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Abstract

The aim of the present paper is to propose efficient nu-

merical methods for solving linear kinetic problems arising in the

modeling of heat and mass transport in porous media. We pro-

pose a Galerkin approximation for the velocity variables (which

can be also interpreted as a moment method in some cases), and a

classical finite-volume approximation for the space variables. The

Galerkin approximation for the velocity variables reduces the lin-

ear kinetic equation to a linear hyberbolic system of dimension

N , where N is the number of basis functions used in the Galerkin

method. To be efficient the approach must give correct prediction

with small N . This can be obtained by a convenient choice of

the basis functions which is governed by a mathematical analysis

taking into account the physical regime. A modification of the

space approximation is proposed to enforce the correct behavior

in the fluid limit. Comparison of numerical results obtained by

our method and direct solution of kinetic systems or experimental

data are provided.

1. Introduction

In several applications such as flows in microdevices, fuel cells or material

science we need precise mathematical models of heat and mass transfer in

porous media for numerical simulations. In a recent paper ([5]) the authors
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propose a new approach for deriving such models from kinetic theory at a

microscopic scale. In simple configurations this Asymptotic Transport Model

(ATM) reduces to a set of two nonlinear diffusion equations. The main

improvements of this approach are first to be able to treat various physical

regimes in the same mathematical framework and also to allow to compute

the effective transport coefficients from the microscopic properties of the

medium. These coefficients are defined through the solution of auxiliary

problems posed on the unit cell of the periodic medium.

Since these coefficients must be computed for a large number of values

of density and temperature, we need efficient numerical methods to solve

them. Some of this cell problems involve linear elliptic equations and efficient

techniques of solution are well-known. Some other cell problems involve

linear stationary kinetic equations depending on six independent variables

(three space variables and three velocity variables) and the need of efficient

numerical methods able to treat the various regime is a crucial issue in this

context.

The aim of the present paper is to propose efficient numerical methods

for solving the linear kinetic cell-problems. We propose a Galerkin approxi-

mation for the velocity variables (which can be also interpreted as a moment

method in some cases), and a classical finite-volume approximation for the

space variables. The Galerkin approximation for the velocity variables re-

duces the linear kinetic equation to a linear stationary hyberbolic system

of dimension N , where N is the number of basis functions. To be efficient

the approach must give correct prediction with small N . This can be ob-

tained by a convenient choice of the basis functions which is governed by

a mathematical analysis taking into account the physical regime. The fluid

regime (where νw ≪ νb) needs more work. Indeed by a rescaling and an

asymptotic analysis we can prove that in the limit of high density (or small

Knudsen number) the cell-problem tends to a Stokes system and that we re-

cover the Darcy law at the macroscopic level. Therefore to adress this regime

we must modify the space approximation of the hyperbolic system given by

the Galerkin method in order to get an asymptotic preserving scheme. The

paper is organized as follows. Section 2 contains some useful background on

the ATM. The numerical strategy for solving the kinetic auxiliary problems

is presented in Section 3. We derive the hyperbolic cell auxiliary problems

and prove that some quite important properties of the kinetic cell auxiliary

problems are preserved through the Galerkin approximation in velocity. Sec-

tion 4 is devoted to space approximation and numerical modification of the
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transport scheme to preserve the asymptotic limit. Section 5 contains nu-

merical simulations including comparison with direct solution of the kinetic

model and comparison with experiments.

2. The Asymptotic Transport Model

The ATM is based on the following microscopic model,

ρsCv∂tT = div(λs∇T ), in Ωs, (1)

∂tf + v · ∇f = Q(f, f), in Ωf , (2)

f(x, v, t)|x∈Γ, v.n>0 = σ

∫

w·n<0
|w · n|f(x,w, t)dw M(T )(v) (3)

+ (1− σ)f(x, v − 2v.n n, t) (4)

λs∇T · n = −
∫

1

2
|v|2v · nf(x, v, t)dv, on Γ. (5)

Here, Ωs is the open set occupied by the solid phase, Ωf is the open

set occupied by the fluid phase, and Γ the interface between Ωf and Ωs.

In all the following n = n(x), x ∈ Γ, denotes the normal to Γ at point

x, outgoing from Ωs. The solid phase is characterized by its density ρs,

its specific heat at constant volume Cv, and its thermal conductivity λs

which are assumed to be known and constant. The only unknown in the

solid phase is the temperature field T (x, t) defined on Ωs whose evolution is

given by the classical heat equation (1). The fluid phase is a single species

monoatomic gas, described by a kinetic model. We denote f = f(x, t, v)

the mass distribution function, and the evolution of the gas is given by the

Boltzmann equation in Ωf (2). The collision operator Q is defined by

Q(f, f)(v) =

∫

IR3
w

∫

S2

f(v′)f(w′)− f(v)f(w)b(v − w,ω)dwdω, (6)

where v′ = v− (v −w).ω ω, w′ = w+ (v−w).ω ω and where the scattering

kernel b(z, ω) = |z|Σ(|z|, cos(z, ω)) depends on the interaction potential be-

tween molecules which is considered and the cross-section Σ is given by (see

[3])

Σ(z, cos θ) = r2 cos θ, for the hard sphere potential,

Σ(z, cos θ) = r2|z|κ−1 cos θ, κ∈ [0, 1[, for the variable hard sphere potential.
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In any case, the collision term satisfies the following fundamental properties

insuring conservation laws and H-theorem

∀f ≥ 0,

∫

IR3
v

Q(f, f)ψ(v)dv = 0,⇔ ψ(v) = a+ b.v + c|v|2, (7)

∫

IR3
v

Q(f, f) ln(f)dv ≤ 0, (8)

∫

IR3
v

Q(f, f) ln(f)dv = 0 ⇒ Q(f, f) = 0. (9)

Macroscopic quantities (density, momentum, total energy) are defined by

ρ = 〈f〉, ρu = 〈fv〉, E = 〈1
2
|v|2〉, (10)

where 〈ψ〉 =
∫
IR3 ψ(v)dv. The coupling between the heat transfer in the

solid and the gas flow is given by relation (4) which is a Maxwell reflection

condition where σ ∈ [0, 1] is the accomodation coefficient and by relation (5)

which ensures the continuity of the energy flux on Γ. M(v, T ) is a normalized

Maxwellian distribution defined by :

M(v, T ) =
1

2π(RT )2
e

(
− |v|2

2RT

)

We consider there the regime of weak thermal coupling ([4, 5]) where

we assume that

• the frequency νb of binary collisions and the frequency νw of collisions

of gas molecules with the boundary of the pores are of the same order,

• the thermal conductivity of the gas is much smaller than the thermal

conductivity of the solid.

Then we can write the microscopic system in dimensionless form with respect

to the small parameter which is the ratio between the length of an elementary

representative volume of the porous medium and a representative length of

the macroscopic structure and we obtain:

ρsCv∂tT = div(λs∇T ), in Ωs, (11)

∂tf +
1

ǫ
v · ∇f =

1

ǫ2
Q(f, f), in Ωf , (12)

f(x, v, t) = σ

∫

w·n<0
|w · n|fdw M(T ) (13)
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+ (1− σ)f(x, v − 2v.nn) on Γ for v · n > 0, (14)

λs∇T · n = −
∫

1

2
|v|2v · nf(x, v, t)dv, on Γ. (15)

To perform the asymptotic analysis ot this system we assume that the ma-

terial is periodic. We denote Y the basic cell of periodicity, Ys and Yf the

parts of this cell occupied by the solid and fluid phases and ΓY the inter-

face. The unknown functions T and f have a dependence in space of the form

T = T (x, y) and f = f(x, y), where x ∈ Ω is the slow variable and y = x
ǫ ∈ Y

is the fast variable and we assume that T and f are Y-periodic functions.

