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KINETIC AND FLUID MODELS FOR SUPPLY CHAINS

SUPPORTING POLICY ATTRIBUTES

BY

D. ARMBRUSTER, P. DEGOND AND C. RINGHOFER

Abstract

We consider a supply chain consisting of a sequence of

buffer queues and processors with certain throughput times and

capacities. In a previous work, we have derived a hyperbolic con-

servation law for the part density and flux in the supply chain.

In the present paper, we introduce internal variables (named at-

tributes: e.g. the time to due-date) and extend the previously

defined model into a kinetic-like model for the evolution of the

part in the phase-space (degree-of-completion, attribute). We re-

late this kinetic model to the hyperbolic one through the moment

method and a ’monokinetic’ (or single-phase) closure assumption.

If instead multi-phase closure assumptions are retained, richer dy-

namics can take place. In a numerical section, we compare the

kinetic model (solved by a particle method) and its two-phase ap-

proximation and demonstrate that both behave as expected.

1. Introduction

This paper is a follow-up of a previous work [2] where a fluid-like model

for supply chains was derived. We consider a chain of suppliers or processors

S0, . . . , SM−1. Each of them processes a certain good (measured in units of

parts) and passes it to the next supplier. A given processor is characterized

by its thoughput time T (m) (the time needed to process a single part) and

by its capacity or release rate µ(m) (the number of parts which can be
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processed per unit of time). Each processor has a queue and the parts are

processed on a ’first come first served basis’. The queues are supposed of

infinite length and therefore there is no limitation in the number of parts

in the queues. This leads to the following rule, for the the time τ(m,n) at

which part number n passes from supplier m− 1 to supplier m:

τ(m+ 1, n) = max{τ(m,n) + T (m), τ(m+ 1, n − 1) +
1

µ(m,n− 1)
},

m = 0, . . . ,M − 1, n ≥ 1, (1.1)

where we allow the capacity to depend on the part number as well. Formula

(1.1) expresses that the time at which part n leaves processor m is at least

equal to the time at which it entered its queue plus the throughput time (the

first argument of the max) and also at least equal to the time the previous

part n − 1 left processor m plus the inverse of the machine capacity µ(m).

That it must be equal to the max of these two times follows from the fact

that the machine queue is either empty (in which case the max is equal to

its first argument) or non-empty (in which case it is equal to the second

one). We refer to [2] for details. In using formula (1.1), there is no room for

a policy, since the parts are supposed to be processed on a ’first come first

served basis’. The operator is not supposed to take a part at the end of the

queue and to put it in front. Obviously, this is a shortcoming of the model

which we shall try to circumvent in the present work.

In [2], the limit M → ∞ of the automaton (1.1) was explored. Introduc-

ing the continuous variables x ∈ [0, 1] as a continous version of the processor

index m/M , the density of parts n(x, t) and the flux of parts q(x, t), we

showed that in this limit, the automaton (1.1) can be approximated by the

following conservation law:

∂tn+ ∂xq = 0, (1.2)

q = min{vn, µ}. (1.3)

where v = T−1. Note that, because the capacity and throughput time are

processor dependent, v and µ are functions of x. In realistic cases, these

functions are piecewise constants because the number of processors is finite

and not large. The apparent paradox of taking the asymptotic limit M → ∞

while keeping the total number of processor finite is waived by the method

discussed in [2] which involves the decomposition of each processor into many

virtual ’subprocessors’.
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The interpretation of (1.2), (1.3) is as follows: the density of parts solves

a linear convection equation with given velocity v as long as the queues are

empty (the first argument of the min). When the particle flux vn wants

to exceed the capacity µ, queues starts to build up and the flux eventually

saturates to the capacity value (the second argument of the min). Note that

the ’min’ makes this hyperbolic problem non linear. The derivation method

makes use of the concept of ’N-curve’ originally developed by Newell in the

context of traffic [20].

Our goal is to extend the fluid-like model (1.2), (1.3) so that it can

incorporate the possibility of defining priorities in serving the parts. This is

desirable in the so-called ’hot lot’ situation, in which a certain lot of parts

requires a faster treatment than the average. Instead of using the discrete

model (1.1) once again, we shall use the fluid-like model as a starting point.

To each part, we attach an attribute, which is a real variable y and defines its

priority. Parts with lower values of y have larger priorities. We shall denote

by f(x, y, t) the quantity such that f dx dy represents the number of parts

with attributes in [y, y + dy] currently processed by processors with index

lying in [x, x+ dx]. Our first task will be to write an evolution equation for

f which supports a flux constraint of the same kind as that expressed by

(1.3). We shall refer to this model as the ’kinetic model’.

Among particular solutions of the kinetic model are distributions of the

form

f(x, y, t) = n(x, t)δ(y − Y (x, t)). (1.4)

Such distributions describe the case where all parts at a given location x bear

the same attribute Y (x, t) at time t and will be referred to as ’single-phase

distributions’. Of course, n(x, t) is the number density of these parts. We

shall show that single-phase distributions are solutions of the kinetic model

provided that n satisfies the fluid model (1.2), (1.3), which for this reason

will be later on referred to as the ’single-phase fluid model’ or ’SP’ fluid

model in short. In this case, the equation for Y (x) is decoupled from that of

n and simply translates the evolution of the part attributes in the absence

of any policy.

