
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 2 (2007), No. 2, pp. 349-365

DETERMINISTIC AND STOCHASTIC SIMULATIONS OF

ELECTRON TRANSPORT IN SEMICONDUCTORS

BY

MARTIN GALLER AND ARMANDO MAJORANA

Abstract

We present a new numerical scheme based on a shock cap-

turing algorithm combined with a cell average method for solving

the non-stationary Boltzmann-Poisson system describing the elec-

tron transport in semiconductor devices. The proposed computa-

tional technique is applied for investigating the carrier transport in

a silicon MOSFET. Hydrodynamical and electrical quantities are

shown and compared with data obtained by the Direct Simulation

Monte Carlo (DSMC) method. The good agreement between the

deterministic and the stochastic approaches validates the proposed

numerical scheme, which may represent a useful tool for studying

transport phenomena in semiconductors where the DSMC method

does not give accurate results.

1. Introduction

Very large scale integration is the forthcoming design in semiconduc-

tor technology. This implies that in modern integrated electron devices the

scale length of individual components becomes comparable with the dis-

tance between successive carrier interactions with the crystal, and the well-

established drift-diffusion models describing the carrier transport lose their

accuracy [1]. Consequently, to cope with high-field and sub-micron phenom-

ena, Boltzmann transport equations (BTEs) must be applied [2]. Determin-

istic as well as stochastic procedures can be considered as solution approaches
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to these extremely sophisticated equations. So far, mainly stochastic meth-

ods have been applied to solve the BTEs [3]-[6]. Compared to stochastic

methods, direct approaches provide noise-free resolution, high accuracy and

easiness of arbitrary moment evaluations at low computational costs. The

first finite difference approach to the Boltzmann transport equation was pro-

posed by Fatemi and Odeh [7]. They developed an upwind finite difference

approximation for the Boltzmann-Poisson system. Majorana and Pidatella

[8] solved the Boltzmann-Poisson system by the help of a box method in the

energy and angle variables and combined this approach with a classical dis-

cretization technique for advection equations based on upwinding in the spa-

tial variable. Recently, Carrillo et al. [9], [10] succeeded in introducing a de-

terministic high-order finite difference Weighted Essentially Non Oscillatory

(WENO) solver for the solution of the one-dimensional Boltzmann-Poisson

system for semiconductor devices. Moreover, they extended their numerical

technique to cope with spatially two-dimensional geometries [11]. In this pa-

per, a cell average technique combined with a WENO scheme is proposed for

solving the coupled Boltzmann-Poisson system. This new numerical scheme

is based on the use of the cell average method for treating the dependence of

the electron distribution function on the three-dimensional wave vector and

a fifth-order WENO solver [10], [11] for dealing with the two-dimensional

physical space. The resulting transport equations are applied for simulating

the charge transport in a silicon MOSFET.

This paper is organized as follows. In Section 2, we introduce the basic

equations and convert them in a suitable dimensionless form. In Section 3, we

describe the new numerical scheme, and some results for a two-dimensional

device are shown in Section 4. In the last section, we draw some conclusions

and remarks.

2. The Boltzmann-Poisson System

The evolution of the electron distribution function f(t,x,k) in semicon-

ductors in dependence of time t, position x and electron wave vector k is

governed by the Boltzmann transport equation (BTE) [12]

∂f

∂t
+

1

~
∇k ε · ∇xf − q

~
E · ∇kf = Q(f), (1)

where ~ is the reduced Planck constant, and q denotes the positive ele-

mentary charge. The function ε(k) is the energy of the considered crystal
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conduction band measured from the band minimum; according to the Kane

dispersion relation, ε is the positive root of

ε(1 + αε) =
~
2k2

2m∗ , (2)

where α is the non-parabolicity factor and m∗ the effective electron mass.

