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Abstract

The detailed three dimensional architecture of biological

tissue and electrodiffusion effects of ions have been largely ne-

glected in modeling studies of cellular electrical activity. Here,

we develop a model of cellular electrical activity that takes into

account both of these effects. We derive the system of partial

differential equations that govern cellular electrical activity and

discuss its biological significance. This is followed by a brief dis-

cussion of numerical simulations and a mathematical analysis of

the system of equations.

1. Introduction

Electrophysiology, because of its importance in many physiological pro-

cesses and its quantitative nature, has been a favorite subject in mathemati-

cal physiology. Traditional models of cellular electrical activity are based on

the famous work of Hodgkin and Huxley [5], and may be collectively termed

cable models [8, 9]. These models are based upon an ohmic current continu-

ity relation on a branched one dimensional electrical cable. There are three

major assumptions that go into the derivation of cable models [9]:

• The geometry of a cell is well-captured by a one dimensional tree rep-

resentation. Geometrical details that are lost in making this simplified

description have negligible effect on electrophysiology.
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• Ionic concentrations are effectively constant in space and time within

each cell separately and in the extracellular space.

• The extracellular space can be reduced to a single isopotential electrical

compartment.

Such assumptions are justified in many instances, for example in the isolated

neuronal axon, where the cable model has been extremely successful in ex-

plaining the physiology and in making quantitative predictions – a triumph

counted among the greatest successes of mathematics in biology. But there

are many cases in which any or all of the above assumptions are probably

violated. Neuroscience textbooks [7] will show pictures of cells of complex

shape packed together embedded in a tortuous extracellular space. Such

pictures are indicative of the important functional role geometry, ionic con-

centration profiles and extra-neuronal space (extracellular space and glia)

may play in the workings of the nervous system. In this paper, we formulate

a mathematical model that incorporates such effects.

We will begin by a detailed derivation of the model equations and a

discussion of their biological significance. This will be followed by a brief

discussion of the numerical method currently used and simulation results.

The final section presents a mathematical analysis of the model.

We mention a recent effort that shares with our model some of the above

objectives [6]. In comparison to our model, it takes a closer look at what

happens near the membrane but takes a simpler approach with regard to

neuroanatomy.

For a comprehensive exposition of our modeling methodology, we refer

the reader to [11].

2. Drift-Diffusion and Electroneutrality

We begin with equations that hold away from the cell membranes, i.e.,

in the cell interior and in the interior of the extracellular space. We assume

that the unknowns and the parameters change continuously within each of

these regions, but we allow for jumps in these quantities as cell membranes

are crossed.

Let there be N ion species, where the subscript i denotes each species.

Let ci(x, t) and φ(x, t) denote the ion concentrations and the electrostatic
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potential respectively. These quantities are related by the drift-diffusion

equations:

∂ci
∂t

= −∇ · fi (ion conservation) (1)

fi = −Di

(

∇ci +
qzici
kBT

∇φ

)

(drift-diffusion flux) (2)

Here, fi denotes the flux of the i-th ion. fi is expressed as a sum of two

terms, the diffusion term and the drift term. Di is the diffusion coefficient

of the i-th ion, qzi is the amount of charge on the i-th ion, where q is the

elementary charge, i.e., the charge on a proton. qDi/(kBT ) is the mobility

of the ion species (Einstein relation) where kB is the Boltzmann constant,

and T the absolute temperature.

Moreover, the electrostatic potential satisfies the Poisson equation:

∆φ = −
1

ǫ

(

ρ0 +
N
∑

i=1

qzici

)

(Poisson equation) (3)

where ρ0 is the fixed background charge density (if any), and ǫ is the di-

electric constant of the electrolyte solution. Note that we are applying these

equations only in the electrolyte solution, not within the membrane itself.

We shall discuss the treatment of the membrane in the following section. It

is interesting to note that these equations are also used in semiconductor

physics, where they are known as the van Roosbroeck equations [13].

Let L0 be a typical length scale, and let c0 be a typical concentration.

By writing the equations in non-dimensional variables, we are led to con-

sider the dimensionless parameter ǫkBT

q2c0L
2
0
=

r2
d

L2
0
, where rd is the Debye length

rd ≡
√

ǫkBT
q2c0

. When this parameter is small, we have the limit of electroneu-

trality, which holds away from the cell membranes. This is indeed the case

in physiological systems, where rd ≈ 1nm and L0 is typically on the order

of microns or more. This limit can be obtained formally by letting ǫ → 0 in

the Poisson equation. This implies

ρ0 +

N
∑

i=1

qzici = 0. (4)

It should be noted that this does not imply ∆φ = 0, since (3) reduces to

∆φ = 0/0 in the limit considered, and thus we have to look to the other equa-
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tions to find the limiting behavior of the electrostatic potential. Therefore,

the equations to be satisfied away from the membrane are the drift-diffusion

equations (1), (2) and the electroneutrality condition (4).