Of course, single-phase solutions such as (1.4) are of limited interested

but we would like to retain the idea that instead of being continuous, the
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attribute distribution is best represented by a sum of delta distributions,

i.e. by

f(x, y, t) =

K
∑

k=1

nk(x, t)δ(y − Yk(x, t)). (1.5)

where nk(x, t) and Yk(x, t) represents the density and attributes of lot k

at point x and time t. For instance, in the case of two lots, the normal

one and the ’hot lot’, we would have k = 2. We shall derive a system of

fluid equations for the multiphase case which will later be referred to as the

’multiphase fluid model or ’MP’ fluid model in short.

In a last part, we shall develop particle approximations of the kinetic

model and of the MP fluid model. These simulations are based on the

particle method.

We conclude this introduction by some references. The time discrete

system (1.1) is an example of a ’Discrete Event Simulator’ (see [8] for an

overview). Fluid models of the type (1.2), (1.3) have been previously pro-

posed and investigated in [1], [10] and in [3, 4, 5, 6]. These models bear

strong analogies with traffic flow fluid models, which are quite extensively

used (see e.g. [7, 9, 11, 19, 24]). Kinetic models have been fruitfully used in

the context of supply chain modeling as well as in traffic flow (see e.g. [5, 6,

13, 14, 17, 21, 22, 23]).

In particular, the relations between the SP fluid model and the traffic

model of [9] should be pointed out. The SP fluid model encompasses a flux

constraint (the flux cannot exceed the upper bound µ), while the traffic flow

model of [9] imposes a density constraint (the car density cannot exceed that

corresponding to a bumper to bumper situation). These two types of con-

straints are kind of dual to each other. The flux constraint produces queues

which in a certain sense can be viewed as concentrations of the solution

(even if initially the solution is smooth), while the density constraint pre-

vents concentrations but instead produces jams, i.e. stretches of space where

the density coincides with the maximal allowed density. We could imagine

supply chain models incorporating a density constraint (that could be for

instance a limitation of the size of the queue in front of each processor).

In this case, the model would exhibit simultaneously a flux and a density

constraint and would combine the features of the SP model and that of [9].

The paper is organized as follows: in Section 2, the kinetic model is

introduced. The multiphase model is derived in Section 3. Section 4 is
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devoted to the presentation of the particle method which solves the kinetic

model. Numerical results are discussed in Section 5. Lastly, a conclusion is

drawn in Section 6.

2. The Kinetic Model of Supply Chain with Policy Attributes

In order to motivate the introduction of the kinetic model, we first give

a particle interpretation of the SP fluid model (1.2), (1.3). We can define

the characteristics of this first order system separately in each of the regions

vn < µ and vn > µ. They are defined by:

{

Ẋ = v, if vn < µ,

Ẋ = 0, if vn > µ,

where the dots indicate time derivatives. Now, supposing for a while that v

and µ are smooth functions, an easy computation shows that

d

dt
n(X(t), t) =

{

−(n∂xv)(X(t), t), if vn < µ,

−∂xµ(X(t)), if vn > µ.
(2.1)

Obviously, this dynamics is quite singular and the kinetic model can be

viewed in a first instance as a way to express it in a less singular way. Let

us suppose that parts located at time t and point x have different attributes

y. For instance, attributes can be arrival times in the queue ; we shall come

back to this point later on. Then, a way to achieve this dynamics is to

say that all parts are moving with an actual velocity V (x, y, t) below the

processor defined velocity v(x) (i.e. 0 ≤ V (x, y, t) ≤ v(x)) and V (x, y, t) is

chosen such that the total flux does not exceed µ(x). We now develop such

a possible choice of V (x, y, t).

First, we define f(x, y, t) the density of parts which at time t are found

at position x with attribute y (i.e. f(x, y, t) dx dy is the number of such

particles in a volume of size dx dy about the point (x, y)). Obviously, the

density n(x, t) and flux q(x, t) in the sense of the SP fluid model are related

with the distribution function f by integration w.r.t. y:

n(x, t) =

∫

R

f(x, y, t) dy, q(x, t) =

∫

R

V (x, y, t)f(x, y, t) dy. (2.2)
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We also define

Q =

∫

R

v(x)f(x, y, t) dy = vn,

the value of the flux if there would be no capacity limitation.

Our aim is at modeling a policy giving higher priority to parts with

lower attributes y and allowing them to be processed faster. The most

simple policy consists in processing parts by increasing attribute number

and moving them along the processor chain with the processor speed v until

the machine capacity µ is reached. The number of parts having attributes

below α at position x and time t is given by
∫ α

−∞ f(x, y, t) dy and accordingly

the flux of such parts, i.e. the number of such parts crossing x per unit of

time is:

β(x, α, t) = v(x)

∫ α

−∞
f(x, y, t) dy. (2.3)

In other words, β is the y-antiderivative of vf . β is a non-negative non-

decreasing function of α from R onto [0, Q(x, t)]. We temporarily assume

that f is a locally integrable function of y (note that this excludes solutions

of the form (1.5)). In this case, β is also a continuous function of α. It may

be non-strictly increasing but we can still define its functional inverse β−1 as

an increasing, possibly discontinuous function from [0, Q(x, t)] onto R. To fix

the ideas, we suppose that β−1 is left-continuous at any discontinuity point

(it can easily be checked that the model is independent of this particular

choice). We have u = β(x, y, t) ⇔ y = β−1(x, u, t).

