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Abstract

In this paper we give a summary of the partial moment

approach for radiative transfer, combined with a minimum en-

tropy closure. This approach is a generalization of the moment ap-

proach. We review some well-established models, like the method

of Spherical Harmonics, Discrete Ordinates, diffusion, higher-

order diffusion and flux-limited diffusion. We present numerical

examples, where different methods are compared.

1. Introduction

Radiative transfer plays a prominent role in many applications in physics

and engineering. Especially when high temperatures are involved the effect

of radiation becomes very important. Applications include astrophysics [39]

(stellar atmospheres), reentry of space vehicles [61], combustion in gas tur-

bine combustion chambers [17], industrial glass cooling [31], and external

photon beam radiotherapy [20], among others.

Assuming coherent scattering and stationary matter, the radiative trans-

fer equations read [39, 41, 46]; For all Ω ∈ S

1

c
∂tI(x, t,Ω, ν) + Ω∇I(x, t,Ω, ν) = κ(B(x, t, ν)− I(x, t,Ω, ν))

+σ(

∫

S
g(Ω · Ω′)I(x, t,Ω′, ν)dΩ′ − I(x, t,Ω, ν)). (1.1)
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Here, I(x, t,Ω, ν) cos θdAdΩdν is the radiative energy flow at point x and

time t through the area dA with a frequency in the interval [ν, ν + dν], into

a surface element dΩ around Ω, where θ is the angle between the outer nor-

mal of dA and Ω. The directions are elements of the unit sphere S in three

dimensions. The speed of light is c, κ is the absorption coefficient, σ is the

scattering coefficient. The black body intensity is denoted by B and g(Ω ·Ω′)

is the scattering kernel. Without loss of generality, we will neglect the fre-

quency dependence in the following (i.e. we consider all quantities to be grey

or frequency-averaged) and consider only isotropic scattering (g ≡ 1
4π ). All

the ideas presented in this paper can be generalized. Note however, that ad-

ditional difficulties can occur. For frequency-dependent coefficients, further

approximations have to be introduced. One approach is to take moments

in frequency, cf. for example [56]. In the multigroup approach [62], one

uses a piecewise constant approximation of the intensity in frequency space.

Advantages and drawbacks of both approaches will be briefly discussed in

Section 5.

We supplement this system with the following boundary conditions. For

the radiative intensity we prescribe the ingoing radiation,

I(Ω)|n·Ω<0 = Iout(Ω), (1.2)

where n denotes the outward normal. These boundary conditions can be

extended to semi-transparent boundaries. As initial data we prescribe the

radiative intensity I inside the domain.

Analytical results concerning the existence and uniqueness of solutions

to the transfer equation itself and to the radiative heat transfer equations,

where also energy conservation and additionally heat conduction are con-

sidered, have been obtained by many authors. A rather recent review on

methods for transport equations can be found in [2], cf. also [1]. The trans-

fer equation together with energy conservation is considered in [19, 38]. The

issue of heat conduction is addressed in [24, 28, 29]. Convection, conduction

and radiation is treated in [33, 48].

We will also consider the special case of a one-dimensional slab geometry.

In slab geometry, the equations simplify to: For all µ ∈ [−1, 1]

1

c
∂tI(x, t, µ) + µ∂xI(x, t, µ) = κ(B(x, t)− I(x, t, µ))

+σ(
1

2

∫ 1

−1
I(x, t, µ′)dµ′ − I(x, t, µ)). (1.3)
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Here, µ is the cosine of the angle between direction and x-axis. At the left

boundary I has to be prescribed for µ > 0, at the right boundary for µ < 0.

The purpose of this paper is to give a sumary of the partial moment

approach, combined with a minimum entropy closure. This approach is a

generalization of the moment approach and was developed in [12, 13, 16, 63].

In Section 2 we give a review of the moment method and examine different

closures, which, in this form, cannot be found in standard textbooks. Fur-

thermore, we discuss the connections between the moment method and other

widely used approximate methods, e.g. the method of Discrete Ordinates,

Diffusion approximation and Flux-Limited Diffusion. The partial moment

idea is explained in Section 3. Mathematical and physical properties of this

approximation are discussed. Again, different closures are considered. In

Section 4 we present several numerical examples, where the methods pre-

sented before are compared.