We may obtain the relation satisfied by φ by considering current con-

tinuity. Let j(x, t) be the total electrical current density (current per unit

area) at the position x at time t. Multiply the flux densities fi by qzi to

obtain the current density for each ion, and add to obtain the total current

density.

j(x, t) = −(a(x, t)∇φ+∇b(x, t)) (5)

a(x, t) =

N
∑

i=1

(qzi)
2Di

kBT
ci(x, t) (6)

b(x, t) =

N
∑

i=1

qziDici(x, t) (7)

By current continuity, ∇ · j = 0, we have the following elliptic equation for

φ.

∇ · (a(x)∇φ +∇b(x, t)) = 0 (8)

Thus, φ satisfies an elliptic constraint (since a(x, t) > 0) instead of the

Poisson equation in the limit rd/L → 0.

We point out that (8) may also be derived by differentiating the elec-

troneutrality condition (4) with respect to t and using (1) and (2). We may

understand (8) as imposing an elliptic constraint on φ so that electroneu-

trality is maintained. This procedure of obtaining an equation for φ from

an algebraic relation is employed in index reduction for differential algebraic

systems [12].

3. Electrical Boundary Condition

We shall treat the transmembrane currents and their associated quan-

tities (as defined in Section 6) to be continuous quantities with respect to

the spatial coordinate within the membrane. In our model, we are not re-

solving the individual membrane protein molecules such as ion channels that

give rise to transmembrane currents. All relations that refer to membrane

variables should thus be understood as the result of homogenization with

respect to the membrane coordinate.
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Near the membrane, there is an accumulation of electric charge, whose

thickness is on the order of the Debye length rd. In deriving the electroneu-

trality condition, we let rd/L → 0. In agreement with this limit, we consider

this electric charge to form a layer of zero thickness concentrated on both

sides of the membrane surface.

Let us consider a point x on the membrane. The membrane separates

two regions of space which we call Ω(k) and Ω(l). We label quantities in Ω(k)

and Ω(l) by the superscripts k and l respectively.

Electric current j that hits the membrane will contribute to the change

in surface charge σ or will pass through the membrane as transmembrane

current j. This statement of charge conservation on the Ω(k) face of the

membrane can be expressed as:

∂σ(k)

∂t
(x, t) + j(kl)(x, t) = j(k)(x, t) · n(kl)(x) (9)

Here, σ(k) is the surface charge per unit area on face k of the membrane,

j(kl) is the transmembrane current per unit area from Ω(k) to Ω(l), and

j(lk) = −j(kl). The functional form of this quantity will be discussed in

Section 6. n(kl) is the unit normal pointing from Ω(k) to Ω(l), and thus

n(lk) = −n(kl). The same relation holds with k and l interchanged on the

side of the membrane facing Ω(l):

∂σ(l)

∂t
(x, t) + j(lk)(x, t) = j(l)(x, t) · n(lk)(x) (10)

We make two assumptions about the surface charge σ.

• Each patch of the membrane is electroneutral, i.e., σ(k)(x, t)+σ(l)(x, t) =

0. This means that any charge accumulation on one side of the membrane

is instantaneously counterbalanced by charge on the other side.

• The membrane and its surface charge layers together behave like a ca-

pacitor. That is to say, the surface charge is linearly proportional to the

transmembrane potential difference.

We may combine the above two assumptions to deduce:

σ(k)(x, t) = −σ(l)(x, t) = Cmφ
(kl)(x, t), φ(kl)(x, t) ≡ φ(k)(x, t)−φ(l)(x, t)
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where Cm is the capacitance per unit area of the membrane. Thus we arrive

at the electrical boundary conditions

Cm
∂φ(kl)

∂t
(x, t) + j(kl)(x, t) = j(k)(x, t) · n(kl)(x). (11)

The same boundary condition but with k and l interchanged holds on the

Ω(l) face of the membrane.

We may add (9) and (10) and use the first assumption to obtain a

relation satisfied by j.

j(k)(x, t) · n(kl)(x) + j(l)(x, t) · n(lk)(x) = 0

This says that any current that comes onto the membrane from one side is

exactly counterbalanced by current coming off the membrane from the other

side, i.e., that there is no charge accumulation at the membrane.

4. Boundary Conditions for Each Ionic Species

Let us consider the flux of the i-th ion fi at the membrane. The i-th

ion contributes a current per unit area of qzifi · n. Let σ
(k)
i (x, t) be the

contribution of the i-th species of ion to the surface charge per unit area on

the side of the membrane facing Ω(k), and let j
(kl)
i (x, t) be the contribution

of the i-th species of ion to the transmembrane current per unit area flowing

from Ω(k) into Ω(l). By considering ion conservation at the membrane we

find:

∂σ
(k)
i

∂t
(x, t) + j

(kl)
i (x, t) = qzif

(k)
i (x, t) · n(kl)(x) (12)

Note that,

N
∑

i=1

σ
(k)
i (x, t) = σ(k)(x, t) = Cmφ

(kl)(x, t)

N
∑

i=1

j
(kl)
i (x, t) = j(kl)(x, t)

and we may sum (12) over i to obtain (9).