According to the above-defined policy, the processor standing at position

x will process all parts with attributes y below the critical attribute value

α(x, t) such that the flux of such parts exactly equals µ(x) or in other words,

such that

β(x, α, t) = µ(x) i.e. α(x, t) = β−1(x, µ(x), t). (2.4)

Of course, if µ(x) ≥ Q(x, t), all parts can be processed without any limitation

and in this case, we can set up α = +∞. the critical value α is thus given

by:
{

α(x, t) = β−1(x, µ(x), t), if Q(x, t) ≤ µ(x),

α(x, t) = ∞, if Q(x, t) ≥ µ(x).
(2.5)
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From (2.5), it is readily checked that

β(x, α(x, t), t) = min{µ(x), Q(x, t)}. (2.6)

With this expression at hand, we can easily extend our theory to the

case where the nominal processor velocity v also depends on the attribute

v = v(x, y), in which case, β and Q must be defined according to

β(x, α, t) =

∫ α

−∞
v(x, y)f(x, y, t) dy, Q =

∫

R

v(x, y)f(x, y, t) dy.

With the rule given above, the actual part velocity V (x, y, t) at point

(x, y, t) is given either by the nominal processor velocity v(x, y) if the part

moves, i.e. if y < α(x, t), or by 0 if the part stays blocked i.e. if y > α(x, t).

Therefore, denoting by H(y) the Heaviside step function:

H(y) =

{

0, if y < 0,

1, if y > 0,

we can write

V (x, y, t) = v(x, y)H(α(x, t) − y). (2.7)

Since β is a non-decreasing function of α, we can equivalently write in view

of (2.6):

V (x, y, t) = v(x, y)H(β(x, α(x, t), t) − β(x, y, t))

= v(x, y)H(min{µ(x), Q(x, t)} − β(x, y, t)). (2.8)

Note that this expression also simply equals

V (x, y, t) = v(x, y)H(µ(x) − β(x, y, t)). (2.9)

Now, we consider the dynamics associated with V (x, y, t):

Ẋ = V (X, y, t) = v(X, y)H(µ(X) − β(X, y, t)). (2.10)

By analogy with the SP fluid model, we suppose that f varies along the char-

acteristics (2.10) in a way defined by the first equation (2.1), i.e. f(X(t), y, t)

satisfies
d

dt
f(X(t), y, t) = −(f∂x(V (x, y, t)))(X(t), y, t). (2.11)
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Obviously, f must then satisfy the following equation:

∂tf + ∂x(V f) = 0. (2.12)

However, it might be desirable to make the part attributes vary with time

as this obviously allows a much broader range of possible policies. Denoting

by r(x, y, t) the attribute variation rate, we finally end up with the following

kinetic model:

∂tf + ∂x(V f) + ∂y(rf) = 0, (2.13)

with V given by (2.9). It is a simple matter to show that, in the case where

v(x, y) = v(x) does not depend on y, the density n and flux q obey the SP

fluid model (1.2), (1.3). Indeed, integrating (2.13) w.r.t. y leads to (1.2)

while multiplying (2.9) by f , integrating w.r.t. y and using the change of

variables u = β(x, y, t) leads to (1.3). On the other-hand, when v(x, y)

depends on y, the moment model for n, q is not closed as we cannot express

Q in terms of a closed expression involving n and q.

Let us now propose a possible definition of part attributes and a possible

policy for varying it. Suppose each part enters the supply chain at x = 0

and initial time tI with a tagged due-date tD (hopefully larger than tI). The

due-date is the latest date at which the part should be delivered, i.e. the exit

time tE at which the part exits the supply chain at x = 1 should ideally be

less than tD. Then let us define the attribute as the time left to due-date

i.e. tD − t. As time proceeds, the time to due-date diminishes (it may even

become negative if the part is late), thus increasing its priority level in the

chain. In this case, the attribute variation rate is obviously r = −1 and the

initial value of y at the entry of the supply chain is tD − tI . However, we

can also think of other possible policies such as increasing the priority level

faster when time approaches due-date.

To complete the model, we need initial and boundary conditions. We

make no assumption on the initial state of the supply chain. On the other

hand, since V > 0, we only need to specify boundary conditions at x = 0.

Therefore, we specify:

f(x, y, 0) = fI(x, y), f(0, y, t) = g(y, t),
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where fI and g are given. Finally, we suppose that there are no parts with

arbirtrary large attributes, hence:

lim
|y|→∞

f(x, y, t) = 0.

3. The Multi-Phase Model

From the kinetic model (2.13), we would like to deduce a model for

distributions of the form (1.5). This would indeed lead to a reduction of the

problem from a 2-dimensional one (in x and y) plus time into a 1-dimensional

one (in x only). However, we cannot just insert solutions of the form (1.5)

into (2.13) because the product V f would be undefined (it would involve

products of discontinuous functions at the points Yk with delta functions

δ(y − YK) which is undefined).