The electric field E is related to the doping density ND and the electron

density n, which equals the zero-order moment of the electron distribution

function f , by the Poisson equation

∇x [ǫr(x)∇xV ] =
q

ǫ0
[n(t,x)−ND(x)] , E = −∇xV, (3)

where ǫ0 is the dielectric constant of the vacuum, ǫr(x) labels the relative

dielectric function depending on the material and V the electrostatic poten-

tial. The collision operator Q(f) takes into account acoustic deformation

potential and optical intervalley scattering [13]. For low electron densities,

it reads

Q(f)(t,x,k) =

∫

R
3

[

S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)
]

dk′ (4)

with the scattering kernel

S(k,k′) = (nq + 1)K δ(ε(k′)− ε(k) + ~ωp)

+ nq K δ(ε(k′)− ε(k)− ~ωp) +K0 δ(ε(k
′)− ε(k)) (5)

and K and K0 being constant for silicon. The symbol δ indicates the usual

Dirac distribution and ωp is the constant phonon frequency. Moreover,

nq =

[

exp

(

~ωp

kBTL

)

− 1

]−1

is the occupation number of phonons, kB the Boltzmann constant and TL

the constant lattice temperature.

For the numerical treatment of the system (1), (3), it is convenient

to introduce suitable dimensionless quantities and variables. We assume

TL = 300K. Typical values for length, time and voltage are ℓ∗ = 10−6 m,

t∗ = 10−12 s and V∗ = 1Volt, respectively. Thus, we define the dimensionless

variables

(x, y, z) =
x

ℓ∗
, t =

t

t∗
, Ψ =

V

V∗
, (Ex, Ey, Ez) =

E

E∗
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with E∗ = 0.1V∗ ℓ
−1
∗ and

Ex = −cv
∂Ψ

∂x
, Ey = −cv

∂Ψ

∂y
, cv =

V∗
ℓ∗E∗

.

In correspondence to [8] and [10], we perform a coordinate transformation

for k according to

k =

√
2m∗kBTL

~

√

w(1 + αKw)
(

µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)

, (6)

where the new independent variables are the dimensionless energy w =
ε

kBTL

, the cosine of the polar angle µ and the azimuth angle ϕ with αK =

kBTLα. The main advantage of the generalized spherical coordinates (6) is

the easy treatment of the Dirac distribution in the kernel (5) of the collision

term. In fact, this procedure enables us to transform the integral opera-

tor (4) with the not regular kernel S into an integral-difference operator, as

shown in the following.

We are interested in studying two-dimensional problems in real space

but, of course, in the whole three-dimensional k-space. Therefore, it is useful

to consider the new unknown function Φ related to the electron distribution

function via

Φ(t, x, y, w, µ, ϕ) = s(w)f(t,x,k)|
t=t∗t, x=ℓ∗(x,y,z), k=

√
2m∗kBTL

~

√
w(1+αKw) ...

,

where

s(w) =
√

w(1 + αKw)(1 + 2αKw), (7)

is proportional to the Jacobian of the change of variables (6) and, apart

from a dimensional constant factor, to the density of states. This allows us

to write the free streaming operator of the dimensionless Boltzmann equation

in a conservative form, which is appropriate for applying standard numer-

ical schemes used for hyperbolic partial differential equations. Due to the

symmetry of the problem and of the collision operator, we have

Φ(t, x, y, w, µ, 2π − ϕ) = Φ(t, x, y, w, µ, ϕ) . (8)

Straightforward but cumbersome calculations end in the following transport

equation for Φ:

∂Φ

∂t
+

∂

∂x
(g1Φ)+

∂

∂y
(g2Φ) +

∂

∂w
(g3Φ) +

∂

∂µ
(g4Φ)+

∂

∂ϕ
(g5Φ) = C(Φ) . (9)
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The functions gi (i = 1, 2, . . . , 5) in the advection terms depend on the

independent variables w, µ, ϕ as well as on time and position via the electric

field. They are given by

g1(·) = cx
µ
√

w(1 + αKw)

1 + 2αKw
,

g2(·) = cx

√

1− µ2
√

w(1 + αKw) cosϕ

1 + 2αKw
,

g3(·) = − 2ck

√

w(1 + αKw)

1 + 2αKw

[

µEx(t, x, y) +
√

1− µ2 cosϕEy(t, x, y)
]

,

g4(·) = − ck

√

1− µ2

√

w(1 + αKw)

[

√

1− µ2 Ex(t, x, y)− µ cosϕEy(t, x, y)
]

,

g5(·) = ck
sinϕ

√

w(1 + αKw)
√

1− µ2
Ey(t, x, y)

with

cx =
t∗
ℓ∗

√

2 kBTL

m∗ and ck =
t∗qE∗√
2m∗kBTL

.