2. Moment Models

First we briefly review the basics of the moment approach. Consider

again the transport equation (1.1) for the radiation. This equation is in

fact a system of infinitely many coupled integro-differential equations that

describes the distribution I of all photons in time, space and velocity space.

On the one hand this system is computationally very expensive and on the

other hand we are not interested in the photon distribution itself but in

macroscopic quantities like the mean energy or mean flux of the radiation

field. For instance, only the gradient of the radiative flux enters into the

energy balance. The macroscopic quantities are moments of the distribution

function. Let

〈 · 〉 :=

∫

S
· dΩ (2.1)

denote the average over all directions. The energy, flux vector and pressure

tensor of the radiation field are defined, respectively, as

E := 〈I〉, F := 〈ΩI〉, P := 〈(Ω ⊗ Ω)I〉. (2.2)

To derive equations for the macroscopic quantities we multiply the trans-

port equation by 1 and Ω and average over all directions. We obtain the
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conservation laws

1

c
∂tE +∇F = κ(〈B〉 − E) (2.3)

1

c
∂tF +∇P = −(κ+ σ)F. (2.4)

These are four equations (the first is a scalar equation, the second has three

components) for 10 unknowns (E scalar, F 3-component vector, P symmetric

3× 3-matrix). Hence we have to pose an additional condition. Usually this

condition is a constitutive equation for the highest moment P , expressed in

terms of the lower moments E and F . This is referred to as the closure

problem. The simplest approximation, the so-called P1 approximation, is

obtained if we assume that the underlying distribution is isotropic. Thus,

we obtain P = 1
3E and therefore

1

c
∂tE +∇F = κ(〈B〉 −E) (2.5)

1

c
∂tF +∇

1

3
E = −(κ+ σ)F. (2.6)

The general PN closure is usually derived in a different way.

2.1. Spherical harmonics

The Spherical Harmonics approach is one of the oldest approximate

methods for radiative transfer [14, 21]. For the sake simplicity, we restrict

our explanation to the case of slab geometry. The derivation for three-

dimensional case can be found for example in [7] and also in standard text-

books [9, 26, 43]. The idea of the spherical harmonics approach is to express

the angular dependence of the distribution function in terms of a Fourier

series,

I(µ) =

∞
∑

l=0

ISHl

2l + 1

2
Pl(µ), (2.7)

where Pl are the Legendre polynomials. These form an orthogonal basis

of the space of polynomials with respect to the standard scalar product on

[−1, 1],
∫ 1

−1
Pl(µ)Pk(µ)dµ =

2

2l + 1
δlk. (2.8)
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In more space dimensions, one uses spherical harmonics, which are an or-

thogonal system on the unit sphere.

If we truncate the Fourier series at l = N we have

ISH(µ) =

N
∑

l=0

ISHl

2l + 1

2
Pl(µ). (2.9)

One can obtain equations for the Fourier coefficients

ISHl =

∫ 1

−1
ISH(µ)Pl(µ)dµ (2.10)

by testing (1.1) with Pl(µ) and then integrating. Thus we get

1

c
∂tI

SH
l +∇

∫ 1

−1
µPl(µ)I

SH(µ)dµ = κ(2〈B〉δl0−I
SH
l )+σ(I0δl0−I

SH
l ) (2.11)

for the moments ISHl of the distribution function. Using the recursion rela-

tion

(l + 1)Pl+1(µ) + lPl−1(µ) = (2l + 1)µPl(µ) (2.12)

we obtain

1

c
∂tI

SH
l +∇(

l + 1

2l + 1
ISHl+1 +

l

2l + 1
ISHl−1) = κ(2〈B〉δl0 − ISHl ) + σ(I0δl0 − ISHl ).

(2.13)

This is a linear system of first order partial differential equations. For a

criterion on how many moments are sufficient for a given problem see [57].

The two most widely used boundary conditions are Mark [34, 35] and

Marshak [36] boundary conditions. The idea of the Mark boundary condi-

tions is to assign the values of the distribution at certain directions µi which

are the zeros of the Legendre polynomial of order N +1. That this is in fact

a natural boundary condition becomes clear in the next section.

Marshak’s boundary conditions, on the other hand, demand that the

ingoing half moments of the distribution are prescribed, i.e. for the left

boundary
∫ 1

0
Pl(µ)I(µ)dµ. (2.14)
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This, in some sense, reflects the boundary conditions (1.2) for the full equa-

tions.