Rather, we take another route. We first write the system satisfied by

the moments
∫

yjf dy for a convenient set of power functions yj. As often in

kinetic theory (see e.g. [18], the moment system is not closed. To express the

various unknown fluxes in terms of the moments, we close the expressions

by a smoothed version of (1.5), where the delta functions are replaced by

smoothed approximations. We show that in the limit of vanishing smoothing,

well-defined closed expressions of the moment fluxes can be recovered, which

gives rise to what we shall call the Multi-Phase fluid model, or MP fluid

model.

According to the previous section, the kinetic model can be written in

the form

∂tf + ∂x[H(µ(x)− β(x, y, t))v(x, y)f ] + ∂y[r(x, y, t)f ] = 0, (3.1)

β(x, y, t) =

∫

H(y − y′)v(x, y′, t)f(x, y′, t) dy′. (3.2)

To define the moment equations, we integrate (3.1) against yj , j =

0, . . . J − 1. This gives the following set of moment equations:

∂tmj + ∂xFj − jRj−1 = 0, j = 0, . . . J − 1 (3.3)
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where the moments mj , moment fluxes Fj and acceleration terms Rj are

given by

mj(x, t) =

∫

yj f dy, (3.4)

Fj(x, t) =

∫

yj [H(µ(x)− β(x, y, t)]v(x, y, t)f(x, y, t) dy, (3.5)

Rj(x, t) =

∫

yj r(x, y, t)f(x, y, t) dy. (3.6)

This gives J equations for the 3J unknowns mj , Fj , Rj, j = 0, . . . J − 1.

Some Ansatz must be made to find 2J relations among these 3J data.

For that purpose, we are going to close the expressions in (3.4)-(3.6) by

an Ansatz of the form

f ε(x, y, t) =

K
∑

k=1

nk(x, t)
1

ε
φ′(

y − Yk(x, t)

ε
), (3.7)

where ε−1φ′(y/ε) is a smoothed out version of δ(y), i.e. φ(y) is a strictly

monotone function such that φ(−∞) = 0, φ(∞) = 1 holds, and φ′(y) is

compactly supported. In the limit ε → 0, we find back a multi-phase Ansatz

of the form (1.5). Note that this method is somehow similar to that of [15]

for closing the semi-classical limit of the Schrödinger equation.

Remark. As we already pointed out, we need to smooth out the δ-

function, since we actually will integrate δ-functions against Heaviside func-

tions, which is ill defined. The question is whether the evaluation of the

δ-function at the discontinuity of the Heaviside functions happens on a set

of measure 0 (and therefore it does not matter) or not. The answer to this

question will be given by whether our final result depends on the choice of

the function φ or not. We now are going to see that this result is actually

independent of φ.

Proposition 3.1. Using the Ansatz (3.7), the moments fluxes and ac-

celeration terms in (3.4)-(3.6) are given asymptotically by

mj(x, t) =

K
∑

k=1

nk Y
j
k +O(ε), (3.8)

Rj(x, t) =

K
∑

k=1

nk Y
j
k r(x, Yk, t) +O(ε), (3.9)
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Fj(x, t) =

K
∑

k=1

nk Y
j
k vk Zk +O(ε), vk(x, t) := v(x, Yk, t) (3.10)

Zk = max{0,min{1,
µ(x)−

∑

Ys 6=Yk
nsvsH(Yk − Ys)

vk
∑

Ys=Yk
ns

}}+O(ε). (3.11)

Proof. Eq. (3.8) and (3.9) are immediately obtained by substituting

y → Yk + εy, dy → εdy in the integrals. For instance, for (3.8), this gives

mj(x, t) =
K
∑

k=1

nk

∫

(Yk + εy)jφ′(y) dy

=

K
∑

k=1

nk

∫

Y j
k φ

′(y) dy +O(ε) =

K
∑

k=1

nk Y
j
k +O(ε).

Eq. (3.9)(b) can be obtained in the same way. To prove (3.10) we start

similarly:

Fj(x, t) =
K
∑

k=1

nk

∫

yjH(µ(x)− β(x, y, t)) v(x, y, t)
1

ε
φ′(

y − Yk

ε
)dy

=

K
∑

k=1

nk

∫

(Yk+εy)jH(µ(x)−β(x, Yk+εy, t))v(x, Yk+εy, t)φ′(y)dy.

The dependence of the terms (Yk + εy)j and v(x, Yk + εy, t) on y can be

neglected again because they are smooth functions. The dependence of

β(x, Yk + εy, t) on y cannot be neglected, since β is actually discontinuous

at Yk. This gives:

Fj(x, t) =

K
∑

k=1

nk Y
j
k v(x, Yk, t)Z

ε
k +O(ε), (3.12)

with

Zε
k(x, t) :=

∫

H(µ(x)− β(x, Yk + εy, t))φ′(y) dy. (3.13)

This yields (3.10) with Zk = limε→0Z
ε
k. It remains to compute the limiting

expression Zk. Computing β we obtain

β(x, Yk + εy, t) =

K
∑

s=1

ns

∫

H(Yk + εy − z)v(x, z, t)
1

ε
φ′(

z − Ys

ε
) dz
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=

K
∑

s=1

ns

∫

H(Yk + εy − Ys − εz)v(x, Ys + εz, t)φ′(z) dz

=
K
∑

s=1

nsv(x, Ys, t)

∫

H(Yk + εy − Ys − εz)φ′(z) dz +O(ε).

