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Abstract

We investigate the Smoluchowski equation for the coagula-

tion process of a system of aerosol particles. The objective is the

influence of random perturbations in the presence of a source and

a sink. To this aim, a Monte Carlo process is constructed and it

is shown that fluctuations have a destabilizing effect: Particle sys-

tems are forced to gelate i.e. to form “macroparticles” of infinite

mass.

1. Introduction

1.1. Moment solutions of the Smoluchowski equation

An aerosol system is a ensemble of particles suspended in a fluid (gas

or liquid). The interaction dynamics of aerosol particles is governed by

coagulation and fragmentation. Here, coagulation describes the process in

which two particles with masses m1 and m2 cluster and build one particle

with mass m1 + m2. Fragmentation means the opposite dynamics: one

particle with some mass m may fragment into two particles with masses c

and m − c. This process is not considered in this paper. Gelation is the

effect that particles cluster within a finite time to macroparticles of infinite

mass. The investigation of gelation phenomena plays an important role in a

number of applications, e.g. for the modelling of soot formation in engines,

or the development of pollution substances in the air.
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The classical instrument to describe the evolution of aerosol systems is

the Smoluchowski equation [5]. In its discrete, space independent form it

governs the evolution of a state vector f(t) = (fi(t))
∞
i=1 which contains the

number densities fi of particles with mass i ∈ N\{0} at time t. The equation

reads

∂tf = S[f , f ], (1.1)

with the Smoluchowski coagulation operator defined by

S[f , f ]i =
1

2
·
i−1
∑

j=1

K(j, i − j)fjfi−j − fi ·
∞
∑

j=1

K(i, j)fj . (1.2)

In general, the kernel K(·, ·) is nonnegative and symmetric (cf. [1]). In this

paper we restrict for the sake of simplicity to multiplicative kernels of the

form

K(i, j) = iγ · jγ (1.3)

with some γ ∈ (1/2, 1]. As is well known from theory, such interaction kernels

will lead to gelation. Denote the α-th moment (α ≥ 0) as mα =
∑

iαfi.

Formally we find as an evolution equation for mα

∂tmα =
1

2
·
(

∞
∑

j=1

jγfj ·
∞
∑

k=1

(j+k)αkγfk

)

−
1

2
·
(

∞
∑

j=1

jγfj ·
∞
∑

k=1

(jα+kα)kγfk

)

which is meaningful and correct as long as both double sums are convergent.

It follows that m0 is a strictly decreasing function. m1 is conserved as long

as
∑

jγ+1fj < ∞. Let t∗ denote the first time when this sum diverges.

The second moment m2 =
∑

i2 · fi diverges at some time tg ≤ t∗. In this

paper we denote as the gelation time (or “explosion time”) the time tg of

divergence of the second moment. (In the model discussed here, we have

tg = t∗, but this need not be for all possible coagulation kernels and initial

conditions; see [1] for the concepts of gelation times and related results.)

It is an easy matter to establish the following evolution (in-) equalities

for the lowest moments.

∂tm0 = −m2
γ/2 < 0, (1.4)

∂tm1 = 0, (1.5)

∂tm2 = m2
1+γ ≤ m2

2 (1.6)
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as long as m2 < ∞. A particularly simple case occurs if γ = 1. Then the

differential inequality (1.6) turns into

∂tm2 = m2
2 (1.7)

indicating a finite gelation time.

1.2. Fluctuations

Fluctuations in the gelation process have (at least) two aspects, a nu-

merical and a physical one. First, a convenient method for the modelling

of coagulation systems are Monte Carlo schemes, like the Markus-Lushnikov

process and variants (for a review, see [1]), and the process proposed in [2]

which is now called the mass flow process. Random fluctuations in these

processes are inevitable and might perturb the solutions one wants to ob-

tain. Second, fluctuations are also a physical phenomenon, since physical

particle systems are finite systems. In this respect, one might try to find out

the effect of random perturbations.