To make (12) useful, we need an expression for σ
(k)
i in terms of the

ionic concentrations and the electrostatic potential. Through an approxi-
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mate analysis of the space charge layer, it can be shown that

σ
(k)
i (x, t) = λ

(k)
i (x, t)σ(k)(x, t) (13)

where,

λ
(k)
i (x, t) =

z2i c
(k)
i (x, t)

∑N
i′=1 z

2
i′c

(k)
i′ (x, t)

(14)

We now turn to the derivation of the above expression.

5. Space Charge Layer

The purpose of this section is to take a closer look at the surface charge

layer. The physical reality is that these “surface charge layers” are not

confined to the membrane surface, but are spread out over a thin layer near

the membrane. Thus, they are better called “space charge layers” and that is

the terminology we shall use in this section. We note that the space charge

layers considered here are located near the membrane surface within the

intracellular or extracellular spaces and do not straddle the cell membrane.

5.1. Derivation of expression for σi

We make three approximations in our analysis of the space charge layer.

• The space charge layer may be treated as one dimensional, and thus all

quantities are only a function of the distance from the membrane.

• Within the space charge layer all quantities are nearly in thermodynamic

equilibrium, despite any fluxes that may occur through the space charge

layer.

• Within the space charge layer, the deviations of ion concentrations and

electrostatic potential from their bulk values are small.

The first approximation can be taken because of our homogenization of the

membrane quantities. Homogenization with respect to the spatial coordinate

within the membrane coordinate smears out the steep gradients (parallel to

the membrane) in concentration and electrostatic potential that may exist

near the mouth of transmembrane current sources such as ion channels. Once

we accept this first approximation, the second approximation is justified

by the fact that the space charge layer is thin. The validity of the third

approximation will be discussed later.
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Let x denote the distance coordinate normal to the membrane surface.

Then, according to the first two approximations we have just stated, (2) and

(3) become:

0 = −Di

(∂ci
∂x

+
qzici
kBT

∂φ

∂x

)

(15)

−
∂2φ

∂x2
=

1

ǫ

(

ρ0 +

N
∑

i=1

qzici

)

(16)

which hold on 0 < x < ∞ with ci(∞) and φ(∞) given. Here, x = 0 is the

intracellular or extracellular face of the membrane, and x = ∞ corresponds

to the bulk solution where ci and φ values in the space charge layer are to

be matched with the bulk values. Since we assume that the background

fixed charge density ρ0 varies on the scale of the cellular size L, its variation

within the thickness of the space charge layer is negligible, of order O(rd/L).

Thus, we will treat ρ0 as being constant within the space charge layer. It is

important to note that these values at x = ∞ satisfy electroneutrality, i.e.,

ρ0 +
N
∑

i=1

qzici(∞) = 0 (17)

If the boundary conditions are functions of time, the above equations hold

at each time t and since time plays no dynamical role in them, we drop the

argument t for now.

Equation (15) can be integrated easily to obtain,

ci(x) = ci(∞) exp

(

−
qzi
kBT

(φ(x) − φ(∞))

)

.

This equation can be substituted into (16) to yield,

−
∂2φ

∂x2
=

1

ǫ

(

ρ0+
N
∑

i=1

qzici(∞) exp

(

−
qzi
kBT

(φ(x)−φ(∞))

)

)

. (18)

Here we use our third approximation to linearize the above Poisson-

Boltzmann equation. We suppose
∣

∣

∣

∣

qzi
kBT

(φ(x) − φ(∞))

∣

∣

∣

∣

≪ 1. (19)
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Then, taking into account the electroneutrality condition at x = ∞ (we have

electroneutrality in the bulk),

ci(x) = ci(∞)

(

1−
qzi
kBT

(φ(x)− φ(∞))

)

(20)

∂2

∂x2
(φ(x)− φ(∞)) = γ2(φ(x)− φ(∞))

where,

γ2 =
N
∑

i=1

(qzi)
2ci(∞)

ǫkBT
. (21)

Letting γ be the positive square root of γ2, we find the unique bounded

solution,

φ(x)− φ(∞) = (φ(0) − φ(∞)) exp(−γx)

and hence according to (20),

ci(x)− ci(∞) = −ci(∞)
qzi
kBT

(φ(0) − φ(∞)) exp(−γx).

Using this equation, we may compute σi as

σi =

∫ ∞

0
qzi(ci(x)− ci(∞))dx = −ci(∞)

(qzi)
2

kBTγ
(φ(0) − φ(∞)).

Using the above and noting that
∑N

i=1 σi = σ, we immediately obtain:

σi =
z2i ci(∞)

∑N
i′=1 z

2
i′ci′(∞)

σ

which is exactly expression (14), what we set out to find.

In summary, we have shown that the i-th species of ion makes a con-

tribution to the membrane surface charge in proportion to its nearby bulk

concentration weighted by the square of the ionic charge. Note that ions of

either sign contribute charge with the same sign as that of the total surface

charge, even though the sign may be opposite to that of their own charge!