Now for Ys 6= Yk the dependence on (y − z) disappears when ε → 0. For

Ys = Yk however, the ε scales out because of the scaling invariance of the

Heaviside function. This gives for β:

β(x, Yk + εy, t) =
∑

Ys 6=Yk

ns v(x, Ys, t)

∫

H(Yk − Ys)φ
′(z) dz

+
∑

Ys=Yk

ns v(x, Ys, t)

∫

H(y − z)φ′(z) dz +O(ε),

or, integrating out φ:

β(x, Yk + εy, t) =
∑

Ys 6=Yk

ns v(x, Ys, t)H(Yk − Ys)

+
∑

Ys=Yk

ns v(x, Ys, t)φ(y) +O(ε). (3.14)

The terms Zε
k in (3.12) are therefore given by

Zε
k =

∫

H(µ(x)− β(x, Yk + εy, t))φ′(y) dy

=

∫

H

(

µ(x)−
∑

Ys 6=Yk

ns v(x, Ys, t)H(Yk − Ys)

−
∑

Ys=Yk

ns v(x, Ys, t)φ(y) +O(ε)

)

φ′(y) dy.

By the change of variables φ(y) = u, we obtain:

Zε
k =

∫ 1

0
H

(

µ(x)−
∑

Ys 6=Yk

ns v(x, Ys, t)H(Yk − Ys)

−u
∑

Ys=Yk

ns v(x, Ys, t) +O(ε)

)

du
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Now, let b ≥ 0 hold. Then we have the relation

∫ 1

0
H(a− bu) du =





0 for a
b
< 0

a
b

for 0 < a
b
< 1

1 for 1 < a
b



 = max{0,min{1,
a

b
}}. (3.15)

(3.15) holds for b = 0 formally as well if we define a
b
= sign(a)∞ in this case.

Thus we obtain in the limit ε → 0:

Zk = max{0,min{1,
µ(x)−

∑

Ys 6=Yk
ns vsH(Yk − Ys)

vk
∑

Ys=Yk
ns

}}

and therefore (3.11), which ends the proof. �

Now, we use the closure (3.8)-(3.11) (with ε = 0) to close the moment

system (3.3). By using nk, Yk, k = 1, . . . ,K, we have introduced 2K addi-

tional unknowns, making the total count of unknowns to 3J+2K. Addition-

ally, we have obtained 3J additional equations (3.8)-(3.10), making, together

with (3.3), the total count of equations to 4J . In order to get the same num-

ber of equations as unknowns, we obviously need J = 2K. We review the

cases K = 1 (single-phase closure) and K = 2 (two-phase closure).

In the case K = 1, the unknowns are m0, F0, n1 and Y1. We obtain:

Z1 = max{0,min{1,
µ(x)

v1n1
}},

with v1(x, t) = v(x, Y1(x, t)). However, the second argument of the ’max’ is

always non-negative and therefore Z1 is always equal to it. It follows that

n1v1Z1 = min{µ(x), n1v1},

and

m0 = n1, m1 = n1Y1,

F0 = min{µ(x), n1v1}, F1 = F0Y1.

In this case, denoting n := m0 = n1, q := F0, Y = Y1, v = v1 = v(x, Y (x, t)),

the moment system leads to

∂tn+ ∂xq = 0, (3.16)

q = min{µ(x), nv(x, Y )}, (3.17)

∂t(nY ) + ∂x(qY ) = nr(x, Y, t). (3.18)
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If v = v(x) is independent of y, the system for n, q decouples from the

equation for Y : we get on the one-hand

∂tn+ ∂xq = 0, (3.19)

q = min{µ(x), nv(x)}, (3.20)

which is nothing but the Single-Phase fluid model (1.2), (1.3), followed by

(3.18) for the determination of Y . If however v = v(x, y) is truely dependent

on y, the evolution of (n, q) cannot be decoupled from that of Y .

Now, we investigate the case K = 2, i.e. J = 4. In that case, eliminating

mj, Fj and rj, j = 0, . . . , 3 by using (3.8)-(3.11), we obtain the following set

of equations for nk, k = 1, 2:

∂t(n1Y
j
1 + n2Y

j
2 ) + ∂x(n1v1Z1Y

j
1 + n2v2Z2Y

j
2 ) = n1r1Y

j
1 + n2r2Y

j
2 , (3.21)

with vk(x, t) = v(x, Yk(x, t)) and rk(x, t) = r(x, Yk(x, t), t), k = 1, 2. The

issue is now the computation of Zk, k = 1, 2. Let us suppose that Y1 < Y2

to fix the ideas. Then, (3.11) leads to the following discussion :

(i) if µ < n1v1 then n1v1Z1 = µ and n2v2Z2 = 0, (3.22)