The objective of the paper is to investigate the role of fluctuations in

the gelation process – in the space homogeneous and the space dependent

case (in a 1D interval). In the space homogeneous case in the presence

of a sink, it will turn out that fluctuations divide the realizations of the

Monte Carlo process into diverging and decaying trajectories. If a source

is introduced, fluctuations force all trajectories to diverge. In the space

dependent case, we model coagulation (as usual) as a local phenomenon

and introduce diffusion as spatial dynamics with complete absorption at the

bounds of the finite interval. If a source (with strength s) in the middle of

the interval is introduced, the deterministic model exhibits a fold bifurcation:

For s smaller than a certain threshold s0, there exist two stationary solutions

of the problem, one of them stable, the other unstable. For s > s0, there

exists no stationary solution, and all solutions of the time dependent problem

diverge. The stochastic model, obtained by an appropriate Monte Carlo

system, reveals the stable state as a metastable one: Trajectories are first

attracted by it but finally (after a long random time) are destabilized and

diverge.

The scope of the paper is as follows. First (Section 2) we introduce

the mass flow process and derive an appropriately modified process for the
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second moment equation, represented as an N -particle system. Then (Sec-

tion 3) we investigate a homogeneous Smoluchowski equation with sink and

source and reveal its bifurcation structure. The behavior of the correspond-

ing Monte Carlo scheme is analyzed: without source, the trajectories are

separated into diverging ones and ones decaying to 0. In the presence of

a source, all trajectories diverge. After this (Section 4) we turn to the

space dependent case, including a localized source, diffusion and absorbing

boundaries (serving as a sink). Again the bifurcation structure is analyzed.

Numerical experiments exhibit one of the two stationary states as stable, the

other one as unstable. In the Monte Carlo simulations, the former stable

state turns out to be metastable.

2. Stochastic Algorithms

In all what follows we choose the coefficient γ = 1 in the collision kernel

(1.3). This model has the advantage that the gelation phenomenon of the

infinite hierarchy of Smoluchowski equations is accompanied by the blow up

ofm2 described by the simple equation (1.7). For this reason, this system has

also been used by other authors as a reference model for the understanding

of gelation phenomena (see in particular [4] and the review article [1]). For

example, in the space homogeneous case (without source and sink) it has

been proven, that the system has a finite gelation time and that this coincides

with the blow-up time of m2. Furthermore, analytical solutions are known

if initially the system consists of monomers only. However, it is not evident

at all, how this result could be generalized in the presence of fluctuations.

As will be proven, fluctuations speed up coagulation and (in the presence

of a source and a sink) force the system to gelate; one might expect similar

results also in other models with gelation, e.g. for γ ∈ (1/2, 1). At present,

such a statement is speculative and will be subject to further work.

2.1. The mass-flow algorithm

A very useful numerical tool for the simulation of the Smoluchowski

equation is the socalled mass-flow algorithm which has been proposed in

[2] and theoretically investigated in [3]. It is a Monte Carlo scheme for the
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sequence g = (gi)
∞
i=1 := (i · fi)

∞
i=1. The evolution equation for g reads (see

[2])

∂tg = S̃[g,g], (2.1)

with

S̃[g,g]i =

i−1
∑

j=1

jgjgi−j − igi ·

∞
∑

j=1

gj (2.2)

resp. in its Euler discretized formulation

g(t+∆t) = g(t) + ∆t · S̃[g(t),g(t)]. (2.3)

Since
∑

gi is a conserved quantity (up to gelation time), we may assume
∑

gi = 1.

In the mass flow scheme, g is represented (in a sense described below)

by an N -particle ensemble c = (ci)
N
i=1 ∈ N

N , where the label ci describes

the position of the i-th particle in state space N = {1, 2, 3, . . .}. Define a

sequence ∆tk of time steps, tk :=
∑k

i=1∆tk, and identify the number k with

tk (i.e. c(k) is understood as c(tk)). The time evolution is very simple.

The following pseudo-code describes the transition from one time step to

the next.

Mass flow algorithm 2.1. Given the random vector c(k) =: (ci)
N
i=1,

the vector c(k + 1) =: (c′i)
N
i=1 is determined by the following sequence.