In the scaled model we look for T ǫ and f ǫ in the form T ǫ = T ǫ(x, xǫ ) and

f ǫ = f ǫ(x, xǫ ). In order to find an asymptotic model at the macroscopic level

we write the solutions T ǫ and f ǫ of the scaled microscopic system as power

series in ǫ :

T ǫ(x) = T ǫ(x, y =
x

ǫ
) = T ǫ

0(x, y =
x

ǫ
) + ǫ T ǫ

1 (x, y =
x

ǫ
) + · · · (16)

f ǫ(x, v) = f ǫ(x, y =
x

ǫ
, v) = f ǫ0(x, y =

x

ǫ
) + ǫ f ǫ1(x, y =

x

ǫ
) + . . . (17)

Inserting (16,17) in the microscopic system, and balancing order by order in

ǫ, we can show that f0 =M(T0, v) is a Maxwellian distribution, independent

of y, with velocity u0 = 0 and temperature T0 constant on Y (see [5] for more

details). Moreover, we look for T1 and f1 in the following form

T1 = γ · ∇xT0, (18)

f1 = (α · ∇xT0 + β · ∇xρ0)f0, (19)

where α = (αi(y, v))i=1,2,3 ∈ R
3, β(y, v) = (βi(y, v))i=1,2,3 ∈ R

3 et γ =

(γi(y))i=1,2,3 ∈ R
3 are solutions of the following problems called cell auxiliary

problems (see [5]):

(P1)

{
−divy(λs∇yγi) = 0 in Ys,

λs∇yγi · n = −λsni on ΓY ,

(P2)





−L(f0αi) + f0v · ∇yαi = −f0vi
(
− 3

2T0
+

|v|2
2RT0

2

)
in Yf ,

αi(y, v) = σ
(

|v|2
2RT0

2 − 2
T0

)
γi + σ

∫
w.n<0 |w · n|αi(w)M(T0) dw

+(1− σ)αi(y, v − 2v.nn) on ΓY , for v · n > 0,
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(P3)





−L(f0βi) + v · ∇y(f0βi) =
−f0
ρ0

vi in Yf ,

βi(y, v) = σ

∫

w·n<0
|w · n|βi(w)M(T0) dw + (1− σ)βi(y, v − 2v.nn)

on ΓY , for v · n > 0,

where L is the linearized collision operator defined by:

L(g) = Lf0(g) = Q(f0, g) +Q(g, f0).

Finally, the asymptotic transport model (ATM) takes the following form:

∂tρ0 − divx(D∇xρ0)− divx(D̃∇xT0) = 0, (20)

ρsCv∂tT0 − divx(K∇xT0) = 0, (21)

where

D̃ = 〈−vf0 ⊗ [α]Yf
〉; D = 〈−vf0 ⊗ [β]Yf

〉; K = [λs + λs∇yγ(y)]Ys (22)

where 〈f〉 =
∫
IR3 f(v)dv, [g]Yf

= 1
|Yf |

∫
Yf
g(y)dy and [g]Ys = 1

|Ys|
∫
Ys
g(y)dy.

The system (20)-(21) is a set of two coupled nonlinear diffusion equa-

tions. The first equation gives the mass transport and contains a mass

diffusion term and a cross-diffusion term known as the thermal transpira-

tion ([8]). In transport models the determination of the effective transport

coeffficients is a crucial issue. They bring to the macroscopic scale a lot of

informations coming from the microscopic scale including informations on

the structure of the medium through the geometry of Ys ans Yf and on the

regime of the flow through ρ and T . Let us notice that, though this model

has been derived under the assumption that the flow is in a transition regime

at the scale of the pores, the same mathematical framework can be used for

the limit regimes of rarefied flow (Kn → +∞) or viscous flow (Kn → 0).

However, the regime of the flow greatly influences the solution of the cell

auxiliary problems and must be taken into account in the solution strategy.

Finally, it is important to quantify the relative weight of the mass diffusion

and of the thermal transpiration. In one-dimensional configurations this is

given by the dimensionless number (see [8])

D̃ T

D ρ
.
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Let us remark that the effective transport coefficients D̃ and D are

functions of ρ and T that are needed for numerical approximation of the

macroscopic system. For that we compute in a pre-processing step a tabula-

tion of D(ρ, T ) (and also of D̃) for some discrete values of ρ and T . Then this

data base is used in the numerical approximation of the system in order to

estimate by linear interpolation the quantities D(ρni , T
n
i ), where ρ

n
i and T n

i

are the time and space approximations of density and temperature. The dis-

crete values of ρ and T are taken in intervals [ρMin, ρMax] and [TMin, TMax]

large enough to contain all the values needed for a given computation. We

have to solve three elliptic equations to get γi, i = 1, 2, 3 and for each value

of ρ and T , six kinetic equations to get αi, βi, i = 1, 2, 3. Since it can be nec-

essary to take some hundred values of ρ, T in order to have precision enough

on the effective transport coefficients, it appears to be crucial to have fast

numerical methods for solving these problems. To compute γi we use a seven

point finite-volume approximation with a mesh of cubic cells with constant

steps and the associated linear system is solved by a multigrid method us-

ing Conjugate Gradients as smoother. The solution strategy for the kinetic

equations is more complex and is detailed in the following section.

3. Solving the Kinetic Cell Auxiliary Problems

3.1. Approximation in velocity variables: the Galerkin method

The method used to solve the auxilary problems (P2) and (P3) is based

on the projection of the linear kinetic equations on a set of basis functions

{mj}j=1,...,N through a Galerkin method on velocity variables. This can be

seen as a generalization of a moment method, since the basis functions are

not necessarily polynomial functions of v, as it will be seen later. Let us

focus for example on the kinetic cell auxiliary problem (P3). The equation

writes

−L(f0βl) + v · ∇y(f0βl) =
−f0
ρ0

vl in Yf . (23)

We introduce the following notations

β̂l = ρ0βl, g0 =
f0
ρ0
. (24)
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Then β̂l is solution of the equation

−L(g0β̂l) + g0v · ∇y(β̂l) = −g0vl in Yf . (25)

Using Galerkin approximation we look for β̂l in the following form

β̂l(y, v) =

N∑

j=1

blj(y)mj(v). (26)

Inserting (26) in (25), multiplying by mk and integrating in velocity space

yields

∀k∈{1, . . . , N}
N∑

j=1

(
−〈L(g0mj)mk〉blj+〈g0vmjmk〉 · ∇y(b

l
j)
)
=〈g0vlmk〉.