(ii) if n1v1 < µ < n1v1 + n2v2 then n1v1Z1 = n1v1

and n2v2Z2 = µ− n1v1, (3.23)

(iii) if n1v1 + n2v2 < µ then n1v1Z1 = n1v1

and n2v2Z2 = n2v2. (3.24)

Of course, the roles of 1 and 2 must be exchanged in the case Y1 > Y2. When

Y1 = Y2, then

n1v1Z1 = min{n1v1, µ
n1

n1 + n2
}, n2v2Z2 = min{n2v2, µ

n2

n1 + n2
}. (3.25)

What formulas (3.22)-(3.24) express is very simple. nkvk is the ’free

flux’ of parts k and n1v1 + n2v2 is the total ’free flux’ (we call ’free fluxes’

the fluxes if there would be no flux limitation). In the first case, the flux

limitation µ is already below the free flux of parts 1 and therefore, the actual

flux of these parts is equal to the flux constraint and parts 2 simply do not

move. In the second case, the flux constraint µ is larger than the free flux of

parts 1 but below the total free flux. Therefore, the flux constraint does not

apply to parts 1 which move with actual flux equal to their free flux. The

actual flux constraint which applies to parts 2 is the total flux constraint µ
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diminished by the flux of parts 1 and therefore, parts 2 move under this flux

constraint. In the last case, there is no flux constraint at all because the flux

constraint is above the total free flux and each part actually moves according

to its own free flux. Clearly, this is consistent with the policy consisting in

processing parts with lower attributes first. Again, the role of 1 and 2 must

be exchanged in the case Y2 < Y1.

In the case Y1 = Y2, (3.25) expresses that the flux constraint is dis-

patched onto each part according to the ratio of their part number to the

total number of parts. Then, each part moves independently according to

the same rule as in the single-phase case.

We expect system (3.21) to be hyperbolic, i.e. to have all its character-

istic velocities real and the corresponding jacobian diagonalizable. In fact,

we have a more general result, valid for any system of the form (3.3) with

fluxes of the form (3.10). More precisely, we have the following:

Proposition 3.2. We consider the following system of unknowns {nk,

Yk} for k = 1, . . . ,K:

∂tmj + ∂xFj = 0, j = 0, . . . J − 1, (3.26)

mj(x, t) =
K
∑

k=1

nk Y
j
k
, Fj(x, t) =

K
∑

k=1

qk Y
j
k
, (3.27)

with J = 2K and qk = qk({nk′ , Yk′}k′=1,...K). Then, as long as the phases Yk

are mutually distinct, this system is equivalent (at least for smooth solutions)

to the following system:

∂tnk + ∂xqk = 0, k = 1, . . . K, (3.28)

∂t(nkYk) + ∂x(qkYk) = 0, k = 1, . . . K, (3.29)

An example of such a system is system (3.3), (3.10), where qk = nkvhZk

and Zk is given by (3.11).

Corollary 3.3. System (3.26), (3.27) is hyperbolic about a state {nk,

Yk}k=1,...,K such that the Yk’s are all distinct if and only if system (3.28)

alone (with frozen Yk’s) is hyperbolic. The characteristic velocities of (3.26),

(3.27) are those of (3.28) on the one hand and the quantities uk = qk/nk for

k = 1, . . . ,K on the other hand.
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Proof of Corollary 3.3. By combining it with (3.28), eq. (3.29) is equiv-

alent (at least for smooth solutions) to the following transport equation:

∂tYk + uk∂xYk = 0, uk =
qk
nk

, k = 1, . . . K. (3.30)

An easy computation shows that the characteristic velocities of system (3.28),

(3.30) are those of the system (3.28) alone (considering that the Yk’s are

frozen), supplemented with the characteristic velocities of system (3.30),

which are nothing but the uk’s. �

Remark 3.1. This result generalizes the hyperbolicity result proven in

the appendix of [15] by extending it to a large class of systems. Indeed, the

hyperbolicity of (3.28) is just an hypothesis on the fluxes qk’s which depends

on the considered model. We shall prove below that for the fluxes given by

(3.10), the model is hyperbolic.

Proof of Proposition 3.2. We shall restrict ourselves to the case J = 4,

K = 2, the general case being an easy extension of it. We first show that if

{(nk, Yk)}k=1,2 is a solution of (3.28), (3.30), it is a solution of (3.26), (3.27).

Indeed, multiplying (3.30) by Y j−1
k , j = 1, . . . J − 2, we find

∂tY
j
k + uk∂xY

j
k = 0, j = 0, . . . J − 1,

and consequently, using (3.28),

∂t(nkY
j
k ) + ∂x(qkY

j
k ) = 0, j = 0, . . . J − 1.

Then adding the equations for the two phases, we find

∂t(

2
∑

k=1

nkY
j
k ) + ∂x(

2
∑

k=1

qkY
j
k ) = 0, j = 0, . . . J − 1,

which is nothing but system (3.26), (3.27).