(1) FOR i = 1 TO N DO

(2) choose random variables j ∈ {1, . . . , N} and ν ∈ [0, 1]

(3) IF ν ≤ ∆tk · ci, THEN c′i := ci + cj ELSE c′i := ci

Given a vector c ∈ N
N , define the vector n[c] = n = (ni)

∞
i=1 ∈ R

N by

nj :=
1

N
· ♯{i ∈ {1, . . . , N}|ci = j}. (2.4)

As was shown in [2], in the limit N → ∞, n(k) converges (componentwise)

to the solution g(k) of the Euler-discretized equation (2.3), if the initial

condition (k = 0) does.

2.2. An MC algorithm for the second-moment equation

2.2.1. The second moments of the mass flow process
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Since c(k) is an approximation of the solution of the discretized equation

(2.3), the sum

c(k) :=
1

N
·

N
∑

i=1

ci(k) =
∞
∑

j=1

j · nj(k) (2.5)

should be an approximation of the second moment m2(k) =
∑

j2fj(k) =
∑

jgj(k). Thus, in the limit N → ∞ it should be a solution of the Euler-

discretized moment equation

a(k + 1) = a(k) + ∆tk · a(k)
2. (2.6)

Indeed, this can be proven. The transition from c(k) to c(k + 1) consists of

a sum
∑N

i=1∆ci of increments; here, ∆ci = cπ(i)/N with probability ∆tk · ci,

and ∆ci = 0 else. Elementary calculations show

Lemma 2.2. (a) Expectations:

E(c(k + 1)|c(k)) = c(k) + ∆tk · (c(k))
2. (2.7)

(b) Variances:

E((c(k+1))2|c(k)) = (c(k))2+2∆tk·(c(k))
3+(∆tk)

2·E

(

N
∑

i=1

ci ·
cπi

N

)2

(2.8)

If we define a(k) := Ec(k), then simple arguments lead to

Proposition 2.3. The evolution of a(k) is given by

a(k+1) = a(k) +∆tk ·
(

(a(k))2 +Var(a(k))
)

≥ a(k) +∆tk · (a
(k))2. (2.9)

Thus a(k) is a supersolution converging to the discretized equation for

N → ∞, since Var(a(k)) →N→∞ 0.

2.2.2. Reduced model processes

For the sake of numerical efficiency it is extremely useful to simplify the

process by replacing the increments and the transition probabilities by mean
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values. As a result, the increment is a sum of i.i.d. random variables:

c(k + 1) = c(k) +

N
∑

i=1

∆ci (2.10)

where

∆ci =

{

c(k)/N with probability ∆tk · c(k)

0 else
(2.11)

We refer to this as to a reduced process, since it operates on a σ-algebra

smaller than that of the original process. In analogy to Lemma 2.2 we find

Lemma: (a) Expectations:

E(c(k + 1)|c(k)) = c(k) + ∆tk · (c(k))
2. (2.12)

(b) Variances:

E((c(k+1))2|c(k)) = (c(k))2+2∆tk ·
(

1+
1

2N

)

(c(k))3+(∆tk)
2 ·
(

1−
1

N

)

(c(k))4

(2.13)

This shows that this process exhibits the same asymptotic behavior as

that of section 2.2.1 for large N and small ∆t.

Since ∆tk · c(k) has to be bounded by 1, ∆tk has to be adapted to

the state c(k). To overcome this, we arrive at the final process used in the

following by changing (2.11) into

∆ci =

{

c(k) with probability ∆tk · c(k)/N

0 else
(2.14)

Of course, this modification increases the variance of the process; however,

for bounded N it should reproduce the qualitative behavior of the original

reduced process.

3. Coagulation with Sink and Source

3.1. The model equation

As a preparation for the full problem in Section 4, we consider a space-

homogeneous Smoluchowski equation with time-independent sink and source.
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The system under study reads

∂tfi = S[f , f ]i − λfi + si, (3.1)

where S[f , f ] is defined by (1.2) with K(i, j) = ij, λ and si are nonnegative,

and

s :=

∞
∑

i=1

i2si <∞. (3.2)

The equation for the second moment m2 =
∑

i2fi reads

∂tm2 = m2
2 − λm2 + s. (3.3)

Whether m2 diverges in finite time, depends on the initial condition m2(0)

and on λ and s. With methods from standard ODE theory we find the exact

solution.