(27)

Introducing the following notations

Skj = 〈L(g0mj)mk〉, (Ap)kj = 〈g0vpmjmk〉, gik = −〈g0vimk〉, (28)

(27) writes as a stationary symmetric linear hyperbolic system :

− S~bl +

3∑

p=1

Ap∂yp
~bl = ~gl. (29)

To write the boundary conditions for this system we start from the boundary

conditions in (P3), at the kinetic level (20), which can be written

∫

w∈IR3

βl(y,w)w · ndw = 0 on ΓY , (30)

βl(y, v)|ΓY , v.n>0 = σK(y)M(T0) + (1− σ)βl(y, v − 2v.nn), (31)

where K(y) is a scalar determined by the first equation. This first equation

is the condition of mass flux equal to zero, and thus writes for ~bl

A(n)~bl.~θ|ΓY
= 0, (32)

where A(n) =
∑3

p=1 npAp and ~θ is defined by
∑N

j=1 θjmj(v) = 1. The second

equation gives the distribution of particles coming into Yf at the boundary.

For the hyperbolic system, it consists in imposing the incoming Riemann
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invariants, i.e.

A(n)+~bl|γ = A(n)+(σK~θ + (1− σ)R(n)~bl)|ΓY
, (33)

where A+ is the spectral positive part1 of the matrix A and R(n) is the

matrix of the application β(v) −→ β(v− 2(v.n)n) in the basis {mj}j=1,...,N .

Moreover we have used the property R(n)A(n)+R(n) = −A(n)− (see Lemma

1). Finally, the hyperbolic cell auxiliary problem for β̂l writes

− S~bl +

3∑

p=1

Ap∂yp
~bl = gl in Yf , (34)

A(n)~bl.~θ|γ = 0, (35)

A(n)+~bl|γ = A(n)+(σK~θ + (1− σ)R(n)~bl)|ΓY
(36)

periodic conditions on ∂Yf − ΓY . (37)

A similar system, associated with αl can be written. The only slight

differences come from the right-hand-side and the boundary condition.

3.2. Choice of the basis

To be efficient the approach described in the previous section must give

correct predictions with small N . This can be obtained by a convenient

choice of the basis functions in the Galerkin approach. This choice is gov-

erned by physical considerations which give some insight on the behavior of

the solution according to the considered regime.

3.2.1. The collision and transition regimes

In collision regime the equation (25) is dominated by the linearized col-

lision operator so that L(g0β̂l) ≈ 0, and thus

β̂l ≈ a0 + a1v + a2|v|2.

That means that the collisionnal invariants (1, v, |v|2) must belong to the

linear space spanned by the Galerkin basis. When the frequency of binary

1i.e., if A = PΛP−1 where Λ is a diagonal matrix then A+ = PΛ+P−1 where Λ+ is the
diagonal matrix whose diagonal elements are the positive part of the diagonal elements of matrix
Λ.
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collisions is smaller and close to the frequency of collisions with the boundary

of the pores (i.e. in the transition regime), we enlarge the Galerkin approx-

imation space by some polynomials in v of higher order : vivj , |v|2vi. This

leads to an approximation space with dimension N = 13. Finally, taking

into account the formula (28), it seems judicious to take a basis orthonormal

with respect to the scalar product

(α, β)T0
= 〈α(v)β(v)g0(T0, v)〉. (38)

So the basis we consider for the collision and transition regimes is

m1 =
v1√
RT0

, m4=
v21 −RT0√

2RT0
, m7=

v2v3
RT0

, m10=
|v|2 − 5RT0√

10R3T 3
0

v1,

m0 = 1, m2=
v2√
RT0

, m5=
v22 −RT0√

2RT0
, m8=

v1v3
RT0

, m11=
|v|2 − 5RT0√

10R3T 3
0

v2,

m3 =
v3√
RT0

, m6=
v23 −RT0√

2RT0
, m9=

v1v2
RT0

, m12=
|v|2 − 5RT0√

10R3T 3
0

v3. (39)

Any function of v belonging to the vector space generated by (1, ~v, |v|2) is

exactly represented on this basis, as stated above.

3.2.2. The Knudsen regime

We can expect that this basis is not quite suited for describing the solu-

tion of the auxiliary problems in the free-molecule limit where the frequency

of binary collisions vanishes (Knudsen regime). To understand the behavior

of the solution in this regime, we study the simplified configuration of a pipe

with axis parallel to the y1-axis and with a circular cross-section for fully

diffusive reflection, i.e. for σ = 1. If y is a point of the section, v the velocity

of a particle at point y, we denote v̂ = (0, v2, v3) = |v̂|ω̂(v̂), z = z(y, ω̂(v̂))

the point z = y + sω̂(v̂), s > 0 such that z belongs to the boundary of the

pore and n = (0, n2, n3) the normal to the boundary of the pipe.

In Knudsen regime, i.e. without binary collisions, the auxiliary problem

(P3) writes

(P3 −Knudsen)

{
|v| · ∇ω̂β = −v1 in Yf ,

β(y, v)|ΓY , v.n>0 =
∫
ξ·n<0 |ξ · n|β(ξ)M(T0) dξ

The solutions of this problem write obviously β(y, v) = − v1
|v̂| |y−z(y, ω̂(v̂))|+

φ(z), where φ(z) is the incoming flux of particle at point z ∈ ΓY . To deter-
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mine φ(z), we use the boundary condition, by replacing β(y, v) by its value.

After some algebra we find that φ satisfies on ΓY the following integral

equation:

φ(y) =

∫

ξ.n(y)<0
φ(z)|ξ.n|M(T0, ξ)dξ.

The only solutions of this integral equation are constants. We take here

φ(y) = 0, and we obtain the solution for the system (P3 −Knudsen):

β(y, v) = − v1
|v̂| |y − z(y, ω̂(v̂))| = b(y, ω̂)

v1
v̂
. (40)

This results shows the dependence of the solution in vi
|v̂| in this example of

a pipe. In a more general three-dimensional case the solution would depend

on ωi =
vi
|v| . So, in order to improve the solution in the Knudsen regime, we

suggest to include in the basis the following functions

m13 = ω1, m16 = ω2
1, m19 = ω2 ω3,

m14 = ω2, m17 = ω2
2 m20 = ω1 ω3,

m15 = ω3, m18 = ω2
3, m21 = ω1 ω2.

(41)

Finally, in order to have a code able to treat all regimes we want a basis

containing the 13 functions suited for collision and transition regimes and the

9 functions introduced for the Knudsen regime. But since ω2
1 +ω2

2 +ω2
3 = 1,

the final basis we use has only 21 functions.

Let us remark that there are some conditions for the validity of the

asymptotic transport model in the Knudsen regime. A classical assumption

is the property of finite horizon which ensures that every molecule of gas

will touch the boundary ΓY before leaving the elementary cell Y (see for

instance [2] for the diffusion limit of a collisionless gas).

3.3. The linearized BGK and ES-BGK collision operators

In the auxiliary problems, the operator L is the linearized Boltzmann

collision operator defined by:

L(g) = Q(f0, g) +Q(g, f0).