The right hand side of (9) is the integral-difference operator

C(Φ)(t, x, y, w, µ, ϕ) = s(w)

{

c0

∫ π

0
dϕ′

∫ 1

−1
dµ′ Φ(t, x, y, w, µ′, ϕ′)

+

∫ π

0
dϕ′

∫ 1

−1
dµ′ [c+Φ(t, x, y, w + γ, µ′, ϕ′) + c−Φ(t, x, y, w − γ, µ′, ϕ′)]

}

− 2π[c0s(w) + c+s(w − γ) + c−s(w + γ)]Φ(t, x, y, w, µ, ϕ),

where

(c0, c+, c−) =
2m∗ t∗
~3

√

2m∗ kBTL (K0, (nq + 1)K,nqK) , γ =
~ωp

kBTL

are dimensionless parameters. We remark that the δ distributions in the

kernel S have been eliminated; this leads to the shifted arguments of Φ. The

parameter γ represents the jump constant corresponding to the quantum of

energy ~ωp. We have also taken into account (8) in the integration with

respect to ϕ′.
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In terms of the new variables the electron density becomes

n(t∗t, ℓ∗x, ℓ∗y) =

∫

R
3

f(t∗t, ℓ∗x, ℓ∗y,k) dk =

(√
2m∗kBTL

~

)3

ρ(t, x, y),

where

ρ(t, x, y) =

∫ +∞

0
dw

∫ 1

−1
dµ

∫ π

0
dϕ Φ(t, x, y, w, µ, ϕ) . (10)

Hence, the dimensionless Poisson equation writes

∂

∂x

(

ǫr
∂Ψ

∂x

)

+
∂

∂y

(

ǫr
∂Ψ

∂y

)

= cp [ρ(t, x, t) −ND(x, y)] (11)

with

ND(x, y) =

(√
2m∗kBTL

~

)−3

ND(ℓ∗x, ℓ∗y) and cp =

(√
2m∗kBTL

~

)3
ℓ2∗q

ǫ0
.

Choosing the same values of the physical parameters as in [8], we obtain

c0 ≈ 0.2653 cx ≈ 0.16857 cp ≈ 0.183 × 107

c+ ≈ 0.507 ck ≈ 0.326067 cv = 10.

c− ≈ 0.0443

3. Numerical Scheme

For obtaining approximate solutions to the coupled Boltzmann-Poisson

system, we proceed as follows. The first step is to fix a maximum value wmax

for the dimensionless energy. Of course, wmax must be related to the studied

physical process, and we must check that Φ(t, x, y, wmax, µ, ϕ) is negligible

for all t, x, y, µ and ϕ.

Next, we choose three suitable integer numbers Nw, Nµ and Nϕ and dis-

cretize the independent variables w, µ and ϕ via

wk+ 1

2

= k∆w, k = 0, 1, . . . , Nw, ∆w = wmax/Nw,

µm+ 1

2

= −1 +m∆µ, m = 0, 1, . . . , Nµ, ∆µ = 2/Nµ,

ϕn+ 1

2

= n∆ϕ, n = 0, 1, . . . , Nϕ, ∆ϕ = π/Nϕ .
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Here, we have taken into account that ϕ ∈ [0, π]. It is important to remark

that Nw must be chosen in such way that σ = γ/∆w ∈ N in order to treat

the shifted arguments in the collision operator correctly. We denote the

generic cell in the (w,µ, ϕ) domain by

Zkmn =
[

wk− 1

2

, wk+ 1

2

]

×
[

µm− 1

2

, µm+ 1

2

]

×
[

ϕn− 1

2

, ϕn+ 1

2

]

for k = 1, 2, . . . , Nw, m = 1, 2, . . . , Nµ and n = 1, 2, . . . , Nϕ. The center of

the cell Zkmn has the coordinates (wk, µm, ϕn).