Theorem 3.1. (a) Suppose s < λ2/4. If m2(0) = λ/2 + µ with µ =
√

λ2/4− s, then m2(.) is constant. Otherwise define z0 := (m2(0) − λ/2 −

µ)−1. Then

m2(t) =
λ

2
+ µ+

µ

−1 + (µz0 + 1) · exp(−µt)
. (3.4)

The solution converges to the steady state λ/2− µ if z0 < 0 and diverges in

finite time if z0 > 0.

(b) If s > λ2/4, then

m2(t) = λ/2 + σ · tan((σ(t+ c)) (3.5)

with σ =
√

s− λ2/4 and c = [arctan((m2(0) − λ/2)/σ)]/σ. The solution

explodes at some time t∞ ≤ π/(2σ).

The stationary solutions of equation (3.3) exhibit a fold bifurcation in the

sense described below. This is interesting since precisely the same structure

will be found in the space dependent model problem of Section 4.

Corollary 3.2. For s > λ2/4 there exists no steady solution to (3.3).

For s = λ2/4, the only steady solution is m2 = λ/2. For s < λ2/4, there are
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the two steady solutions λ/2 ±
√

λ2/4− s, the lower of which is stable, the

other unstable.

3.2. A Monte Carlo model process

Our main concern at this place is the behaviour of Monte Carlo solutions

in the presence of sinks and sources. In order to understand their behaviour

it is sufficient to establish a simplified model process.

Let An (time step tn), n ∈ N, be a stochastic process with state space N.

Given a weight 1/ng (with ng ∈ N sufficiently large), an := An/ng should

represent a stochastic solution of (3.3). We interpret An as an ensemble

of An particles, each of which increases with an amount of An with proba-

bility ∆t/ng and decreases by 1 with probability λ∆t. The corresponding

computer program section reads as follows.

g := 0

FOR k:=1 TO An DO

p := random {random number in (0, 1)}

IF p < ∆t/ng THEN g := g +An

ELSE IF p > 1− λ∆t THEN g := g − 1

An+1 := An + g

an+1 := An+1/ng

Following the usual arguments, it is easy to prove that E(An) is a so-

lution of the discretized version of (3.3) with source s = 0. This is an easy

consequence of

Proposition 3.3. For n = 1, 2, 3, . . .,

E(an+1|an = a) = a+∆t · (a2 − a). (3.6)

For n→ ∞, realizations An might converge to 0, diverge to ∞ or move

in a bounded domain. The following theorem proves that 0 and ∞ attract

almost all of the trajectories.

Theorem 3.4. Almost surely, limn→∞An = ∞ or limn→∞An = 0.

For all initial values A0 = a0 > 0, the realizations may go to 0 and to ∞

with positive probability, i.e.

P ( lim
n→∞

An = ∞|A0) > 0 and P ( lim
n→∞

An = 0|A0) > 0 (3.7)
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whenever A0 > 0.

Proof. Step (1): Choose any constants C and C satisfying 0 < C <

ng < C <∞. Choose n0 ∈ N arbitrary. Then

P (C ≤ An ≤ C for all n ≥ n0) = 0. (3.8)

Proof. It is easy to show that there exists a number N of time steps and

a probability p > 0 such that for any An0
∈ (C,C)

P (An0+N /∈ [C,C]|An0
) ≤ p. (3.9)

The event C ≤ An0
≤ C for all n ≥ n0 implies the event C ≤ An0+kN ≤

C for all k ∈ N and thus has probability 0.

Step (2): We have the following recurrence properties of AN with respect

to the lines C and C.