This is because the surface charge layer may involve a deficit rather than an

excess of any particular ion, and a deficit of negative charge, for example

makes a positive contribution to the surface charge.
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5.2. Validity of the linear approximation to the Poisson-Boltzmann

equation for the space charge layer

We now consider the validity of the third approximation. We take the

Poisson-Boltzmann equation (18) as our starting point:

−
∂2φ

∂x2
=

1

ǫ

(

ρ0 +

N
∑

i=1

qzici(∞) exp
(

−
qzi
kBT

φ(x)
))

. (22)

We have taken φ(∞) = 0, since the electrostatic potential is only determined

up to an arbitrary constant. We will also assume in the following that

φ(0) > 0. By the end of the discussion, it will be clear that the φ(0) < 0

case can be handled in an identical way. We note that

ρ0 +

N
∑

i=1

qzici(∞) = 0. (23)

Our goal is to derive a condition that guarantees the relation
∣

∣

∣

qzi
kBT

φ(x)
∣

∣

∣
≪ 1

to hold. We note that the above expression concerns the deviation of the

electrostatic potential within the space charge layer, and not the potential

jump across the cell membrane. Since zi takes integer values not too different

from 1 in absolute value, we shall be content to establish the condition:
∣

∣

∣

q

kBT
φ(x)

∣

∣

∣
≪ 1. (24)

Consider the function f(φ),

f(φ) = −
(

ρ0 +

N
∑

i=1

qzici(∞) exp
(

−
qzi
kBT

φ
))

.

Note that (22) can be written as ∂2φ
∂x2 = 1

ǫ
f(φ). We see that,

∂f

∂φ
=
(

N
∑

i=1

(qzi)
2ci(∞)

kBT
exp

(

−
qzi
kBT

φ
))

> 0.

Therefore, f(φ) is monotone increasing in φ. From (23), we see that f(0) = 0.

Therefore, f(φ) > 0 if φ > 0 and f(φ) < 0 if φ < 0.
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Suppose that φ(x) > φ(0) for some values of x. Since φ(∞) = 0, φ(x)

must attain a positive local maximum at some interior point x0. Since

φ(x0) > 0, f(φ(x0)) > 0. But this is impossible since f(φ(x0)) > 0 implies

that ∂2φ
∂x2 (x0) > 0. Next, suppose that φ(x) is negative for some values of x.

Since φ(∞) = 0, φ(x) must attain a negative local minimum at some interior

point x1. Since φ(x1) < 0, f(φ(x1)) < 0. This is again impossible since this

implies ∂2φ
∂x2 (x1) < 0. This argument may be considered a simple application

of the maximum principle for elliptic partial differential equations.

From the above we conclude that 0 ≤ φ(x) < φ(0). From φ ≥ 0, we see

that ∂2φ
∂x2 ≥ 0 for all x, and thus, ∂φ

∂x
is non-decreasing. Since φ(∞) = 0, this

implies that ∂φ
∂x

(∞) = 0. The two conclusions we have reached so far are:

0 ≤ φ(x) < φ(0) (25)

∂φ

∂x
(∞) = 0. (26)

From (25) we see that (24) will be true for all x if

∣

∣

∣

∣

q

kBT
φ(0)

∣

∣

∣

∣

≪ 1. (27)

We next integrate (22) from x = 0 to x = ∞.

−
∂φ

∂x
(∞) +

∂φ

∂x
(0) =

1

ǫ

∫ ∞

0

(

ρ0 +
N
∑

i=1

qzici(∞) exp

(

−
qzi
kBT

φ

)

)

dx.

Noting that the integral on the right hand side is the total charge in the

space charge layer σ and using (26), we find,

∂φ

∂x
(0) =

σ

ǫ
. (28)

We may find another relation by multiplying (22) by ∂φ
∂x

and again integrating

from x = 0 to x = ∞. Using (26) and (28) one finds,

1

2
σ2=ǫ

(

kBT

N
∑

i=1

ci(∞)
(

exp(−
qziφ(0)

kBT
)−1

)

−ρ0φ(0)

)

≡ǫF (φ(0)). (29)

We estimate F (φ) from below. We note first that

F (0) = 0,
∂F

∂φ
(0) = f(0) = 0. (30)
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We examine the second derivative of F with respect to φ. For φ > 0,

∂2F

∂φ2
=

∂f

∂φ
=

N
∑

i=1

(qzi)
2ci(∞)

kBT
exp

(

−
qzi
kBT

φ

)

>
∑

zi<0

(qzi)
2ci(∞)

kBT
exp

(

−
qzi
kBT

φ

)

>
∑

zi<0

(qzi)
2ci(∞)

kBT
.

Since zi is at least equal to 1 in absolute value,

∂2F

∂φ2
>

q2C−

kBT
, C− ≡

∑

zi<0

ci(∞).

Using (30) and the above, for φ(0) > 0 we conclude that,

F (φ(0)) >
q2C−

2kBT
φ(0)2.

Therefore, by (29), we find:

σ2 > ǫ
q2C−

kBT
φ(0)2.

We may take C−, the total concentration of anions, to be the typical con-

centration. In this case, the Debye length rd =
√

ǫkBT
q2C−

. Therefore,

(

σ

qC−rd

)2

>

(

q

kBT
φ(0)

)2

.