2.2. Discrete ordinates and spherical harmonics

The idea of the discrete ordinates (SN ) approach [6] is to choose a certain

set of directions (Ωi) and to replace the angular integration by a numerical

quadrature. Let IDO
i be an approximation to I(Ωi). Then the SN approxi-

mation to (1.1) reads for all i = 1, . . . , N

1

c
∂tI

DO
i +Ωi∇I

DO
i = κ(〈B〉 − IDO

i ) + σ(
1

4π

N
∑

j=0

wjI
DO
j − IDO

i ). (2.15)

The wj are the weights of a quadrature rule on the unit sphere. This is again

a system of linear partial differential equations. Depending on the number

of directions, this system can become quite large [25].

The formulation of boundary conditions is straight-forward. We simply

prescribe the value of the distribution function for the ingoing directions.

It is well-known [5] that the Discrete Ordinates and the Spherical Har-

monics approach are equivalent. If we choose Gauss quadrature as the

quadrature rule then the PN and SN solutions have the same value at the

nodes µi. This can be seen by multiplying the equation for the coefficients

of the Spherical Harmonics, Eq. (2.13), with

2l + 1

2
Pl(µi) (2.16)

and summing over l.

At this point it becomes clear that Mark’s boundary conditions are

in fact a natural choice. Indeed they are just a translation of the simple

boundary conditions for the Discrete Ordinates method.

2.3. Diffusion approximation and spherical harmonics

Consider the equation for the Fourier coefficient corresponding to the

zeroth order Legendre polynomial (or spherical harmonic) and recall that

the radiative energy density E and the energy flux F satisfy

1

c
∂tE +∇F = κ(〈B〉 − E). (2.17)
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The diffusion approximation now consists of expressing F as a function of E

and ∇E and other known quantities. The classical diffusion approximation

uses Fick’s law [41],

F = −
1

3(σ + κ)
∇E, (2.18)

and hence
1

c
∂tE −∇

1

3(σ + κ)
∇E = κ(〈B〉 − E). (2.19)

By ∇ 1
3(σ+κ)∇E we actually mean ∇( 1

3(σ+κ)∇E), but we will skip the brack-

ets in the following. This equation is called diffusion approximation because

of its similarity to Fourier’s law of heat diffusion. It has been derived in [51]

in the field of radiative transfer and in [30] in the field of neutron transport.

The classical diffusion approximation can be obtained, in an ad hoc manner,

from the P1 equations,

1

c
∂tE +∇F = κ(〈B〉 − E) (2.20)

1

c
∂tF +∇

1

3
E = −(σ + κ)F, (2.21)

by dropping the time derivative of the flux, ∂tF , then solving the second

equation for F , and plugging the result into the first equation.

The most simple boundary conditions would be Dirichlet boundary con-

ditions, i.e. we prescribe the value of E at both boundaries. More accurate

conditions can be derived by employing Marshak’s approach. This leads to

2

3κ
n · ∇E = 〈B〉 − E. (2.22)

These boundary conditions are of Robin type.

2.4. Simplified PN approximations

In the same ad-hoc manner, one can derive diffusion-type equations of

higher order, the so-called Simplified PN (SPN ) equations, from any PN

approximation of odd order. This can be done in the following way [18]:

First, neglect the time derivatives of the higher order moments. Then, alge-

braically solve every second equation for the odd order moment. Insert this

into the equation above to obtain a system of second-order partial differential

equations.
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This ad-hoc-manner can be made more rigorous by a diffusive scaling of

the equations and an asymptotic expansion of the differential operator [31,

47]. To that end we neglect the time-derivative and assume that the interac-

tion coefficients are large. Mathematically, we introduce a small parameter

ε and scale the equations,

Ω∇I =
κ

ε
(B − I) +

σ

ε
(
1

4π

∫

I − I). (2.23)

The parameter

ε =
1

(σref + κref)xref
,

where xref is the typical size of the medium and σref, κref are reference values

for the scattering and absorption coefficients, is the inverse optical depth

of the medium. For the diffusion and SPN approximations to be valid one

should have ε≪ 1.