(i) If C is large enough, then there exists p < 1 such that

P (An crosses line C at least once
∣

∣A0 ≥ C ) ≤ p. (3.10)

(ii) For any fixed C > 0 there exists p > 0 such that

P (An hits the zero line |A0 ≤ C ) ≥ p. (3.11)

Proof of (i). The increments An+1 −An take values in [−An, A
2
n]. Nec-

essary for the condition An+1−An < An is that no more than one of the An

particles has an increment of An (see program section). Thus we easily find

that






P (An+1−An<An) < p[An]=
(

1−∆t
ng

)An−1 [(

1−∆t
ng

)

+An
∆t
nf

]

P (An+1 −An ≥ An) > 1− p[An]
(3.12)

Notice that p[An] is monotonely decaying to 0 for An ր ∞. We choose

A0 ≥ C arbitrary and calculate the probability

P (k) =
k−1
∏

j=0

(1− p[Aj]) (3.13)

for the event

2kA0 ≤ 2k−1A1 ≤ · · · ≤ 2Ak−1 ≤ Ak. (3.14)
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For ξ sufficiently large we have the estimate

p[ξ] ≤ aξ for some a ∈ (0, 1). (3.15)

Now a classical formula (see [6, Sec. 0.7.5]) proves that

P (k) ց P∞ ≥

∞
∏

j=0

(1− a2
j

) =
a

1 + a
. (3.16)

Thus with positive probability, An will not return to C.

Step (3): Choose C as in step (2)(i), and C := C. An can pass this line

only a finite number of times, since the recurrence probabilities from below

and above are bounded away from 1. If An remains in [0, C] after finitely

many steps, it is absorbed from 0 at finite time. In the other case, An ր ∞

for n → ∞ (which follows again by comparison with the classical random

walk). �

We conclude, whatever value for A0 we choose, fluctuations separate

trajectories in those converging to 0 and those diverging. It is, however,

obvious that for the discretized scheme An cannot diverge in finite time,

since each time step ∆t allows only a finite increment. A consequence of

the theorem is that it is e.g. not possible to find the longtime behaviour for

the solution of problem (3.3) with small initial value (this solution should

converge) by taking ensemble averages of the stochastic process. Averages

will diverge as soon as there is a single diverging trajectory in the ensemble.

Figure 1 shows a couple of numerical trajectories.
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Figure 1. MC realizations for homogeneous model with sink.
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Finally, let us include a source s > 0 into the model process. This is

readily achieved by adding randomly new particles. In this case, the limiting

state An ց 0 is prohibited. A slight modification of the proof of Theorem

3.4 yields

Corollary 3.5. In the case of a source s > 0, almost all trajectories

satisfy An ր ∞.

4. A Spatial Coagulation Model with Source

4.1. An initial boundary value problem

4.1.1. The problem

We now combine the coagulation process with a diffusion in the spatial

domain [−1, 1]. A source of aerosols of strength s ≥ 0 is introduced at x = 0;

the boundary of [−1, 1] is totally absorbing and serves as a sink. The initial

boundary value problem (IBVP) under consideration for the second moment

function a : [0, T ]× [−1, 1] → R+ reads

∂ta = ∂xxa+ a2 + s · δx=0, (4.1)

0 = a(−1) = a(1), (4.2)

with initial conditions to be specified. Let us point out that this corresponds

to a Smoluchowski system of the form

∂tfi = ∂xxfi + S[f , f ]i + si · δx=0. (4.3)

In particular it follows that the diffusion coefficients are equal for all masses

i. This may seem unphysical since large masses should diffuse more slowly

than small ones. However, this assumption is necessary for us since we want

to restrict to the level of the second moment description. We will shortly

comment this at the end of section 4.2.3.

4.1.2. Stationary solutions

For the following it is useful to study the stationary boundary value

problem (BVP)

∂xxa = −a2 − s · δ0, a(−1) = a(1) = 0. (4.4)
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A solution of (BVP) has to satisfy the ODE

∂xxa = −a2 in [−1, 0) and in (0, 1] (4.5)

and the interface jump condition for ∂xa,

∂xa(0−)− ∂xa(0+) = s. (4.6)

One finds easily that solutions have to satisfy the symmetry condition

a(−x) = a(x), (4.7)

and thus

∂xa(0−) = −∂xa(0+) = s/2. (4.8)

Therefore we may restrict to the solution in the left interval [−1, 0]. We shift

the interval by transforming x→ x+ 1 and consider as a modified problem

on R+ the initial value problem (IVP)

∂xxb = −b2, b(0) = 0, ∂xb(0) = α. (4.9)

If necessary, we denote b(x) =: b[α](x) to indicate the dependence of b on the

initial value ∂xb(0) = α. We have to find α > 0 such that ∂xb[α](1) = s/2.