Let p(w,µ, ϕ) be an assigned nonnegative function. We assume that

Φ(t, x, y, w, µ, ϕ) = p(w,µ, ϕ)G(t, x, y, w, µ, ϕ), (12)

whereG represents the new unknown, and p has the role of a weight function.

As our main assumption, we suggest that

G(t, x, y, w, µ, ϕ) ≈ G(t, x, y, wk , µm, ϕn) (13)

for every t, x, y and (w,µ, ϕ) belonging to interior of the cell Zkmn. This

implies that, if we integrate Eq. (9) over the cell Zkmn, the first term may

be approximated as

∫

Zkmn

∂Φ

∂t
dwdµdϕ ≈

[
∫

Zkmn

p(w,µ, ϕ) dwdµdϕ

]

∂

∂t
G(t, x, y, wk, µm, ϕn) .

A further assumption is needed for considering the force terms, because, for

instance,
∫

Zkmn

∂

∂w
(g3Φ) dwdµdϕ (14)

=

∫ µ
m+1

2

µ
m−

1
2

∫ ϕ
n+1

2

ϕ
n−

1
2

g3(t, x, y, w, µ, ϕ) p(w,µ, ϕ)G(t, x, y, w, µ, ϕ)dµdϕ

∣

∣

∣

∣

∣

∣

w
k+1

2

w
k−1

2

.

Here, it is reasonable to assume that the following approximation holds

G(t, x, y, wk± 1

2

, µ, ϕ) ≈ G(t, x, y, wk± 1

2

, µm, ϕn) (15)

for every (t, x, y) and (µ,ϕ) ∈
[

µm− 1

2

, µm+ 1

2

]

×
[

ϕn− 1

2

, ϕn+ 1

2

]

. Consequently,
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(14) can be approximated by

G(t, x, y, w, µm, ϕn)

∫ µ
m+1

2

µ
m−

1
2

∫ ϕ
n+1

2

ϕ
n−

1
2

g3(t, x, y, w, µ, ϕ) p(w,µ, ϕ) dµdϕ

∣

∣

∣

∣

∣

∣

w
k+1

2

w
k−1

2

.

For simplifying the notation, we define

Gk,m,n(t, x, y) = G(t, x, y, wk, µm, ϕn) (k,m, n ∈ N)

and

Gq,r,s(t, x, y) = G(t, x, y, wq , µr, ϕs),

where one of the indexes q, r, s is not an integer number. Now, it is our goal

to derive a set of Nw × Nµ × Nϕ equations for the Gk,m,n. The evolution

equations for these unknowns are constructed as suggested by the method

of weighted residuals [14]. The ansatz (12) is inserted into the dimension-

less Boltzmann equation (9), and the result is integrated over each of the

cells Zkmn. Introducing the approximations (13) and (15), we obtain the

equations

A
(0)
k,m,n

∂

∂t
Gk,m,n +A

(1)
k,m,n

∂

∂x
Gk,m,n +A

(2)
k,m,n

∂

∂y
Gk,m,n

+ Ex(t, x, y)

[

A
(3x)

k+ 1

2
,m,n

Gk+ 1

2
,m,n −A

(3x)

k− 1

2
,m,n

Gk− 1

2
,m,n

]

+ Ey(t, x, y)

[

A
(3y)

k+ 1

2
,m,n

Gk+ 1

2
,m,n −A

(3y)

k− 1

2
,m,n

Gk− 1

2
,m,n

]

+ Ex(t, x, y)

[

A
(4x)

k,m+ 1

2
,n
Gk,m+ 1

2
,n −A

(4x)

k,m− 1

2
,n
Gk,m− 1

2
,n

]

(16)

+ Ey(t, x, y)

[

A
(4y)

k,m+ 1

2
,n
Gk,m+ 1

2
,n −A

(4y)

k,m− 1

2
,n
Gk,m− 1

2
,n

]

+ Ey(t, x, y)