To simplify the treatment we replace the Boltzmann collision operator by
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the BGK- relaxation operator given by ([6])

CBGK(f) =
1

τ
[M(f)− f ] =

1

τ
[M(~ρ(f))− f ], (42)

where τ = µ/p is the relaxation time. In this relation the viscosity µ = CTω,

where ω = (κ+1)/2 depends on the interaction potential between molecules

used in the Boltzmann equation. ω = 1/2 corresponds to the “hard sphere”

potential (HS), ω = 1 to the Maxwellian potential and ω ∈]0, 1[ to “variable

hard sphere” (VHS) potential. Then the linearized BGK relaxation operator

is given by

LBGK(f) = C ′
BGK(f0)f =

1

τ



f0
ρ0




5RT0−|v|2
2RT0
v

RT0

|v|2−3RT0

3R2T 2
0


 .




ρ

ρu

E


− f


 (43)

Since it is well-known that in the fluid limit the BGK operator leads to an

uncorrect Prandlt number (Pr = 1), it is sometimes prefered to use the

ES-BGK operator ([1]) defined by

CES−BGK(f) =
1− ν

τ
[G(f)− f ], (44)

where

G(f) =
ρ√

det(2πT )
exp(

1

2
(v − u)TT −1(v − u)), (45)

and T = RT (1− ν)Id+ νΘ and Θ = 2E − ρu⊗ u.

The linearized ES-BGK operator writes

LES−BGK(f) = C ′
ES−BGK(f0)f =

1− ν

τ

(
∂~ρ13G(f0).~ρ13 − f

)
, (46)

where

~ρ13 = (ρ, ρu1, ρu2, ρu3, E1,1, E2,2, E3,3, E1,2, E1,3, E2,3).

∂~ρ13G(f0) =
(5RT0−|v|2

2RT0
,
v1

RT0
,
v2

RT0
,
v3

RT0
,
RT0−(1−ν)|v|23νv21

3(RT0)2
,

RT0−(1−ν)|v|23νv22
3(RT0)2

,
RT0−(1−ν)|v|23νv23

3(RT0)2
,

2νv1v2
(RT0)2

,
2νv1v3
(RT0)2

,
2νv2v3
(RT0)2

)
.
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The Prandlt number associated with the ES-BGK collision operator is

Pr = 1/(1−ν) and for ν = −1/2 it gives the right Prandlt number Pr = 2/3

for monoatomic gas.

Both operators CBGK and CES−BGK satisfy the main properties (7,8,9)

of the Boltzmann collision operator (see [1] for the ES-BGK operator) and

have also the following properties for the linearized operators ([3])

Proposition 1. The linearized collision operators satisfy the following

properties

1. L is symmetric,

2. Ker (L) = Span(1, v, |v|2);
3. ∃δ0 > 0, − < L(β) β >≥ δ0||(I − PK)β||2, where PK is the projection

on Ker(L).

3.4. Analysis of the hyperbolic cell auxiliary problems

In this paragraph we study the hyperbolic cell auxiliary problem and we

prove that some important properties of the kinetic cell auxiliary problem

are preserved by the Galerkin approximation. We make this analysis for the

hyperbolic system derived by using the 13-element basis {mj}0≤j≤12 (39).

This greatly simplifies the notations and is enough but necessary for the

asymptotic analysis in the fluid limit presented later.

3.4.1. Description and main properties

To clarify the expression of the hyperbolic cell auxiliary problem we

introduce the following notations

bV =



b1
b2
b3


 , bE =



bE1

bE2

bE3


 =



b4
b5
b6


 , bτ =



b7
b8
b9


 , bq =



b10
b11
b12


 , (47)

and

b̄E =
1

3
(bE1 + bE2

+ bE3
) =

1

3
(b4 + b5 + b6). (48)

From (28), the matrix S~b, is given by:

(Sb)i = 0 for i ∈ {0, 3} (49)

(Sb)4 =
1

τ
(b̄E − bE1

) (50)
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(Sb)5 =
1

τ
(b̄E − bE2

) (51)

(Sb)6 =
1

τ
(b̄E − bE3

) (52)

(Sb)j = −1

τ
bj for j ∈ {7, 12} (53)

Then we have

Proposition 2. The matrix S is symmetric and

− S~b.~b ≥ 1

τ
||(I − PKS

)~b||2, (54)

KerS = {(b0, b1, b2, b3, b̄E , b̄E , b̄E , 0, 0, 0, 0, 0, 0)} (55)

Proof. From the above relations, it is obvious that ~b ∈ KerS is equiva-

lent to

bE1
= bE2

= bE3
=

1

3
b̄E, b7 = b8 = b9 = b10 = b11 = b12 = 0, (56)

that is to say that

KerS = {(b0, b1, b2, b3, b̄E , b̄E , b̄E , 0, 0, 0, 0, 0, 0)}

Let us notice that this result means that ~b ∈ Ker S if and only if β =

~b.~m(v) = b0 + bV .v + b̄E |v|2 ∈ Ker L. Moreover (28) gives:

S~b.~b =

13∑

i,j=1

Sijbibj =

13∑

i,j=1

〈L(g0mj)bi,mjbj〉 (57)

= −〈L(g0β)β〉, (58)

and according to the properties of the collision operator L we conclude that

(whatever basis is used in the Galerkin approximation), −S~b.~b ≥ 0. More

precisely, using the expression of S obtained by using the 13 moment basis,

we have

− S~b.~b ≥ 1/τ ||(I − PKS
)~b||2. �
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We now write the hyperbolic system (34)

3∑

p=1

Ap∂yp
~b = L~b =

√
RT0




0 L0,V 0 0 0

LV,0 0 LV,E LV,τ 0

0 LE,V 0 0 LE,q

0 Lτ,V 0 0 Lτ,q

0 0 Lq,E Lq,τ 0







b0
bV
bE
bτ
bq




where

L0,V = (∂1, ∂2, ∂3) (59)

LV,0 =



∂1
∂2
∂3


 , LV,E =

√
2



∂1 0 0

0 ∂2 0

0 0 ∂3


 , LV,τ =




0 ∂3 ∂2
∂3 0 ∂1
∂2 ∂1 0


 , (60)

LE,V = LV,E; LE,q =

√
5

5




3∂1 ∂2 ∂3
∂1 3∂2 ∂3
∂1 ∂2 3∂3


 , (61)

Lτ,V = LV,τ , Lτ,q =

√
10

5




0 ∂3 ∂2
∂3 0 ∂1
∂2 ∂1 0


 , (62)

Lq,E = LE,q, Lq,τ = Lτ,q (63)

gl =
√
RT0(0, δl1, δl2, δl3, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Since the quantity
√
RT0 is a common factor in the the differential operator

L and in the right-hand-side, it is simpler to divide the left and right-hand

side of (34) by this quantity. This modifies the relaxation factor in the

matrix S which is therefore ρ0
√
RT0/µ instead of 1/τ . This is done in all

the following.

Finally to write the boundary condition (36), we need to precise the

matrix R(n). First we notice that the application β → R(n)[β] defined by

R(n)[β](v) = β(v − 2v.nn)
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is a idempotent application and that

R(n) Span{mj(v), 0 ≤ j ≤ 12} ⊂ Span{mj(v), 0 ≤ j ≤ 12}.