Equation 2.23 is equivalent to

(1 + ε
Ω

σ + κ
∇)I =

κ

σ + κ
B +

σ

σ + κ

1

4π

∫

I. (2.24)

Inverting the operator using Neumann’s series yields

I = (1− ε
Ω

σ + κ
∇+ ε2

Ω2

(σ + κ)2
∇2 − · · · )(

κ

σ + κ
B +

σ

σ + κ

1

4π

∫

I). (2.25)

Now we integrate both sides with respect to Ω over the unit sphere and get

E = (1 +
ε2

3(σ + κ)2
∇2 +

ε4

5(σ + κ)4
∇4 + · · · )(

κ

σ + κ
〈B〉+

σ

σ + κ
E). (2.26)

Using Neumann’s series again, we arrive at

(1−
ε2

3(σ + κ)2
∇2−

4ε4

45(σ + κ)4
∇4+ · · · )E = (

κ

σ + κ
〈B〉+

σ

σ + κ
E). (2.27)

Multiplication by σ + κ yields

(−
ε2

3(σ + κ)
∇2 −

4ε4

45(σ + κ)3
∇4 + · · · )E = κ(〈B〉 − E). (2.28)

If we neglect terms of the order ε4, ε6, ε8 and perform substitutions to

obtain only second derivatives, we arrive at the SP1, SP2, SP3 equations,
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respectively.

For example, the SP3 equations finally read

−∇
µ21

σ + κ
∇ψ1 = κ(〈B〉 − ψ1) (2.29)

−∇
µ22

σ + κ
∇ψ2 = κ(〈B〉 − ψ2), (2.30)

where ψn are related to

E and φ =

(

1−
11ε2

21 (σ + κ)2
∇2

)−1(
2ε2

15 (σ + κ)2
∇2E

)

(2.31)

via a linear transformation

ψn = E + γnφ, γn =
5

7

(

1 + (−1)n
√

54

5

)

. (2.32)

Furthermore,

µ21 =
3

7
−

2

7

√

6

5
and µ22 =

3

7
+

2

7

√

6

5
. (2.33)

Boundary conditions can again be derived by Marshak’s idea. For the

SP3 equations they are a linear system of equations involving the values of

ψ1 and ψ2 and their normal derivatives, cf. [31].

We want to remark that in this derivation we actually apply Neumann’s

series to an unbounded operator, which is mathematically not rigorous. The

SPN approximation is based on the suitable asymptotic expansion of the

differential operator, not of the solution itself. However, the SP1 or classical

diffusion approximation can also be derived by a Chapman-Enskog expan-

sion, i.e. an expansion of the solution I in terms of ε,

I = I0 + εI1 + · · · . (2.34)

If we collect orders of ε and note that up to higher order terms,

E = 〈I0〉 and F = 〈εΩI1〉, (2.35)

we obtain Fick’s law (2.18).
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2.5. Minimum entropy closure

The approximations based on the expansion of the distribution function

into a polynomial or the equivalent diffusion approximations suffer from se-

rious drawbacks. First, anisotropic situations are not correctly described.

This becomes apparent most drastically for a ray of light, where |P | = E.

Also, the distribution function can become negative and thus the moments

computed from the distribution can become unphysical. Second, boundary

conditions cannot be incorporated exactly. At a boundary we usually pre-

scribe the ingoing flux only. Here we have to prescribe values for the full

moments. These moments contain the unknown outgoing radiation. More-

over, a polynomial expansion cannot capture discontinuities in the angular

photon distribution. Krook [27] remarks that at the boundary there is usu-

ally a discontinuity in the distribution between in- and outgoing particles.

In this section, we want to describe one idea which resolves the first

problem The idea is to use an Entropy Minimization Principle to obtain the

constitutive equation for P . This principle has become the main concept of

Rational Extended Thermodynamics [42].