[

A
(5)

k,m,n+ 1

2

Gk,m,n+ 1

2

−A
(5)

k,m,n− 1

2

Gk,m,n− 1

2

]

=

Nµ
∑

ℓ=1

Nϕ
∑

h=1

[

C
(0)
k,ℓ,hGk,ℓ,h +C

(+)
k,ℓ,hGk+σ,ℓ,h + C

(−)
k,ℓ,hGk−σ,ℓ,h

]

− νk,m,nGk,m,n

for each (k,m, n) so that 1 ≤ k ≤ Nw, 1 ≤ m ≤ Nµ and 1 ≤ n ≤ Nϕ. The
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coefficients

A
(0)
k,m,n =

∫

Zkmn

p(w,µ, ϕ) dwdµdϕ

A
(1)
k,m,n =

∫

Zkmn

g1(w,µ) p(w,µ, ϕ) dwdµdϕ

A
(2)
k,m,n =

∫

Zkmn

g2(w,µ, ϕ) p(w,µ, ϕ) dwdµdϕ

A
(3x)

k± 1

2
,m,n

=

∫ µ
m+1

2

µ
m−

1
2

∫ ϕ
n+1

2

ϕ
n−

1
2

g3x(wk± 1

2

, µ, ϕ) p(wk± 1

2

, µ, ϕ) dµdϕ

A
(3y)

k± 1

2
,m,n

=

∫ µ
m+1

2

µ
m−

1
2

∫ ϕ
n+1

2

ϕ
n−

1
2

g3y(wk± 1

2

, µ, ϕ) p(wk± 1

2

, µ, ϕ) dµdϕ

A
(4x)

k,m± 1

2
,n

=

∫ w
k+1

2

w
k−1

2

∫ ϕ
n+1

2

ϕ
n−

1
2

g4x(w,µm± 1

2

, ϕ) p(w,µm± 1

2

, ϕ) dwdϕ

A
(4y)

k,m± 1

2
,n

=

∫ w
k+1

2

w
k−1

2

∫ ϕ
n+1

2

ϕ
n−

1
2

g4y(w,µm± 1

2

, ϕ) p(w,µm± 1

2

, ϕ) dwdϕ

A
(5)

k,m,n± 1

2

=

∫ w
k+1

2

w
k−1

2

∫ µ
m+1

2

µ
m−

1
2

g5y(w,µ, ϕn± 1

2

) p(w,µ, ϕn± 1

2

) dwdµ

C
(0)
k,m,n = c0∆µ∆ϕ

∫

Zkmn

s(w) p(w,µ′, ϕ′) dwdµ′dϕ′

C
(+)
k,m,n = c+∆µ∆ϕ

∫

Zkmn

s(w) p(w + γ, µ′, ϕ′) dwdµ′dϕ′

C
(−)
k,m,n = c−∆µ∆ϕ

∫

Zkmn

s(w) p(w − γ, µ′, ϕ′) dwdµ′dϕ′

νk,m,n = 2π

∫

Zkmn

[c0s(w) + c+s(w − γ) + c−s(w + γ)] p(w,µ, ϕ) dwdµdϕ

depend only on the grid in the (w,µ, ϕ) domain and can be evaluated

when the weight function p is chosen. The new functions g3x(w,µ, ϕ) and

g3y(w,µ, ϕ) are the coefficients of Ex(t, x, y) and Ey(t, x, y) in g3, respec-

tively, i.e.,

g3(t, x, y, w, µ, ϕ) = g3x(w,µ, ϕ)Ex(t, x, y) + g3y(w,µ, ϕ)Ey(t, x, y) .