Then the matrix R(n) is defined by

N∑

j=1

bjmj(v − 2v.nn) =
N∑

p=1

N∑

q+1

R(n)pq bqmp(v), (64)

and we have the following properties

Lemma 1. The matrix R(n) defined by (64) satisfies:

• If ~b is an eigenvector of the matrix A(n) associated with the eigenvalue

λ, then R(n)~b is an eigenvector of the matrix A(n) associated with the

eigenvalue −λ.
• R(n)2 = I, R(n)A(n)+R(n) = −A(n)−.

Sktech of the Proof. Let us remark that the properties (1) implies that

R(n)A(n)−R(n) = −A(n)+, and R(n)A(n)R(n) = −A(n).

For the sake of simplicity we give the proof for n = e1 so that A(n) = A1.

The first part of the lemma is obtained by using (28) and odd/even parity

considerations, and as a consequence we have R(n)Ker(A(n)) ⊂ Ker(A(n)).

The second part is obtained by writing any vector ~b on the basis of eigen-

vector of A1, and using the properties proved in the first part. �

Lemma 2. Let us assume that, ∀y ∈ ΓY ,

~c(y) = K(y) ~θ, (65)

~b(y) = (b0(y), bV (y), b̄E(y), b̄E(y), b̄E(y), 0, 0, 0, 0, 0, 0) (66)

0 = A1(~b(y)− ~c(y)).(~b(y)− ~c(y)), (67)

then

b(y) = K(y)~θ, ∀y ∈ ΓY .

Proof. The property is directly deduced from caracterization of

Ker(A1) = Span{~k1, ~k2, ~k3, ~k4, ~k5}
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where

~k1 = (0 0 −
√
10

5 0 0 0 0 0 0 0 0 1 0)
~k2 = (0 0 0 −

√
10

5 0 0 0 0 0 0 0 0 1)
~k3 = (

√
2 0 0 0 −1 0 3 0 0 0 0 0 0)

~k4 = (
√
2 0 0 0 −1 3 0 0 0 0 0 0 0)

~k5 = (0 0 0 0 0 0 0 1 0 0 0 0 0) �

Proposition 3. Let ~b be satisfying the boundary conditions (35-36 -37)

and let us denote

E(~b) =

∫

Yf

(
− S~b(y).b(y) +

3∑

p=1

Ap∂yp
~b(y).~b(y)

)
dy.

Then

1. ∀~b, E(~b) ≥ 0,

2. E(b) = 0 ⇔ ~b(y) = (b0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T , where b0 is a con-

stant independent of y.

Proof. We multiply (34) by ~b and we integrate over Yf . It comes

E(~b) = −
∫

Yf

S~b(y).~b(y)dy − 1

2

∫

ΓY

A(n)~b(y).~b(y)dy, (68)

From (54) we have

−
∫

Yf

S~b(y).~b(y)dy ≥ 1

τ

∫

Yf

||(I − PKS
)~b(y)||2dy > 0. (69)

Writing~b(y) = c(y)+(~b(y)−c(y)), taking into account that A(n)~b(y).~c(y) = 0

and A(n)~c(y).~c(y) = 0 on ΓY , and using the Lemma 1, we finally obtain

−1

2

∫

ΓY

A(n)(~b−~c).(~b−~c)dy = −(1−(1−σ)2)
2

∫

ΓY

A(n)−(~b− ~c).(~b− ~c)dy,

≥ 0,

which proves the first part of the proposition.

We assume now that E(~b) = 0. From the above computation this implies

that
∫

Yf

S~b(y).~b(y)dy = 0,

∫

ΓY

A(n)−(~b(y)− ~c(y)).(~b(y)− ~c(y))dy = 0.



314 PIERRE CHARRIER, BRUNO DUBROCA AND CHRISTOPHE PREUX [June

The first relation implies that~b(y) = (b0(y), bV (y), b̄E(y), b̄E(y), b̄E(y), 0, 0, 0,

0, 0, 0), and the second relation implies that A(n)−(~b(y)−~c(y)).(~b(y)−~c(y)) =
0,∀y ∈ ΓY . But since we have A(n)

+(~b(y)−~c(y)).(~b(y)−~c(y)) = 0,∀y ∈ ΓY ,

we get

A(n)(~b(y)− ~c(y)).(~b(y)− ~c(y)) = 0,∀y ∈ ΓY , (70)

Then, from Lemma 2 we get ~b(y) = ~c(y), on ΓY , which implies that bV (y) =

0, b̄E(y) = 0, on ΓY . Using now the expression of (34) we conclude that
√
5
5 ∂yj b̄E(y) = 0, (j 6= i) on Yf and thus

b0(y) = b0, b̄E(y) = 0, on Yf ,

which ends the proof of the second part of the proposition. �

Remark. The last proposition implies that the solution of the hyper-

bolic cell auxiliary problem is not unique and is defined up to an additive

vector
~̃
b = (b0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

T . Nevertheless, as it is usual in

homogeneization, the effective coefficients D and D̃ are uniquely defined

because
∫
Yf

~̃b < vif0(v) > dy = 0 !

3.2.4. Asymptotic behavior for small Knudsen, the Darcy regime

As we have seen in a previous section, in the collision regime, the solution

of the kinetic cell auxiliary problem β̂ satisfies

β̂l ≈ a0 + a1v + a2|v|2,

and this property has been used to choose a convenient basis in our Galerkin

approach in velocity variables. More precise results can be obtained when we

consider the fluid limit corresponding to ρ→ +∞. In ([4, 5]) an asymptotic

analysis of the kinetic cell auxiliary problems shows that in this limit those

problems lead to Stokes equations and that we recover at the macroscopic

scale the well known Darcy law. This result can be seen as an extention

to porous media of the analysis of the fluid limit of the linearized Boltz-

mann equation given in ([12]). It is quite important to check now that this

asymptotic limit is preserved by the hyperbolic cell auxiliary problems.
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Let us consider the cell auxiliary problem (34-35 -36-37) derived from

the 13-element basis. We can write (34) in the following form

−
√
RT0
µ ε

Ŝ~b+
∑

p=1,3

Ap∂yp
~b = ~gl, (71)

where we have omitted for simplicity the index l for ~b, where

Ŝ = µ/(ρ0
√
RT0) S, (72)

and

ε =
1

ρ0
.

To make the asymptotic analysis of the hyperbolic cell auxiliary problem

when ε→ 0 we look for a solution in the following form

~b =
~b(−1)

ε
+~b(0) + ε ~b(1) + · · · (73)

Inserting (73) in (71), and balancing ordre by order in ε we get

At the leading order

−
√
RT0
µ

Ŝ~b(−1) = 0, (74)

so that

~b(−1) = (b
(−1)
0 , b

(−1)
V , b̄

(−1)
E , b̄

(−1)
E , b̄

(−1)
E , 0, 0, 0, 0, 0, 0). (75)

Taking account of this result in the boundary condition (35-36) and using

the properties of the matrix R(n) leads to

bV
(−1)
|γ = 0 and bE

(−1)
|γ = 0. (76)

At order +1

−
√
RT0
µ

Ŝ~b(0) +
∑

p=1,3

Ap∂yp
~b(−1) = 0. (77)

Since

Ŝ~b(0).~d = 0,∀~d ∈ Ker S,
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the Fredholm alternative leads to

∑

p=1,3

Ap∂yp
~b(−1).~d = 0, ∀~d ∈ Ker S,

which writes

divy ~b
(−1)
V = 0, (78)

