

and barrier width 5 nm (see [35] for details). We see that the numeri-

cal results are comparable, with a slightly more diffusive coupled quantum

drift-diffusion Schrödinger-Poisson (QDD-SP) model. Compared to the full

Schrödinger-Poisson (SP) model, the CPU time needed for the QDD-SP com-

putations is reduced by about 50%. Since it is possible to derive an analytical

expression for the connection conditions in the drift-diffusion Schrödinger-

Poisson (DD-SP) model, the CPU time for this model compared to the SP
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system is even reduced by a factor of about 8. This shows that accurate and

efficient computations are possible with hybrid quantum models.
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65. A. Jüngel and D. Matthes, Derivation of the isothermal quantum hydrodynamic

equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85(2005), 806-814.
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