The functions g4x, g4y and g5y are defined in the same way. On the right hand

side of (16), we set Gk±σ,ℓ,h = 0 when k ± σ does not belong to the interval

[1, Nw]. We observe that the system (16) is still not closed because of the
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appearing of the functionsGq,r,s. Hence, we need to choose an approximation

of these functions in terms of Gk,m,n (k,m, n ∈ N). A simple formula for

solving this problem is given by the Min-Mod slope limiter [15]. Let us

consider the expression

Ex(t, x, y)A
(3x)

k+ 1

2
,m,n

Gk+ 1

2
,m,n ,

which is the first Gq,r,s term in Eqs. (16). To avoid cumbersome expressions,

we denote Ex(t, x, y)A
(3x)

k+ 1

2
,m,n

by a. For fixed (t, x, y) and (n,m), the value

of a is determined, and a simple Taylor expansion results in

Gk+ 1

2
,m,n ≈











Gk,m,n +
∆w

2
G′

k,m,n if a > 0

Gk+1,m,n − ∆w

2
G′

k+1,m,n if a < 0
, (17)

where, only in this section, primes denote partial derivatives with respect

to w. Of course, the case of vanishing a need not be considered. Equation

(17) allows us to replace the function Gk+ 1

2
,m,n with an approximation con-

taining Gk,m,n or Gk+1,m,n, but also one derivative. Taking into account the

hyperbolic character of Eqs. (16), we define for a > 0

d− =
Gk,m,n −Gk−1,m,n

∆w
, d+ =

Gk+1,m,n −Gk,m,n

∆w

and approximate the sought derivative according to

G′
k,m,n ≈

{

min {|d−|, |d+|} sgn(d−) if d−d+ > 0

0 otherwise
.

For a < 0, a similar formula holds. All the other functions Gq,r,s in Eqs. (16)

are approximated analogously, except for the term including A(4y), where a

little rearrangement is necessary. In fact, the correct use of the Min-Mod

slope limiter requires a possessing a constant sign in the small neighborhood

where the approximation is performed. Thus, we write

g4y(w,µ, ϕ) = ck

√

1− µ2

√

w(1 + αKw)
µ cosϕ

= ck

√

1− µ2

√

w(1 + αKw)
(µ − 1) cosϕ+ ck

√

1− µ2

√

w(1 + αKw)
cosϕ

and consider A(4y) as a sum of two coefficients of Gk,m± 1

2
,n having a definite
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sign. In this way, we have a (large) system of partial differential equations

with the independent variables t, x and y. This approach, consisting in

the approximation of the Boltzmann equation by means of a system of par-

tial differential equations, follows the main idea of Ringhofer [17], where

the transport equation for semiconductors was studied in the framework of

Hilbert spaces. The treatment of the new set of equations, obtained from

(16), requires methods suitable for hyperbolic equations in conservative form.

These schemes must be accurate also in presence of strong gradients. The

WENO scheme has given excellent results when solving Eqs. (1), (3), hence,

we continue to use this method for treating the partial derivatives with re-

spect to x and y. This technique gives a final set of ordinary differential

equations in time, which are integrated using TVD Runge-Kutta formulas

[16]. Some very preliminary results were shown in [18], where we assumed

p = 1 and applied this numerical technique for investigating carrier trans-

port in bulk silicon, in a n+ − n− n+ diode and in a silicon MESFET. The

results were compared to those of a full WENO solver [10], [11] exhibiting

perfect agreement. This is due to the regularity of the distribution function

with respect to the coordinates w, µ and ϕ. So, also the proposed scheme,

which is of order less then the full WENO solver, gives accurate solutions.

4. Numerical Results

In this paper, we show the results of a numerical solution of the Bolt-

zmann-Poisson system by assuming the weight p equal to the function s(w)

given by (7). The new numerical scheme is applied to a well-known two-

dimensional silicon device, called MOSFET (see Figure 1). The holes are

completely neglected in this simulation.

The doping density ND is chosen equal to 3×1017cm−3 in the n+ regions

and null in the other part of the device. Hence, the bulk substrate is treated

as intrinsic silicon. The source and drain contacts are modeled as ohmic

contacts, which allow the electrons to enter and exit the device. Perfectly

reflecting boundary conditions are imposed at the Si/SiO2 interface and at

all of the non-contact surfaces of the MOSFET.

The electrostatic potential is assigned to VS = 0 × V∗ at source, VG =

0.4 × V∗ at gate and VD = 1× V∗ at drain. Moreover, we assume vanishing

electric field in the direction normal to the surface at the bottom, right and

left sides, and at the top where there are no contacts. The relative dielectric
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function ǫr holds the value 3.9 in the SiO2 region and 11.7 in the other part

of the device.
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Figure 1. Schematic illustration of a 2D-MOSFET.