Taking the square root of the above, we see that

|σ|

qC−rd
>

q

kBT
|φ(0)|.

Thus, condition (27) should hold if |σ|
qC−rd

≪ 1. For φ(0) < 0, an identical

argument shows that

|σ|

qC+rd
>

q

kBT
|φ(0)|

where C+ is the total concentration of cations at the bulk, and rd is computed

using C+ as the typical concentration. Hence, we conclude |σ|
qC+rd

≪ 1 is

sufficient for condition (27). Since C− and C+ are of the same order of

magnitude, we finally conclude that the following condition is sufficient for
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the validity of the linear approximation:

|σ|

qc0rd
≪ 1 (31)

where c0 is the typical concentration in the bulk solution.

This means that the linear approximation is valid when the amount of

surface charge is small in comparison to the absolute total charge concen-

tration in a layer of width rd. We may calculate this ratio in physiological

systems since we can estimate σ with the values of the capacitance and the

transmembrane potential, and qc0rd by using typical values of ionic concen-

trations and the Debye length. It turns out that this ratio is on the order of

10−2 and this justifies the linear approximation.

6. Transmembrane Ionic Currents

We have yet to specify ji, the transmembrane currents. Biophysically,

these are currents that flow through ion channels, transporters, or pumps

that are located within the cell membrane [1, 4, 7]. We use the formalism of

Hodgkin and Huxley for ion channel currents [5, 8, 9], generalized to allow

for nonlinear instantaneous current-voltage relations and ion concentration

effects.

j
(kl)
i (x, t) = J

(kl)
i

(

x, s(kl)(x, t), φ(kl)(x, t), c(k)(x, t), c(l)(x, t)
)

(32)

Here, J
(kl)
i is a function characteristic of the channels (possibly of more than

one type) that carry the i-th species of ion across the membrane separating

Ω(k) from Ω(l). The explicit dependence of J
(kl)
i on x reflects the possible

inhomogeneity of the membrane: the density of channels may vary from one

location to another. The other arguments of J
(kl)
i are as follows:

First, there is a vector of gating variables s(kl)(x, t) = (s
(kl)
1 , . . . , s

(kl)
G )

whereG is the total number of gating variables in all of the channel types that

arise in our system. (Only some of these influence the channels that conduct

ions of species i.) The individual components s
(kl)
g of s(kl) are dimensionless

variables as introduced by Hodgkin and Huxley [5] that take values in the

interval [0, 1] and satisfy ordinary differential equations of the form,

∂s
(kl)
g

∂t
(x, t)=αg

(

φ(kl)(x, t)
)(

1−s(kl)g (x, t)
)

−βg

(

φ(kl)(x, t)
)

s(kl)g (x, t) (33)
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for g = 1, . . . , G where αg and βg are positive, empirically defined functions

of the transmembrane potential.

The next argument of J
(kl)
i is again the transmembrane potential φ(kl).

Holding the other arguments fixed in J
(kl)
i , and letting only φ(kl) vary, we

get the instantaneous current-voltage relationship for current carried by the

i-th ion from Ω(k) to Ω(l) at point x at time t.

The last two arguments of J
(kl)
i are the vectors of ion concentrations

on the two sides of the membrane: c(k) = (c
(k)
1 , . . . , c

(k)
N ) and similarly for

c(l). By including the whole vector of ion concentrations, we allow for the

possibility that the current carried by the i-th species of ion is influenced by

the concentrations of other ionic species on the two sides of the membrane.

As an example of the foregoing, consider the Na+ channel current in the

Hodgkin Huxley model, which has the following form.

JNa = gNa(x)m(x, t)3h(x, t)

×

(

(φint(x, t)− φext(x, t))−
kBT

q
log

(

cextNa (x, t)

cintNa(x, t)

))

(34)

In this equation, the regions k and l are identified as the intracellular and

extracellular spaces, denoted by the superscript int and ext. m and h are

the gating variables, and gNa is the ion channel density. Keeping m, h, gNa,

cintNa, cextNa fixed, we happen to have a linear instantaneous current voltage

relationship, but this may not be so in general. The gating variables m

and h satisfy a first order ordinary differential equation of the form (33).

Functions α and β are determined experimentally.

Note that the above formalism is more general than the words that we

have used to describe them. The “ions” that we have described do not need

to be charged (one can have zi = 0 for some i) and they can include neuro-

transmitters (whether charged or not) that have been released at synapses.

We may have ligand-gated channels, by introducing gating variables whose

evolution is governed by the local concentration of chemical species. The

only restriction is that the binding of ligands to these channels does not

significantly alter the unbound concentrations of these chemicals. Other ion

carrying mechanisms such as transporters and pumps may also be easily

incorporated using the above formalism or a slight generalization thereof.

A subtle and important question that remains is precisely where to eval-

uate the electrostatic potential and the various ion concentrations on the two
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sides of the membrane. As we have seen in the foregoing sections, there is

a thin space charge layer near each face of the membrane in which the elec-

trostatic potential and the ion concentrations may deviate somewhat from

those in the bulk solution, away form the membranes. Several of the argu-

ments of the functions J
(kl)
i that define the transmembrane currents involve

the boundary values of the electrostatic potential or the ion concentrations.