Conversely, let {(nk, Yk)}k=1,2 be a solution of (3.26), (3.27). Then, we

can write:

∂tnk + ∂xqk = Sk, k = 1, 2, (3.31)

∂tYk + uk∂xYk = Tk, k = 1, 2. (3.32)
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with appropriate definitions of Sk, Tk. We wish to prove that necessarily,

Sk = Tk = 0, k = 1, 2. (3.33)

First, adding (3.31) for the two phases and using (3.26) for j = 0, we get

S1 + S2 = 0. (3.34)

Then, combining (3.31) with (3.32), we get,

∂t(nkYk) + ∂x(qkYk) = nkTk + YkSk, k = 1, 2. (3.35)

Addding (3.35) for the two phases and using (3.26) for j = 1, we get:

n1T1 + n2T2 + Y1S1 + Y2S2 = 0, (3.36)

Now, multiplying (3.32) by Yk, we obtain:

∂tY
2
k + uk∂xY

2
k = 2YkTk, k = 1, 2. (3.37)

Proceeding like in the previous case, we deduce that

2n1Y1T1 + 2n2Y2T2 + Y 2
1 S1 + Y 2

2 S2 = 0. (3.38)

Finally, multiplying (3.32) by Y 2
k and proceeding as previously leads to

3n1Y
2
1 T1 + 3n2Y

2
2 T2 + Y 3

1 S1 + Y 3
2 S2 = 0. (3.39)

Collecting (3.34), (3.36), (3.38) and (3.39), we deduce that the vector

(S1, S2, T1, T2) is a solution of a homogeneous linear system the matrix of

which is given by:










1 1 0 0

Y1 Y2 n1 n2

Y 2
1 Y 2

2 2n1Y1 2n2Y2

Y 3
1 Y 3

2 3n1Y
2
1 3n2Y

2
2











.

It is a matter of elementary algebra to show that this matrix is non singular

as soon as Y1 6= Y2. Therefore, in this case, we deduce (3.33), which shows

the equivalence of the two systems. This result is easily extended to an

arbitrary number of phases. �

Lemma 3.4. System (3.28) with the specific form (3.10) of the fluxes

in the two-phase cases (i.e. with Zk given by (3.22)-(3.24)) is hyperbolic.
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Proof. We denote the two characteristic velocities of system (3.28) by

λ1, λ2. An easy computation shows that:

(i) if µ < n1v1 then λ1 = λ2 = 0, (3.40)

(ii) if n1v1 < µ < n1v1 + n2v2 then λ1 = v1, λ2 = 0, (3.41)

(iii) if n1v1 + n2v2 < µ then λ1 = v1, λ2 = v2. (3.42)

This proves that all the eigenvalues are real and ends the proof. �

The lemma can be easily extended to an arbitrary number of phases.

Of course, all this discussion is dependent on the hypotheses that the phases

do not meet. When some phases are equal, the fluxes have discontinuous

derivatives and are also space dependent through the threshold µ which

can itself be space (and time) dependent. A more detailed study of this

system requires a theory for hyperbolic systems with space-dependent, non-

differentiable fluxes. Such a theory is still in progress (see [12, 16]).

4. Particle Discretization of the Kinetic Model

In this section we derive a particle model for the kinetic equation (2.13)

(alternatively we could start from this particle model and derive the corre-

sponding kinetic equation). We suppose that part number n enters the chain

at time an with attribute bn. The particle trajectory x = ξn, y = ηn for this

part is then given by

d

dt
ξn = V (ξn, ηn, t),

d

dt
ηn = r(ξn, ηn, t), ξn(an) = 0, ηn(an) = bn (4.1)

where V (x, y, t) is given by (2.7), i.e.

V (x, y, t) = v(x, y)H(α(x, t) − y), (4.2)

v(x, y) being the nominal processor velocity and r is the attribute rate-of-

change. Indeed, an expression of the form

f(x, y, t) =
∑

n

δ(x − ξn(t))δ(y − ηn(t))H(t − an), (4.3)

(where again, δ stands for the Dirac delta measure and H for the Heaviside

step function) provides an exact measure solution of (2.13) if and only if

(4.1) is satisfied.



2007] KINETIC AND FLUID MODELS FOR SUPPLY CHAINS 451

The density and flux corresponding to (4.1) are given by

n(x, t) =

∫

f(x, y, t) dy =
∑

n

δ(x − ξn)δ(y − ηn)H(t− an),

q(x, t) =

∫

V (x, y, t)f(x, y, t) dy =
∑

n

V (ξn, ηn, t)δ(x − ξn)H(t− an),

while the total flux in the absence of flux constraint Q(x, t) would be equal

to

Q(x, t) =

∫

v(x, y)f(x, y, t) dy =
∑

n

v(ξn, ηn)δ(x − ξn)H(t− an).

The threshold value α is determined such that q is the maximal flux satisfying

the flux constraint q(x, t) ≤ µ(x). This gives

q(x, t) =

∫

H(α(x, t) − y)v(x, y)f(x, y, t) dy = min{µ(x), Q(x, t)}. (4.4)

However, as pointed out in Section 2, α is well-defined by (4.4) only

under some smoothness assumptions on f which are not satisfied by parti-

cle distributions like (4.3). Indeed, for a particle model (4.4) cannot hold

pointwise, since the flux q will be a superposition of δ− functions. We have

q(x, t) =
∑

n

H(α(ξn, t)− ηn) v(ξn, ηn) δ(x − ξn)

=
∑

n

δ(x− ξn)
d

dt
ξn =

d

dt

∑

n

H(ξn − x),

where we dropped the H(t−an) terms (for the sake of simplicity, we suppose

that there is no part entering the supply chain between t and t + ∆t). We

replace (4.4) by an integrated constraint of the form

∫ t+∆t

t

q(x, s) ds ≤ ∆t µ(x)

or
∑

n

[H(ξn(t+∆t)− x)−H(ξn(t)− x)] ≤ ∆tµ(x) (4.5)

and such that the l.h.s. is ’maximal’ in a sense to make precise later on.