We want to explain the Entropy Minimization Principle and its practical

application by means of our simple moment system (2.3-2.4). To close the

system we determine a distribution function J that minimizes the radiative

entropy

H∗
R(I) =

∫

S2

∫ ∞

0
h∗R(I)dνdΩ (2.36)

with

h∗R(I) =
2kν2

c3
(n log n− (n+ 1) log(n+ 1)) where n =

c2

2hν3
I (2.37)

under the constraint that it reproduces the lower order moments,

〈J 〉 = E and 〈ΩJ 〉 = F. (2.38)

The entropy is the the well-known entropy for bosons adapted to radiation

fields [44, 50]. At first sight, it is not clear why the distribution should

minimize the entropy when all that is known for non-equilibrium processes

is that there exists an entropy inequality. But it can be shown [10] that the

minimization of the entropy for given moments and the entropy inequality

are equivalent.
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The above minimization problem can be solved explicitly and the pres-

sure can be written as [11]

P = D(f)E. (2.39)

Here, f = F
E is the relative flux,

D(f) =
1− χ(f)

2
I +

3χ(f)− 1

2

f ⊗ f

|f |2
(2.40)

is the Eddington tensor and

χ(f) =
5− 2

√

4− 3|f |2

3
(2.41)

is the Eddington factor. The Eddington tensor can always be written in the

form (2.40) under the assumption that the intensity is symmetric about a

preferred direction [32]. The minimum entropy Eddington factor satisfies

the natural constraints

tr(D) = 1 (2.42)

D(f)− f ⊗ f ≥ 0 (2.43)

f2 ≤ χ(f) ≤ 1 (2.44)

In the literature, the Eddington factor (2.41) has been derived based on

many, apparently not connected, ideas. Levermore [32] assumed that there

existed a reference frame in which the distribution was exactly isotropic and

used the covariance of the radiation stress tensor. Anile et al. [3] derived

it by collecting physical constraints on the Eddington factor and supposing

the existence of an additional conservation law, where the conserved quantity

behaves like the physical entropy near radiative equilibrium. The minimum

entropy system was thoroughly investigated in [11, 62]. Further variable

Eddington factors have been proposed, cf. [32, 40] and references therein.

The closed system has several desirable properties. The flux is limited

in a natural way, i.e. |f | < 1. Physically, this corresponds to the fact that

information cannot travel faster than the speed of light. Furthermore, the

underlying distribution function is always positive. Also, the system can be

transformed to a symmetric hyperbolic system [3], which makes it accessi-

ble to a general mathematical theory [15]. Again, Marshak type boundary
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conditions can be derived.

2.6. Flux-limited diffusion and entropy minimization

The classical diffusion approximation is a linear parabolic partial dif-

ferential equation. In this equation, information is propagated at infinite

speed. This can also be seen from the fact that the flux |F | is not bounded

by the energy E (relative flux f < 1). But this should hold, due to the defini-

tion of the moments. Thus the classical diffusion approximation contradicts

fundamental physical concepts.

Therefore the concept of flux-limited diffusion has been introduced. A

diffusion equation is called flux-limited if

|F | ≤ E. (2.45)

The following is a summary of [32]. We begin by writing the moment equa-

tions in the form

1

c
∂tE +∇F = κ(〈B〉 − E) (2.46)

1

c
∂tF +∇(DE) = −(σ + κ)F, (2.47)

with the Eddington tensor D. Two assumptions in the derivation of the

classical diffusion equation will be modified. First, the Eddington tensor is

only identically equal to 1
3 for isotropic radiation. For a ray of light (”free-

streaming”), on the other hand, we should have |DE| = E. Second, one

should not neglect ∂tF . Instead, we note that in the diffusive as well as

in the free-streaming regime, the spatial and temporal derivatives of the

relative flux f = F
E and the Eddington tensor D can be neglected.

Rewriting the equations in terms of f and E we get

1

c
∂tE +∇(fE) = κ(〈B〉 − E) (2.48)

1

c
∂t(fE) +∇(DE) = −(σ + κ)fE. (2.49)

The second equation becomes

1

c
E∂tf +

1

c
f∂tE +∇(DE) = −(σ + κ)fE. (2.50)
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Inserting (2.48) into (2.50), we obtain

(1

c
∂tf + f∇f

)

E +∇ ((D − f ⊗ f)E) + σ̄fE = 0 (2.51)

with σ̄ = κ〈B〉+σE
E . If we drop the derivatives of f and D, we arrive at

(D − f ⊗ f)∇E + σ̄fE = 0, (2.52)

or

(D − f ⊗ f)R = f with R = −
1

σ̄

∇E

E
. (2.53)

The idea is now to

1. choose D as a function of f ,

2. solve (D − f ⊗ f)R = f for f ,

3. insert f(R) into the first moment equation to obtain a diffusion approx-

imation.