∇yb
(−1)
0 +

√
2∇y b̄

(−1)
E = 0, (79)

b
(0)
E = b̄

(0)
E
~̂e−

√
2µ√
RT0

3∑

i=1

∂yibie
i (80)

√
RT0
µ

b(0)q = −
√
5 ∇y b̄

(−1)
E , (81)

√
RT0
µ

b(0)τ = Lτ,V
~b
(−1)
V (82)

At order +2

−
√
RT0
µ

Ŝ~b(1) +
∑

p=1,3

Ap∂yp
~b(0) = g, (83)

which gives, from Fredholm alternative

divy ~b
(0)
V = 0, (84)

∇yb
(0)
0 +

√
2

3∑

i=1

∂yib
(0)
Ei
ei + LV,τ b

(0)
τ = glV , (85)

Inserting (80) and (82) in (85) leads to

∇yb
(0)
0 +

√
2∇y b̄

(0)
E − 2µ√

RT0



∂2y1 b

(−1)
V1

∂2y2 b
(−1)
V2

∂2y3 b
(−1)
V3


− µ√

RT0
LV,τLτ,V b

(−1)
V = glV . (86)

Denoting

π = (b0 +
√
2 b̄E), (87)

and taking into account the definition of LV,τ and Lτ,V , and (78) we obtain

− µ√
RT0

∆yb
(−1)
V +∇yπ

(0) = el, (88)

divy b
(−1)
v = 0, (89)
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bV
(−1)
|γ = 0, (90)

periodic conditions on ∂Y − ΓY (91)

which means that b
(−1)
V is solution of a Stokes equation on Yf .

The same analysis can be performed for the hyperbolic cell auxiliary

problem associated to αl. In that case we look for a solution

~a =
~a(−1)

ε
+ ~a(0) + ε~a(1) + · · · ,

and ~a(−1) is also solution of a Stokes equation but with a right hand side

equal to el/T0. Thus the vectors b
(−1)
V and a

(−1)
V are proportional. Taking

into account that βl = β̂l/ρ0, we conclude that

D̃ijT

Dijρ
= 1.

This means that this ratio (which is independent of i, j) defines a dimen-

sionless number which is the ratio of the mass diffusion over the thermal

transpiration and

D̃ =
ρ

T
D. (92)

But in ATM, the macroscopic velocity of the fluid is given by

ρ u = −(D ∇x ρ+ D̃ ∇x T ), (93)

and thus using (92)

ρ u = −ρD
(∇x ρ

ρ
+

∇x T

T

)
= −ρD∇xp

p
= − 1

RT
D∇xp.

Moreover, since, Dij = −(ρ/|Yf |)
∫
Yf

~bij(y)dy
∫
v g0(v)v

2
j dv, we obtain

u = − ǫ

µ
B∇xp, (94)

where ǫ is the porosity and B defined by

Bij =

∫

Ys

bij(y)dy, (95)

is the permeability tensor. The relation (94) is the well known Darcy law.

Thus we have proved that our approach, designed for the transition regime,
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recovers the Darcy regime in the fluid limit. Of course there is no reason

that the relation (92) is still true in other regime. This will be illustrated in

the section of numerical results.

3.5. Approximation in space variables and solution

Since the hyperbolic-relaxation system (34) is obtained by closing a

kinetic equation, a simple and efficient approximation consists in using a

classical finite volume kinetic scheme. In a kinetic scheme, the half postive

and negative fluxes must be computed to take into account the balance of

particles between the boundary of the cells. As the flux in the p-direction is

linear, with the associated matrix given Ap by (28), the half fluxes are also

linear and the associated matrix A
(±)
p can be computed simply by

A(±)
p = (A(±)

p )i=1,N,j=1,N =
(〈
g0(v)mi(v)v

±
p mj(v)

〉)
i,j

where v±p = (vp ± |vp|)/2. We work with a regular cartesian mesh where i

denotes the multi-index (i, j, k) and we introduce the following notations

Dy1fi = D1fi =
fi+1,j,k − fi−1,j,k

∆y1
, (96)

D+
y1fi = D+

1 fi =
fi+1,j,k − fi,j,k

∆y1
, (97)

D−
y1fi = D−

1 fi =
fi,j,k − fi−1,j,k

∆y1
, (98)

Then the kinetic scheme writes

−ρ0
√
RT0
µ

Ŝ~bi +

3∑

p=1

(A(+)
p D−

p
~bi +A(−)

p D+
p
~bi) = gi, (99)

where Ŝ is defined by (72) and the right-hand-side is gl
i
= 〈g0(v)mi(v)vl〉 =

Al(1, 0, . . . )
T .

Unfortunately, a first order scheme is not accurate enough. Higher order

extensions can be constructed by a MUSCL approach and since the problem

is linear it is not necessary to use slope limiters. This leads to the canonical

centered scheme :

−ρ0
√
RT0
µ

Ŝ~bi +

3∑

p=1

ApDp
~bi = gi. (100)
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But this scheme can lead to some numerical instabilities known as odd-

even uncoupling. To overcome this drawback, boundary conditions must

be modify to couple the two nearest grid points of the boundaries. The

boundary conditions are fulfilled with the help of ghost cells. In a regular

mesh of hexaedra (cubic voxel), the boundary procedure is essentially one

dimensional and can be explained for the direction 1. The extension from

order one to order two can be viewed as

(A1
~b)i+ 1

2
,j,k = A

(+)
1
~bi,j,k +A

(−)
1
~bi+1,j,k

≈ A
(+)
1

~bi,j,k +~bi+1,j,k

2
+A

(−)
1

~bi,j,k +~bi+1,j,k

2

= A1

~bi,j,k +~bi+1,j,k

2
.

Near the boundary, we keep the ghost cell for the incoming half flux and

we extrapolate the outgoing half flux respecting the upwinding direction of

the first order scheme. If we denote i = 0 the ghost cell, the incoming half

flux is A
(+)
1
~b0 and this value is not modified. On the other hand, the outgoing

half flux A
(−)
1
~b1 is replaced by A

(−)
1 (~b1 +~b2)/2 instead of A

(−)
1 (~b1 +~b0)/2 as

inside the domain of computation. The fulfill of ~b0 is the same for the

two schemes and derived from the kinetic level of the problem. We simply

express that the distribution in the ghost cell is proportional to a Maxwellian

(β = kg0 at the kinetic level or ~b0 = k(1, 0, . . . )T at the hyperbolic level)and

the constant k is founded by writing the balance of mass flux at the boundary

which must be equal to 0. This gives

k = −A(n)
(−) ~b1.~θ

A(n)(+)~θ.~θ
. (101)

The space approximation leads to an algebraic linear system which is

solved by using a non-symmetric matrix iterative solver GMRES (General-

ized Minimum RESidual).

3.6. Asymptotic preserving scheme for the hyperbolic auxiliary

cell problems

In the previous section we proposed a numerical approach to solve the

kinetic cell auxiliary problems based on a Galerkin approximation for the

velocity variables. Moreover we proposed a Galerkin basis able to take into
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account both collisional and rarefied regimes inside the pores. Nevertheless

we can expect some further difficulties in the fluid limit i.e. for high den-

sity (or small Knudsen number) gas flows as it is usual in kinetic models.