Do these literally refer to the values right on the face of the membrane, or do

they refer to the values in the bulk solution, near the membrane but outside

the space charge layer?

From a mathematical standpoint, the answer is clear. We are trying

to solve a set of partial differential equations (1), (2), and (4) that are

satisfied away from the membrane under certain boundary conditions with

expressions involving c
(k)
i , c

(l)
i and φ(kl). Thus, the boundary conditions will

not be useful unless these quantities are evaluated away from the membrane,

i.e., near the membrane but within the bulk solution.

When J
(kl)
i is measured experimentally, the controlled values of voltage

and ion concentrations are always those of the bulk solution. The space

charge layers are, of course, present during these measurements, but they

are experimentally inaccessible, on account of their thinness. This means

that the experimentally determined functions J
(kl)
i can be used directly in

the equations without corrections.

7. Summary of the Model

We can now write down the equations to be solved together with their

boundary conditions. Let Γ(kl) denote the membrane separating Ω(k) and

Ω(l). In Ω(k) and Ω(l),

0 =
∂ci
∂t

+∇ · fi (35)

fi = −Di

(

∇ci +
qzici
kBT

∇φ

)

(36)

0 = ρ0 +
n
∑

i=1

qzici (37)
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The boundary conditions at the face of Γ(kl) facing Ω(k) are,

∂σ
(k)
i

∂t
= qzif

(k)
i · n(kl) − j

(kl)
i (38)

N
∑

i=1

σ
(k)
i = σ(k) = Cmφ

(kl), σ
(k)
i =

z2i c
(k)
i

∑N
i′=1 z

2
i′c

(k)
i′

σ(k) (39)

j
(kl)
i = J

(kl)
i

(

x, s(kl), φ(kl), c(k), c(l)
)

(40)

∂s
(kl)
g

∂t
= αg(φ

(kl))(1− s(kl)g )− βg(φ
(kl))s(kl)g (41)

The boundary conditions on the Ω(l) face are the same as above with k and

l interchanged.

One easy extension of the above model is to include chemical reactions

(including the important example of the binding and unbinding of ions to

buffers). We may add reaction terms on the left hand side of (35). Since no

chemical reaction destroys or creates charge, reaction terms will always be

consistent with the electroneutrality condition (37) as long as we keep track

of all chemical species in the reaction. Addition of reaction terms may prove

especially important with respect to calcium, a physiologically important ion

that is heavily buffered in biological cells.

8. Numerical Simulation

We briefly discuss the numerical challenges and the numerical methods

that we currently use to solve the above system of equations, followed by a

brief account of our simulation results. Further details on the methods and

results will be presented in a future publication.

8.1. Numerical method

Let us begin with the time marching scheme. We have encountered

two major difficulties in developing an efficient algorithm for time evolution.

The first of these is the electroneutrality condition. Small deviations from

electroneutrality seem to make simple-minded numerical schemes unstable.

The second is that the equations are ‘stiff’, i.e., that they involve at least

two very different time scales. The reason for this stiffness of our model can

be understood in the following way. Starting from our governing equations,
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one can derive the cable model of Hodgkin and Huxley under simplifying

assumptions. This cable model, which is in some sense contained within our

model since it can be derived from it, involves a constant with the units of a

diffusion coefficient associated with the spread of electrical potential. This

electrical ‘diffusion’ constant is several orders of magnitude greater than

any of the ionic diffusion constants of the model from which it is derived.

Indeed, we find that the ratio of the electrical diffusion coefficient to the

ionic diffusion coefficients is about 104 ∼ 107. To overcome the numerical

difficulties associated with the stiffness of the model, we are led to the use

of the backward Euler method. The resulting nonlinear equations are solved

iteratively, by a method that is in part the subject of the mathematical

analysis presented in the final section of this paper.

We perform spatial discretization with the finite volume method. The

equations of the model can all be written in divergence form, which makes a

finite volume discretization physically intuitive. The electroneutrality con-

dition can be expressed easily as a condition that the electric current that

flows into each computational voxel sums to zero.

8.2. Simulation results

We present two simulations based on the above numerical method. Each

involves a different implementation, one for cylindrically symmetric mem-

brane geometries, and the other for arbitrary two dimensional membrane

geometries.