The first step shows how the concept of flux-limited diffusion is related to a

(nonlinear) moment closure. If

D =
1− χ

2
I +

3χ− 1

2

f ⊗ f

|f |
(2.54)

then f is an eigenvector of D and also of (D − f ⊗ f) with

(D − f ⊗ f)f = (χ− |f |2)f. (2.55)

Hence the equation (D − f ⊗ f)R = f has the solution

R =
f

χ− f2
. (2.56)

Solving this equation for f and writing the result as

f = λ(R)R (2.57)

we arrive at the closure

F = −
1

σ̄
λ

(

1

σ̄

∇E

E

)

∇E. (2.58)

If one chooses for D the minimum entropy Eddington factor then [32]

λ =
3(1− β2)2

(3 + β2)2
(2.59)
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where β is implicitly given by

R =
4β(3 + β2)

(1− β2)2
. (2.60)

The same boundary conditions as for the diffusion approximation can

be used.

3. Partial Moments

In spite of its advantages the minimum entropy system still suffers from

a major drawback. In Figure 3.1 we show a numerical test case [4] with two

colliding beams. The parameters are κ = 2.5, σ = 0. The temperature inside

the medium is zero. At both sides, beams with a radiative temperature TR :=
(

E
σSB

)1/4
, where σSB is Stefan-Boltzmann’s constant, of 1000 and relative

fluxes of f = ±0.99, respectively, enter. Figure 3.1 shows the radiative

energy. The full moment model has a qualitatively wrong solution with

two shocks. This is not surprising since this Eddington factor, as stated

above, is related to radiation which is isotropic in a certain frame [32]. This

assumption is violated in the test case above. The unphysical behavior can

be remedied by combining Minimum Entropy with the partial moment idea

described in the following.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.8 0.9

1

1

1.2

1.4

1.6

1.8

2

Transp.

HSM1

M1

E
=

1 2
π

∫
I
d
Ω

x

×104

Figure 3.1. Radiative energy. Artificial radiative shock wave in the full

moment entropy (M1) model.



2007] APPROXIMATE MODELS FOR RADIATIVE TRANSFER 423

The partial moment idea is somehow intermediate between the Discrete

Ordinates approach and Moment Models. In Discrete Ordinates models

the integral over all directions is discretized with a numerical quadrature

rule. This yields a coupled system of finitely many transport equations,

each describing transport into one direction.

Let A be a partition of the unit sphere S, where A ∈ A denotes the

set of the angular integration. Instead of integrating over all directions we

average over each A ∈ A separately. Thus we define the average

〈 · 〉A :=

∫

A
· dΩ. (3.1)

Again, we multiply the transport equation by 1 and Ω and average over each

A ∈ A to obtain

1

c
∂tEA +∇FA = 〈S〉A (3.2)

1

c
∂tFA +∇PA = 〈ΩS〉A. (3.3)

We define the corresponding partial moments by

EA = 〈I〉A (3.4)

FA = 〈ΩI〉A (3.5)

PA = 〈(Ω⊗ Ω)I〉A. (3.6)

To close this system we have to find an equation for the partial pressures PA

as functions of the partial energies EA and partial fluxes FA.

Examples for the choice of A, which are used later, are

• For the full moment model we have A = S, i.e. the integral is over the

full sphere.

• For the half moment model we have A ∈ {S+,S−}. Here, S+ = {Ω ∈

S : Ωx > 0} is the positive half sphere, where the x-component of Ω is

positive, and S− = {Ω ∈ S : Ωx < 0} analogously is the negative half

sphere.

• For the quarter moment model we have A ∈ {S++,S+−,S−−,S−+}.

Here, S++ = {Ω ∈ S : Ωx > 0,Ωy > 0} is the quarter sphere in the first

quadrant. Analogously, S+− = {Ω ∈ S : Ωx > 0,Ωy < 0} etc.

One could also choose other sets for the angular integration.
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3.1. Partial moment PN closure

The basic idea of the PN closure is to expand the photon distribution

into a polynomial. Here we use the same idea, but separately for both half

ranges. This approach has been investigated in the literature in different

forms and contexts and mostly in connection with boundary conditions, for

example recently in [4]. Schuster and Schwarzschild [53, 54] introduce two

constant distributions for left- and rightgoing photons (P0 approximation).