Indeed we have proved in section 3.4.2 that the hyperbolic cell auxiliary prob-

lems leads in this limit to Stokes equations which are elliptic systems. It is

well known in numerical approximation of kinetic models that usual upwind

schemes designed for the transport regime have not the correct asymptotic

behavior in the fluid limit and that we have to modify them so that they

lead to a consistent and precise approximation of the asymptotic system in

this limit. In our context it means that if we study the asymptotic limit of

the scheme (99) for fixed space steps (∆yi, i = 1, 2, 3) and for Kn → 0 we

would like to find a consistent approximation of the Stokes problem (88-89-

90-91). But, as we can expect, this is not true and thus we have to modify

the numerical scheme in the fluid limit to recover this property.

We denote in the following

Div±h =

3∑

k=1

D±
yk
, (102)

∇+
h = (D+

1 ,D
+
2 ,D

+
3 )

T . (103)

.

Introducing ~b∗ = ρ∗~b, where ρ∗ is a reference density and ε = ρ∗/ρ0, the

numerical scheme introduced for the transport regime writes

−
√
RT0
εµ

Ŝ ~b∗i +
1

ρ∗

3∑

p=1

ApDyp
~b∗i = gi. (104)

In order to have the correct asymptotic limit as ε → 0, we modify the

numerical scheme as follows

−
√
RT0
εµ

Ŝ ~b∗i + ε2
3∑

p=1

ApDyp
~b∗i + (1 − ǫ2)

3∑

p=1

ApD̃yp
~b∗i = gi. (105)

where D̃yp is defined by

D̃y1 = (D+
1 ,D

−
1 ,D

+
1 ,D

+
1 ,D

+
1 ,D

+
1 ,D

+
1 ,D1,D

−
1 ,D

−
1 ,D1,D1,D1) (106)

D̃y2 = (D+
2 ,D

+
2 ,D

−
2 ,D

+
2 ,D

+
2 ,D

+
2 ,D

+
2 ,D

−
2 ,D2,D

−
2 ,D2,D2,D2) (107)

D̃y3 = (D+
3 ,D

+
3 ,D

+
3 ,D

−
3 ,D

+
3 ,D

+
3 ,D

+
3 ,D

−
3 ,D

−
3 ,D3,D3,D3,D3). (108)
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In this scheme we use a backward difference scheme for the components

of ~b corresponding to odd basis functions and a forward difference scheme

for the components corresponding to even basis functions. Introducing such

a different treatment corresponds to have a different treatment of the odd

and even parts of the distribution function, which is a usual way to obtain

correct asmptotic behavior for kinetic equations.

For the asymptotic analysis when ε→ 0 we look for b∗
i
as b∗

i
= 1

ε b
∗(−1)
i

+

b
∗(0)
i

+ εb
∗(1)
i

+ · · · .. Inserting in (105) and balancing order by order in ε, it

comes

At the leading order
√
RT0
µ

Ŝb
∗(−1)
i = 0,

and thus for the same reason as previously

b
∗(−1)
i

=(b0
∗(−1)
i

, b1
∗(−1)
i

, b2
∗(−1)
i

, b3
∗(−1)
i

, b̄E
∗(−1)
i

, b̄E
∗(−1)
i

, b̄E
∗(−1)
i

, 0, 0, 0, 0, 0, 0)

(109)

At order +1

−
√
RT0
µ

Ŝ~b
∗(0)
i

+
1

ρ∗

3∑

p=1

ApD̃yp
~b
∗(−1)
i

= 0. (110)

Existence of b
(0)
i

follows from Fredholm alternative under the condition

(

3∑

p=1

ApD̃yp
~b
∗(−1)
i

, d) = 0, ∀~d ∈ Ker S,

which writes

Div−h b
∗(−1)
V = 0, (111)

∇+
h b

∗(−1)
0 +

√
2 ∇+

h b̄
∗(−1)
E ê = 0, (112)

bE
∗(0)
i

= b̄E
∗(0)
i

ê−
√
2∇−

h bV
∗(−1)
i

, (113)
√
RT0
µ

bτ
∗(0) = − 1

ρ∗
L−
τ,V bV

∗(−1)
i

, (114)

√
RT0
µ

bq
∗(0)
i

= −
√
5

ρ∗
∇+

h b̄E
∗(−1)
i

ê, (115)

where L−
τ,V is the approximation of the operator Lτ,V (see 62) using backward
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difference.

At order +2

−
√
RT0
µ

Ŝ~b
∗(1)
i +

1

ρ∗

3∑

p=1

ApD̃yp
~b
∗(0)
i = gi. (116)

As previously Fredholm alternative leads to the condition

(
3∑

p=1

ApD̃yp
~b
∗(0)
i

− gi, ~d) = 0, ∀~d ∈ Ker S,

which writes

∇+
h b0

∗(0)
i

+
√
2∇+

h bE
∗(0)
i

+ L+
V,τ bτ

∗(0)
i

= giV (117)

Then inserting (114) and (117) in the previous relation and (111), and

denoting π = (b∗0 +
√
2b̄∗E, we get

−
√
RT0
µρ∗

Div+h∇−
h bV

∗(−1)
i

+∇+
h π

(0)
i

= gi, (118)

Div−h bV
∗(−1)
i

= 0, (119)

b
∗(−1)
V |γ = 0, (120)

periodic conditions on ∂Y − γ. (121)

The last step is to check that this scheme, writen back in ~b = ~b∗/ρ∗is consis-

tent with the Stokes equation (88)-(89). We first notice from the definition

of D+ and D−, Div+h∇−
h is the classical 7-point approximation scheme of

the Laplace operator in IR3. Moreover if bV
(−1)
i

is interpreted as defined on

a staggered mesh, i.e.

bV
(−1)
i

= (b1
(−1)
i+1/2,j,k, b2

(−1)
i,j+1/2,k, b3

(−1)
i,j,k+1/2),

then

Div−h bV
(−1)
i

= (b1
(−1)
i+1/2,j,k−b1

(−1)
i−1/2,j,k)/∆y1+(b2

(−1)
i,j+1/2,k − b2

(−1)
i,j−1/2,k)/∆y2

+(b3
(−1)
i,j,k+1/2 − b3

(−1)
i,j,k−1/2)/∆y3,

and the above scheme gives the classical MAC scheme for the Stokes equa-

tion.
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Let us precise now how the boundary conditions are implemented for

this asymptotic preserving scheme. Let us recall that, in the continuous

problem, we have in the asymptotic limit the relation

√
RT0
µ

b(0)τ = Lτ,V
~b
(−1)
V =

3∑

p=1

Lp∂ypb
(−1)
V .

Thus, integrating on Yf we obtain by using the boundary conditions

√
RT0
µ

∫

Yf

b(0)τ (y)dy = −
∫

ΓY

(

3∑

p=1

npLp)b
(−1)
V = 0,

In the numerical scheme this property is not automatically satisfied. To get

it we must impose a convenient boundary condition on the boundary cells

i = (i, j, k) of ΓY such that either (i − 1, j, k), (i, j − 1, k) or (i, j, k − 1) is

an interior cell of Yf (since Lτ,V is approximated by using backward finite

differences). These boundary values are used for the discretization of (117)

which is based on forward finite differences.