Using code for cylindrically symmetric geometries, we have shown the

possibility of unusual modes of communication between neurons (and car-

diomyocytes), distinct from the extensively studied chemical transmission

with neurotransmitters or electrical transmission through gap junctions [1,

7]. When two neurons are closely apposed, with a high density of channels

in the membranes facing the interneuronal cleft, two other kinds of commu-

nication are shown to be possible. One (the faster of the two) arises from

the large electrical current (recall the high density of ionic channels facing

the interneuronal cleft) that flows in the narrow and hence highly resistive

gap between the cells. This results in a substantial voltage drop within the

interneuronal cleft, which in turn has a substantial effect on the potential

difference across the two membranes facing that cleft. The second (slower)

kind of communication arises from ion accumulation within the interneu-

ronal cleft, which may significantly change the equilibrium potentials for the
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different ionic currents across the membranes facing the gap. These effects

can launch action potentials that propagate away from the gap. In Figure 1,

we show a case in which an action potential indeed travels across a narrow

gap and gets reflected, primarily due to the second mechanism. Although

these mechanisms have been previously discussed on a conceptual level and

have even been modeled by systems of ordinary differential equations that

lump the gap into a single compartment [10], they have never been demon-

strated in the context of a spatially distributed model such as ours. The

importance of the spatially distributed approach reveals itself, for example,

in the nonuniform radial distribution of potential within the gap (see Figure

1), which has the effect of lowering the threshold for transmission to occur.
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Figure 1. The above shows radial cross sections of two cylindrical cells sep-

arated by a narrow gap. Plotted in each figure is the electrostatic potential.

The cell membrane is located half way in the radial direction and the region

closer to the viewer is the intracellular side. A wave of excitation approaches

the gap from the cell on the left(1a) and is transmitted across the narrow

gap to the the cell on the right(1b). This wave propagates back into the cell

on the left(1c) and eventually leaves the simulation domain(1d). Note the

radial gradient of the electrostatic potential in the narrow gap.
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With the code for arbitrary two dimensional geometries, we have shown

the theoretical possibility of a ‘surface wave’. Consider a large circular bio-

logical cell, and suppose there is some excitatory input at a location on the

membrane. An action potential is initiated at this location, and propagates

through the circular cell. As the action potential propagates, the change in

electrostatic potential is seen to be much larger near the membrane than

away from the membrane near the center of the cell. We see that the action

potential propagates along the membrane as a ‘surface wave’. This situa-

tion could not have been modeled with a traditional approach using the one

dimensional cable model. This simulation is shown in Figure 2

Figure 2. This figure shows a surface wave of excitation in a circular cell.

An action potential was initiated at a location on the membrane (2a) and

has propagated half way to the middle of the cell (2b). Note that this figure

plots the change in electrostatic potential from the initial values.

9. Analysis of the Model

In this final section, we present a mathematical analysis of the model.

We believe that the present and future mathematical analyses will not only

yield valuable theoretical insight, but will also lead to a better understanding

of our current numerical algorithm and guide us to more efficient and stable

numerical methods, which should prove all the more important in the context

of a fully three dimensional simulation of the model.

The system described above, with electroneutrality enforced by the el-

liptic equation for the potential, admits of an analysis defined by Rothe’s
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method of horizontal lines. The first part of this program involves the well-

posedness of the time semidiscretization, which involves operator compo-

sition of several steps; (i) determination of the potential, coupled across

regions Ω(k) and Ω(l); (ii) determination of the boundary variables associ-

ated with flux representations; and (iii) determination of the concentrations

in each region. Rothe’s method has the advantage of organizing the problem

effectively, while decoupling the principal subsystems as described.

9.1. Notation and initial/boundary conditions

Ω will denote the entire region of tissue which is subdivided. If the

potential differences across cell membranes and all species’ concentrations

are known at any time, then the bulk membrane current can be determined

on cell membranes, which permits the determination of the rate of change of

transmembrane potential differences, if the transmembrane ionic current is

known. The initial value problem assumes then that the potential differences

φ(0,kl) across cells, and the concentrations c
(0,k)
i are given at time t = 0,

together with the gating variables s(0,kl) defined on the membrane Γ(kl). It

is required that the initial data satisfy

∑

j

z2jDjc
(0,k)
j ≥ αk > 0, on Ω(k),

so that the electrostatic problem is uniformly elliptic. This is preserved by

the evolution. It is also assumed that appropriate boundary conditions are

imposed on ∂Ω.

9.2. Decoupled composition map

Suppose that the ‘solution map’ has been defined at time t = tn−1.

We discuss the first step of the composition map at the discrete time t =

tn as follows. Thus, we consider the elliptic equation which preserves the

electroneutrality as the system evolves.

• On Ω(k) (similarly for Ω(l), coupled across the common boundary), solve

the Robin boundary value problem for φ(n,k) with equation given by (8).

The flux is coupled on each Γ(kl) to the adjacent region Ω(l) and is defined

by the semidiscretization of (11). We have:

−
N
∑

i=1

qziDi

(∂c
(n−1,k)
i

∂n(kl)
+

qzi
kBT

∂φ(n,k)

∂n(kl)
c
(n−1,k)
i

)
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= Cm
φ(n,kl) − φ(n−1,kl)

∆t
+
∑

i

ji(φ
(n,kl), c

(n−1,k)
i , c

(n−1,l)
i , s(n−1,k)

g ).

Here, we have used the notation ∆t = tn − tn−1 as well as

φ(n,kl) = trace φ(n,k) − trace φ(n,l),

where the trace is taken on each boundary surface element Γ(kl).