Krook [27], based on ideas of Sykes [58], considers half moment in one space

dimension with a PN closure. Sherman [55] compares full-PN and half-

PN numerically in 1D. Özisik et al. [45] derive a half moment P1 closure

in spherical geometry. Further references can be found in [37], where also

an octuple P1 closure in cylindrical geometry is introduced. Similar ideas

appear in related subjects, like gas dynamics, cf. [8] and references therein.

For the half moment P1 system in one space-dimension, for instance,

we assume that in each half range the distribution can be represented by a

polynomial of degree one. The coefficients of the polynomial are determined

by the constraint that the lower order half moments should be reproduced.

The half moment P1 system reads,

1

c
∂tE+ + ∂xF+ = κ(

1

2
〈B〉 − E+) + σ(

1

2
(E+ + E+)− E+) (3.7)

1

c
∂tF+ + ∂x(χ+(f+)E+) = κ(

1

4
〈B〉 − F+) + σ(

1

4
(E+ +E+)− F+) (3.8)

1

c
∂tE− + ∂xF− = κ(

1

2
〈B〉 − E−) + σ(

1

2
(E+ + E+)− E+) (3.9)

1

c
∂tF− + ∂x(χ−(f−)E−) = κ(−

1

4
〈B〉 − F−) + σ(−

1

4
(E+ + E+)− F−).

(3.10)

The partial Eddington factors are

χ±(f±) = −
1

6
± f± with f± =

F±

E±
. (3.11)

We note that this is a hyperbolic system. The eigenvalues associated to

the “+” moments are positive, while the eigenvalues associated to the ”-”

moments are negative, in accordance with physical intuition. This structure

makes the formulation of accurate boundary conditions easy. We simply pre-

scribe the ingoing half moments, in accordance with the conditions (1.2) for

the full equations. For more discussions, including existence and uniqueness
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results, and the explicit quarter moment P1 closure in two space-dimensions

we refer the reader to [52].

3.2. Partial moment entropy closure

The partial moment entropy closure was introduced for radiative heat

transfer in [13] and developed in [12, 16, 63]. For the sake of completeness

we recall the procedure explained earlier. We have to find a distribution

function J that minimizes the radiative entropy H∗
R given by (2.36-2.37),

under the constraint that it reproduces the lower order partial moments,

〈J 〉A = EA and 〈ΩJ 〉A = FA (3.12)

for all A ∈ A. The minimizer is given by

J =
∑

A∈A

1

α4
A(1 + βA · Ω)4

1A, (3.13)

where αA and βA are Lagrange multipliers corresponding to the constraints.

This formula differs from the one given in [13] since we consider frequency-

averaged quantities here. It can be obtained from the minimizer in [13] by

integration over ν.

In the case of A = {S+,S−}, the half moments over this distribution

can be computed explicitly and the half Eddington factors are [13],

χ± =
8f2±

1± 6f± +
√

1± 12f± − 12f2±

. (3.14)

For the full moment and the half moment model an explicit closure is possible

only if we take the two lowest order moments. If we were to test with Ω⊗Ω

and to obtain an equation for the pressure P an explicit closure would be

impossible. In the case of quarter moments in 2D even the integrals over the

distribution function cannot be computed explicitly. However, the system

can be closed numerically by tabulating the pressure tensor as a function of

energy and flux, for more details see [16].

The Partial Moment Entropy approximation has a lot of desirable phys-

ical and mathematical properties. The underlying distribution function is

always positive. Hence the relative flux and the speed of propagation are

limited. The system is symmetriziable hyperbolic. This makes it accessible

to a powerful mathematical theory guaranteeing well-posedness locally in

time. Like the full moment entropy approximation [11], the system correctly
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approaches the diffusive limit and the free-streaming limit. The eigenvalues

of the half moment and quarter moment entropy aproximation have a special

structure. For the half moment case, the eigenvalues of the “+” direction

are always positive, the eigenvalues of the “−” direction are always nega-

tive. Both are bounded in modulus by the speed of light c. This property

makes very simple and accurate numerical schemes possible, for example

kinetic schemes or upwind schemes. The formulation of accurate boundary

conditions is again straight-forward.