Solutions of (4.9) are concave functions satisfying (for ∂xb(0) > 0) the

asymptotic behavior limx→∞ b(x) = −∞. Multiplying with ∂xb and setting

∂xb(0) = α, we find after integration the equation

∂xb =







+
√

α2 − 2
3b

3 as long as b(x) ≤ (1.5 · α2)1/3

−
√

α2 − 2
3b

3 else
(4.10)

From the concavity of b follows easily by application of standard ODE tech-

niques

Lemma 4.1. (a) For α > 0 there exists a unique x0(α) ∈ (0,∞) with

∂xb(x)

{

≥ 0 for x ≤ x0(α)

< 0 else
(4.11)

(b) x0(α) is continuous and strictly monotonically decreasing, and

lim
αց0

x0(α) = ∞, lim
αր∞

x0(α) = 0. (4.12)
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Define α0 > 0 as that value, for which x0(α0) = 1. Then it is obvious

that the BVP (4.4) with s = 0 has two solutions: one with ∂xa(−1) = 0 and

one with ∂xa(−1) = α0. Values α > α0 imply ∂xb(1) = ∂xa(0) < 0 which

corresponds to a negative source s. Since we assume s ≥ 0, the only range

for α is [0, α0]. We now define the function

Ψ : [0, α0] → R+, Ψ(α) = ∂xb[α](1). (4.13)

Ψ is continuous, satisfies Ψ(0) = Ψ(α0) = 0, and is strictly positive for

α ∈ (0, α0). Thus Ψ assumes its maximum ψmax at (at least) one point

αmax. For all values ψ̃ < ψmax, there exist at least two points α1, α2 with

Ψ(α1) = Ψ(α2) = ψ̃. A more detailed analysis shows that there are exactly

two points. This proves that the space of stationary solutions exhibits the

structure of a fold bifurcation.

Theorem 4.2. There exists an s0 > 0 such that the BVP (4.4) has







no solution for s > s0 = 2a′(0−)max

exactly one solution for s = s0
two solutions for s < s0

(4.14)

This situation is illustrated in Figure 2 which shows the dependance of

a′(−1) on a′(0) = s/2.

Figure 2. Bifurcation structure of stationary BVP.

At this point it is natural to ask which of the two solutions (for s < s0)

are stable stationary states of the IBVP (4.1), (4.2). This question could

be solved applying well-known techniques from PDE theory. However, this



2007] THE IMPACT OF RANDOM FLUCTUATIONS 343

would be beyond the scope of the present work. Instead, we give a numerical

answer in section 4.2.2 for the discretized PDE (4.2) which we afterwards

compare to the randomly perturbed analogue. In this way we find at least

the numerical evidence of the effect of fluctuations on discretized systems.

A more analytical treatment in a more general framework will be due to

further investigations.

4.2. Numerical simulations

4.2.1. Discretization of the IBVP

As a basis for the numerical simulation we choose the following dis-

cretization. We determine some sufficiently large N ∈ N and define a step

size ∆x = 1/N , and for k = −N, . . . ,N , xk = k · ∆x. In the numerical

experiments described below we chose N = 40 (4.2.2) resp. N = 20 (4.2.3).

The dynamics is modelled by operator splitting. Alternatingly, the

diffusion step: ∂ta = ∂xxa and the

coagulation step: ∂ta = a2 + s · δ0

are performed for a time step of length ∆t. This is a quite rough discretiza-

tion, but it exhibits all features which we want to illuminate in this paper.

The diffusion step is simulated in a point xi in the deterministic version

by the usual central difference approximation for the second derivative. In

the stochastic version, this is replaced by the corresponding random walk.

In a first step, we calculate the bifurcation structure observed in Theo-

rem (4.2). Figure 2 shows the value of a′(0−) (abscissa) (which we denote

for short a′(0)) depending on the choice of α = a′(−1). As the maximal

value for a′(0) we find a′(0)max ≈ 0.87. Corresponding to formula (4.14),

for sources stronger than s0 = 2a′(0)max ≈ 1.74, there exists no stationary

solution to (the discretized version of) (4.1). For 0 ≤ s < s0, there are two

solutions stat1 and stat2.