9.3. Weak formulation of the electrostatic problem

The electrostatic problem has a nonstandard formulation involving cou-

pling with respect to a common boundary. We give the weak formulation

for φ(n,k). For simplicity, we treat here the case of two regions and write the

solution unknowns as

φ(1) = φ(n,1), φ(2) = φ(n,2),

and the Hilbert function spaces as H(k) = W (1,2)(Ω(k)). The weak formula-

tion is facilitated by the definitions,

ak(φ
(k), v) :=

∫

Ω(k)

a(n−1,k)∇φ(k)·∇v dx, v ∈ H(k),

where a(n−1,k) is given by (6) with ci = c
(n−1,k)
i , and φ(k) ∈ H(k) is to be

determined for k = 1, 2,

bk(v) :=

∫

Ω(k)
∇b(n−1,k)·∇v dx,

gk(φ
(k), φ(k′), γv) :=

∫

Γ(kk′)

{

Cm
φ(kk′)−φ(n−1,kk′)

∆t
+

N
∑

i=1

ji(φ
(kk′), . . . )

}

γv dσ,

where b(n−1,k) is given by (7) with ci = c
(n−1,k)
i , k′ = 2 if k = 1 and k′ = 1

if k = 2. Here, γ is the continuous trace operator. The weak form of the

electrostatic system is:

ak(φ
(k), v) + bk(v) + gk(φ

(k), φ(k′), γv) = 0, ∀v ∈ H(k), k = 1, 2. (42)

9.3.1. Approach via trapping regions

This technique takes advantage of standard approaches to elliptic theory,

which allows use of built-in computational tools. It makes use of the isotone



388 YOICHIRO MORI, JOSEPH W. JEROME AND CHARLES S. PESKIN [June

property of the ‘back and forth’ map V , to be developed presently, but

requires the context of a trapping region. We formulate its existence here as

a postulate. The advantage at the numerical level, such as piecewise linear

finite elements, is that the discretizations are confined to the function space

trapping region associated with, alternately, the cell and its exterior. An

alternative viewpoint is also possible: the cell and its exterior are viewed as

a single spatial domain, with the membrane serving as an ‘interior’ charge

constraint surface, across which conservation of charge must hold. This will

be explored in future work. We now posit the existence of the trapping

region.

Assumption. There exists a trapping region for the system. Thus,

there are functions u(k) ≤ ū(k) in Hk, such that, for

Kk′ := [u(k
′), ū(k

′)],

one has ∀v ∈ H(k), γv ≥ 0,

ak(ū
(k), v) + bk(v) + gk(ū

(k), w, γv) ≥ 0, ∀w ∈ Kk′ ,

ak(u
(k), v) + bk(v) + gk(u

(k), w, γv) ≤ 0, ∀w ∈ Kk′ .

9.3.2. The isotone map

We shall introduce some notation. Set

〈Fk(u,w), v〉 := bk(v) + gk ◦ γ(u,w, v).

The proof of the existence of a solution of the system (42) proceeds by

defining a fixed point mapping V defined on the interval K1 with range in

K1.

1. Given w ∈ K1, an intermediate mapping, T : K1 7→ K2, Tw = u, is

introduced, where u ∈ K2 is the solution of the equation and integration

constraint,

a2(u, v) + 〈F2(u,w), v〉 = 0, ∀v ∈ H2,

∫

Ω(2)

u dx =

∫

Ω(1)

w dx. (43)

2. V w is then defined as UTw, where U : K2 7→ K1, Uu = u1, and where

u1 ∈ K1 is the solution of the equation and integration constraint,

a1(u1, v) + 〈F1(u1, u), v〉 = 0, ∀v ∈ H1,

∫

Ω(1)

u1 dx =

∫

Ω(2)

u dx. (44)
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Lemma 9.1. Let w ∈ K1 be given. There is a unique solution u = Tw

of the equation (43) subject to the condition that the integrals of u,w are

equal. In addition, T is isotone from K1 to K2. Similarly, let u ∈ K2 be

given. There is a unique solution u1 = Uu of the equation (44) subject to

the condition that the integrals of u1, u are equal. In addition, U is isotone

from K2 to K1.

The mapping V is then isotone on K1. We comment briefly on the

validation of the lemma, which will be detailed in a future publication. The

decoupling leads to gradient formulations, which are well understood. The

integration constraint imposes uniqueness of solutions, and is compatible

with the isotone properties of T and U ; these depend on the monotone

structure of gk. The functionals are increasing in the trace of the principal

variable and decreasing in the trace of the coupled variable. If K1 were

a complete lattice, then we would automatically conclude the existence of

a fixed point of V by Tarski’s theorem. Closed subintervals of Lebesgue

spaces are complete, in this sense, but subintervals of Sobolev spaces are

not. One needs a theory of ordered spaces, specifically [2, Proposition 1.1.1],

which imposes a form of continuity on V . We will accept this, and obtain a

fixed point: V u1 = u1. One argues analogously to [3] to demonstrate these

assertions.

Not only does V have a (unique) fixed point, but iterations starting with

the lower bound are increasing, and iterations starting with the upper bound

are decreasing. With proper continuity, these sequences converge to a fixed

point. This may prove useful for computation.
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