Since we study a time dependent problem, initial conditions must be

fixed. We choose the distribution function f(0,x,k) to be given by a Max-

wellian of zero bulk velocity at lattice temperature TL and the initial density

equal to the donor density. It is easy to derive the initial data for the

coefficients Gk,m,n. The number of grid points in the (x, y) domain is set to

49 × 25. Moreover, we choose Nw = 33, Nµ = 8, Nϕ = 8 and σ = 3. Some

figures show the results of the numerical simulation at the final time (5 ps).

In Figure 2, we exhibit two main moments of the distribution function,

n(t,x) =

∫

R
3

f(t,x,k) dk, E(t,x) = 1

n(t,k)

∫

R
3

f(t,x,k) ε(k) dk, (18)
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Figure 2. Electron density (in cm−3) and energy (in eV).
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namely the electron density and the hydrodynamical energy. The integrals

(18) are evaluated using the simple midpoint rule.

Figure 3 shows the velocity field and the current lines versus position as

well as the electrostatic potential. We also compare some hydrodynamical

quantities in the stationary regime with the corresponding data obtained

by the DSMC method. The graphics of the electrostatic potential and the

electric field coincide in both simulations. When density, velocity or energy

are considered, we observe a few differences in some points of the device.
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Figure 3. Velocity field and electrical potential (in Volt).

In order to show these differences by means of meaningful and clear

figures, we plot some cuts of these quantities for y = 40, 120, 160 and 200

nm.

Figures 4, 5, 6 and 7 show the electron density, the two components

of the hydrodynamical velocity and the energy, respectively. We note an

excellent agreement in some parts and evident differences in other ones.

In our opinion, most of the differences are due to a poor accuracy

of DSMC results because they are located in regions where the distribu-

tion function is smooth enough for regarding the numerical solution of the

Boltzmann-Poisson system as being accurate. Since in some of these zones

the charge density is low, it is obvious that Monte Carlo simulations cannot

furnish good results. The other possible reason for these differences arises

from the fact that it is difficult to impose exactly corresponding boundary

conditions for the two models (BTE and DSMC).
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Figure 4. BTE and DSMC results: density of charge (in cm−3).
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Figure 5. BTE and DSMC results: energy (in eV).



2007] DETERMINISTIC AND STOCHASTIC SIMULATIONS 363

-1e+06
 0

 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

 0  80  160  240  320  400  480

y = 40 (nm)

BTE 
DSMC

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  80  160  240  320  400  480

y = 120 (nm)

BTE 
DSMC

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  80  160  240  320  400  480

y = 160 (nm)

BTE 
DSMC

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0  80  160  240  320  400  480

y = 200 (nm)

BTE 
DSMC

Figure 6. BTE and DSMC results: x-component of the velocity (in cm s−1).
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Figure 7. BTE and DSMC results: y-component of the velocity (in cm s−1).
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5. Conclusion

Numerical solutions of the system (1), (3) allow us to obtain useful in-

formation and data on transport phenomena in semiconductors. In addition,

this approach represents an important tool for comparing hydrodynamical

and electrical variables with the corresponding quantities obtained by solving

other models, as DSMC, drift diffusion or energy transport equations.

The presented new numerical scheme seems to be accurate though its

order is less than that of the full WENO solver. Moreover, it is less CPU time

consuming which is a clear advantage in 2D simulations. In the test shown

in this paper, we found that the use of the simplest first order Runge-Kutta

(the explicit Euler) formula is sufficient for solving the system of the ordinary

differential equations. A final remark concerns the application of the weight

function p = s(w). The main reason for this choice is the presence of the

singularity of the coefficients g4 and g5 for vanishing dimensionless energy

w. When the new unknown G is introduced, these singularities disappear.

Moreover, this function is, apart from a constant factor, the old distribution

function f , which is regular near k = 0, where the energy ε(k) = 0.
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