4.2.2. Stability of stationary solutions

We test numerically the stability of the two solutions stat1 and stat2 for

s = 1.5864. The corresponding initial conditions for the BVP are a′(−1) =

1.3004 and a′(−1) = 2.5. Both solutions stat1 ≤ stat2 are shown in Figure

3. For the test we investigate the asymptotic behavior (large t) for solutions
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of the IBVP with initial data a(0, x) close to one of the stationary solutions,

and for a(0, x) = 0.

Figure 3. Stationary solutions of BVP for fixed source s < s0.

Figure 4. Solutions of evolution problem (IBVP), a(0) = 0.

Figure 4 shows the evolution corresponding to a(0) = 0, displaying the

time steps 25 · 2k, k = 0, . . . , 7. The two dotted lines correspond to the

stationary solutions. For fixed x ∈ (−1, 1), a(t, x) is strictly increasing with

t, and there is a clear numerical indication that a(t) → stat1. In the next

experiment we choose initial data a(0) < stat2, with 0.99 · stat2 < a <

stat2, obtained by subtracting a random function (in x) from stat2. Figure

5 illustrates that a(t) stays for a long time close to stat2 (approximately

2000 time steps) and is eventually attracted by stat1 (after 8000 time steps,

a(t) ≈ stat1). The same experiment with a(0) > stat2 leads to a diverging

solution as displayed in Figure 6. Here, a(t) remains for a long time near

stat2 (solid lines illustrate the time steps 1000 and 2000), then increases
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with moderate speed (the dashed lines represent the time steps 2500 and

2600) and finally explodes in a short time (dotted lines, showing time steps

2620, 2640 and 2660; time step 2670 leads to an overflow exception).

These examples are clear indications that stat1 is a stable and stat2 an

unstable stationary solution to (4.1), (4.2).

Finally, we want to test the influence of (small) random fluctuations

in the initial conditions. We find that choosing initial conditions as slight

random perturbations of stat2 leads to splitting up of the random solutions

into diverging ones and ones converging to stat1. Figure 7 shows a(t, 0) −

stat1(0) (in logarithmic scale) for a couple of realizations. We recognize a

picture resembling that of Figure 1 for the homogeneous case.

Figure 5. Solutions of evolution problem (IBVP), a(0) slightly below stat2.

Figure 6. Solutions of evolution problem (IBVP), a(0) slightly above stat2.
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Figure 7. Solutions a(t, 0) of evolution problem (IBVP), a(0, x) random

perturbation around stat2.

4.2.3. Metastability of stat1

As a last example we want to test the effect of random fluctuations of the

coagulation process and of the diffusion. As source we take s = 1.72 ( which

is close to the maximal value s0 = 1.74; thus the two stationary solutions

are quite close together). Furthermore, ng = 50. We again start with initial

condition a(0) = 0 and expect the numerical solution to approximate stat1.

Indeed, a(t) approximates stat1 after 1000 time steps (see Figure 8) and

seems to be kept by stat1. However, after approximately 3000 time steps it

starts to increase and finally explodes after time step 4130 (Figure 9).

Our interpretation is that due to fluctuations a major portion of the

random system crosses the line of stat2 and becomes destabilized. Thus the

system exhibits a typical feature which in other contexts has been observed

and which is denoted as metastability. The time scale for destabilization will

rapidly increase with increasing ng (and thus reduced fluctuations). The

effect, however, will be still observable.

Let us add a last comment on the diffusion constants which in equation

(4.3) had to be chosen the same for all particles. It seems natural to let

diffusion constants decrease with increasing particle sizes. Since the diffusion

of particles to the absorbing boundaries represents the sink of the system,

a slowing down of the motion of large particles should diminish the role of

the sink and speed up the coagulation process thus reducing the time to

first gelation. This can be indeed observed in numerical simulations. This

effect will be included into the analytical study of a model in a more general

framework in a future study.
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Figure 8. MC solution of IBVP, a(0) = 0: attraction to stat1.
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Figure 9. Continuation of Figure 8: destabilization.
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