4. Numerical Results

In this section we give numerical results testing the correctness and the

efficiency of the method described in this paper. In all example the gas is

Argon and for the space approximation we use regular cartesian meshes.The

values of ρ and T used for computing the effective diffusion coefficients are

chosen so that the physical domain of interest is covered (Example 3). More-

over we take a number of values large enough so that the interpolation error

is small. As the depency of D and D̃ is smooth, as we see in the examples,

this can be achieved with a reasonable number of sampling values.

In the first example we consider the flow of a gas between two parallel

plates and we compute the diffusion coefficient D in a direction parallel to

the plates. In this case the unit cell reduces to the normal segment to the

two plates which is 1 m long. The temperature is T = 400 K and the

diffusion coefficient D is given as a function of the density ρ. We compute

the coefficient for 28 values of ρ = 10i, ρ = 5 × 10i, i ∈ {−7, 2}. We

compare the solution computed by our Galerkin approach (with the 21-

element basis) with the results given in ([10]) (with the linearized Boltzmann

collision operator) and in ([7]) (with the linearized BGK relaxation operator)
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which are obtained by a direct solution of the kinetic cell auxiliary problems

using a discretization of the velocity space. The results are given in Figure

1 (left) with a zoom (right).

D

Direct - linearised Boltzmann
Direct - BGK

Galerkin
Darcy

ρ(Kg/m3)
10-10 10-8 10-6 10-4 10-2

100
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1010
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100

1000

10000

100000

D

Direct - linearised Boltzmann
Direct - BGK

Galerkin
Darcy

ρ(Kg/m3)
10-8 10-7 10-6 10-5 10-4

Figure 1. Coefficient D, comparison between the Galerkin approach and

direct solution of kinetic problems.

The curves show a very good agreement between the direct computations

on the kinetic problems and the Galerkin solution in the transition regime.

For small values of ρ (or, which is equivalent, for small Knudsen numbers)

the Galerkin solution gives a correct prediction up to the Knudsen minimum

but, nevertheless, is less precise for smaller Knudsen number. Though the

21-element basis gives better results than the 13-element basis some more

work is needed to capture the very rarefied flows. On the other hand, the

Galerkin method is able to compute the solution for large values of ρ, where

the direct computations are too much expensive. Moreover in this regime

the results show a very good agreement with the asymptotic Darcy model.

In the second example we study the diffusion in a pipe with a square

cross-section. We have to solve a two-dimensional cell auxiliary problem on

the square 0.4mm×0.4mm with 40×40 grid cells. Figure 2 (left) shows the

diffusion coefficient as function of ρ computed by the transport scheme (+),

the asymptotic preserving scheme introduced in section 4.1 (x), and by solv-

ing the Stokes equation, which simplifies here in a Laplace equation (solid

line). We observe a very good agreement between the solution given by the

asymptotic preserving scheme and by Stokes equation in the Darcy regime.

Figure 2 (right) shows the number of iterations needed for solving the cell

auxiliary problem respectively with transport scheme (+) and asymptotic

preserving scheme (x), as a function of ρ. It appears clearly that, contrary
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to the transport scheme, the convergence rate of the asymptotic preserv-

ing scheme is almost independent of the value of ρ, which allows to treat

efficiently problems with large density.
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Figure 2. Coefficient D. Comparison between the transport scheme and

the asymptotic preserving scheme.

In the third example we consider a pipe with a circular cross- section of

0.2 mm diameter. Figure 3 (left) shows the ratio (D̃T )/(Dρ) as a function

of ρ, for T = 400K computed by the Galerkin method with the 21-element

basis, using respectively a BGK relaxation operator (x) and a ES-BGK re-

laxation operator (+). In both case the ratio has a limit equal to 1 in the

fluid regime and equal to 0.5 in the Knudsen regime which are the correct

limits given by the theory.
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1∗30∗30a=0.65
Experiment

Figure 3. Flow in a pipe. Influence of the collison operator on the value of

the ratio (D̃T )/(Dρ) (left) and comparison with experimental data (right).
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Nevertheless, in the transition regime there is a noticeable difference and

the BGK operator overestimates the ratio compared to the ES-BGK. Those

effective transport tensors D and D̃ are now used within the asymptotic

transport model to make some comparisons between our approach and the

experimental results reported in ([9]). Here we compute D and D̃ for 60

values of ρ (from 5× 10−5 to 10−1), and 30 values of T (from T = 300K to

T = 600K). In the experiment the two ends of the pipe (diameter= 0.2mm,

length=76mm) were held at carefully monitored temperatures (T1 = 335.6K

at the bottom end, and T2 = 569.8K at the top end), and the pressure

difference between the two extremities (∆P = P1 − P2), chosen so that the

mass flux in the tube vanishes, was recorded as a function of the absolute

pressure at the top, hottest side (P2). The hyperbolic cell auxiliary problems

are solved with an accomodation coefficient σ = 0.65 and the ATM is solved

with 100 cells along the pipe. The agreement between experimental data

and numerical results is quite good. Finally it is worth noting that for this

simulation we used the ES-BGK relaxation operator in the solution of the cell

auxiliary problems. Results obtained using the BGK relaxation operator are

notably less precise. This test case requires high precision of the numerical

model in a large range of regimes and the results obtained with our approach

are quite encouraging.

The last example is three dimensional. The porous media is between

two horizontal plates distant from 0.3 mm and the unit cell is described by

its horizontal rectangular section (1.6 mm × 3.2 mm) given on Figure 4 (left)

where the solid phase is grey and the fluid phase dark grey.

The cell auxiliary problems are solved using the 21-element basis and

a spatial mesh of cubic cells with ∆y = 0.2mm. The eigenvectors of the

tensor D for T = 400K and ρ = 10−2kg/m3 are drawn on the figure. We

see that the principal eigendirection is roughly parallel to the main channel

of the porous media making an angle θ = 300 with the y1 axis, proving that

the model brings to the macroscopic scale this geometric information from

the microscopic scale. Moreover the anisotropy factor (i.e.the ratio between

the largest and smallest eigenvalues) is equal to 3.13. On Figure 4 (right)

is plotted the angle θ for the tensors D and D̃ as a function of ρ. The

variation of θ is noticeable (about 5), giving the influence of the regime on

the eigenvectors of D and D̃. Moreover we see that, as expected from the

theory, these two tensors have the same eigendirections for small and large

values of ρ, but that for intermediate values, here about ρ = 10−4, their

principal eigendirections are slightly different.
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Figure 4. Geometry of a porous medium and principal directions of the

tensor D (left), and variation of of the eigendirection with ρ (right).

5. Conclusion

We have presented a method for computing the solution of stationary

linear kinetic equations allowing to determine the effective transport coef-

ficients of macroscopic model for heat and mass transfer in porous media.

Our approach is based on a Galerkin approximation in velocity variables and

a classical kinetic scheme for space variables. The Galerkin approximation

in velocity variables leads to an hyperbolic system which keeps the main

properties of the original kinetic system. Numerical experiments show the

efficiency of our method in the transition regime and the numerical scheme

is modified in order to be extended in an asymptotic preserving scheme in

the fluid limit. In forthcoming works we shall improve the precision of the

method in the very rarefied regime.
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