4. Comparison of the Models

The approximations presented above have different mathematical struc-

tures. The Discrete Ordinates, Spherical Harmonics and partial PN equa-

tions are linear first order partial differential equations. The minimum en-

tropy and the partial moment entropy system are nonlinear hyperbolic first

order partial differential equations. On the other hand the diffusion and

flux-limited diffusion equations are parabolic equations, whereas the SPN

equations are elliptic/parabolic. We remark that, although they are closely

related, the minimum entropy moment model and flux-limited diffusion with

the same Eddington factor are not completely equivalent, but can in fact

have very different solutions. For example, the solutions for the minimum

entropy system can have shocks whereas this is impossible for flux-limited

diffusion.

In Figures 4.1 and 4.2 we show some numerical comparisons of the dif-

ferent models. The abbreviations in the legends mean

• S40/Transport: Discrete Ordinates Solution with 40 directions

• P1: P1 approximation with Marshak boundary conditions

• SP1: SP1/Diffusion approximation with Marshak boundary condition

• FLD: flux-limited diffusion with minimum entropy Eddington factor and

Marshak boundary conditions

• HSP1: half P1 approximation

• HSM1: half moment entropy approximation

• Quarter Space: quarter moment entropy approximation.

The transport solution has been obtained with a source iteration method

[59]. The parabolic equations SP1 and FLD have been discretized with a

standard finite difference scheme. For the balance laws P1, HSP1, HSM1 and
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Quarter Space we used kinetic schemes based on the distribution function

from the moment closure. All of the latter systems have eigenvalues in

modulus less than the speed of light. Thus, similar CFL conditions hold. To

be valid in the diffusive limit, the kinetic schemes can be modified to become

asymptotic preserving, cf. [13] for a simple analysis in 1D.

In Figure 4.1 we consider a given temperature profile in the unit interval

[0, 1], T (x) = 1000 + 800x. This temperature enters into the Planck source

term 〈B〉 via Stefan-Boltzmann’s law

〈B〉(T ) = σSBT
4. (4.1)

At the boundary we prescribe black body radiation at the corresponding

temperature as ingoing radiation. In Figure 4.1 we see that the high order

Discrete Ordinates solution (considered as benchmark result) and the half

moment approximations agree very well, whereas P1, SP1 and flux-limited

diffusion differ significantly.

This becomes more striking in the 2D example in Figure 4.2. The P1

and SP1 approximations are unable to capture the simple anisotropy in this

test case, whereas the quarter moment model and the solution of the full

equations agree very well.
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×105
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Figure 4.1. Steady radiative energy for a fixed temperature profile T (x) =

1000 + 800x in the interval [0, 1], κ = 1, σ = 0.1.
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Figure 4.2. Steady radiative energy for a fixed temperature profile T (x) =

1000 + 400(x+ y) in [0, 1]2, κ = 0.01, σ = 0.1. Cut along the diagonal.

5. Conclusion

Of course, the diffusion approximation has the smallest computational

effort. Due to the nonlinearity, flux-limited diffusion has roughly twice to

three times the computational effort. For P1 the factor is about 2, for half

P1 4, for half moment entropy 7, for the full solution up to 300 depending

on the number of directions.

Partial Moment models generalize the method of moments. Combined

with the PN closure, this class of models can be seen as intermediate between

the method of Spherical Harmonics and the method of Discrete Ordinates.

The partial moment entropy model removes the major drawback from the

minimum entropy closure, namely the possibility of unphysical shocks.

The minimum entropy method leads to problems in the field of rarefied

gas dynamics if moments of higher order are used [22, 23]. This is related

to the unbounded velocity space. Hence it is not an issue here if we take

only angular moments. If one wants to treat also frequency-dependent co-

efficients, one could use moments of the distribution in terms of frequency,

cf. [56]. But then the existence of a minimum entropy solution cannot be

guaranteed. This is the reason why the minimum entropy as well as the
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partial moment minimum entropy model have been generalized [60, 62, 63]

to frequency-dependent coefficients using a multigroup approach.

The partial moment entropy model has been further developed to an

adaptive half moment model in [49].

In conclusion, the partial moment entropy model has many mathemati-

cal and physical advantages compared to the established models. Its compu-

tational effort is slightly higher but its accuracy is comparable to high order

direct methods.
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