Next we make α(x, t) a piecewise constant function in space. We define a



452 D. ARMBRUSTER, P. DEGOND AND C. RINGHOFER [June

mesh by 0 = x0 < . . . < xM = 1 and

α(x, t) =
∑

m

χm(x)αm(t),

where χm is the indicator function on [xm, xm+1]. The particle motion (4.1)

is then replaced by

d

dt
ξn =

∑

m

χm(ξn)H(αm(t)− ηn)v(ξn, ηn)

and we enforce the flux constraint (4.5) at the discrete points xm.

To compute the flux constraint, we make the particle motion linear in

between discrete times tk. So we get

ξn(tk + t) = ξkn + t
∑

m

χm(ξkn)H(αk
m − ηkn)v

k
n, vkn := v(ξkn, η

k
n), (4.6)

ηn(tk + t) = ηkn + trkn, rkn := r(ξkn, η
k
n, tk), (4.7)

and the values αk
m have to be chosen such that

∑

n

[H(ξkn+∆t
∑

s

χs(ξ
k
n)H(αk

s −ηkn)v
k
n−xm)−H(ξkn−xm)] ≤ ∆t µm, (4.8)

holds for all m = 0, . . . ,M , where we let µm := µ(xm). If ξkn > xm holds,

the argument of both Heaviside functions in (4.8) will be positive and there

is no contribution to the sum. If ξkn < xm−1 holds, and we assume that

vkn∆t ≤ ∆xm := xm − xm−1 ∀m holds (CFL condition) then the arguments

are both negative and, again, there is no contribution. So we can add the

indicator function of the interval (xm−1, xm) without changing the value of

the sum and write (4.8) as

∑

n

χm−1(ξ
k
n)[H(ξkn+∆t

∑

s

χs(ξ
k
n)H(αk

s−ηkn)v
k
n−xm)−H(ξkn−xm)] ≤ ∆tµm,

which means that now only the term for s = m−1 in the inner sum remains

and the second Heaviside function drops out, giving

∑

n

χm−1(ξ
k
n)H(ξkn +∆tH(αk

m−1 − ηkn)v
k
n − xm) ≤ ∆t µm, (4.9)

(4.9) has the following interpretation: we count only the particles which are

in the interval (xm−1, xm) and which would cross xm within the next time

step, thus contributing to the flux at xm.
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Let us now assume that the ηkn are ordered in ascending order, i.e. s <

l ⇒ ηks < ηkl holds. This implies that we sort the particles at each time step

but this can very quickly be realized with a fast-sorting procedure. Doing

so, we will lose the identification of the particles. To maintain the identity

we can always add an additional attribute to each part (i.e. an additional

component of y and η), which is the original part number and which does

not change in time. So assume that

ηkν(m,k) < αk
m < ηkν(m,k)+1

holds. For n ≥ ν(m − 1, k) + 1 we have H(αk
m−1 − ηkn) = 0 and there is no

contribution to the sum. So we get

∑

n≤ν(m−1,k)

χm−1(ξ
k
n)H(ξkn +∆tvkn − xm) ≤ ∆tµm. (4.10)

and the flux (the l.h.s. of (4.10)) is the maximal one if

∑

n≤ν(m−1,k)+1

χm−1(ξ
k
n)H(ξkn +∆tvkn − xm) > ∆tµm.

Therefore, we define

ν(m,k) = max{ω :
∑

n≤ω

χm(ξkn)H(ξkn +∆tvkn − xm+1) ≤ ∆tµm+1} (4.11)

and if
∑

n

χm(ξkn)H(ξkn +∆tvkn − xm+1) ≤ ∆tµm+1,

we let

ν(m,k) = ∞

With the definition (4.11) for ν we now can define the αk
m and, more impor-

tantly, the term H(αk
m − ηkn) in (4.6) according to:

αk
m =

1

2
[ηkν(m,k) + ηkν(m,k)+1], H(αk

m − ηkn) = H(ν(m,k) − n+
1

2
). (4.12)

Our particle discretization of the kinetic equation thus consists of (4.1),

(4.2) with the approximation (4.12) of α.
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5. Numerical Results

We have implemented the particle model of Section 4 and the 2-phase

model (K = 2) of Section 3. Our test example is intended to highlight the

features of the two models. In our example, the attribute is identified as the

due-date (see the discussion at the end of Section 2).

We consider a chain of 20 stations, all with throughput time =1. So the

total minimal throughput time is 20. They all have a capacity of µ = 160

parts per unit time, except for number 5, which has µ = 80 and number 15

which has µ = 40 (two bottlenecks). We consider a constant influx of ’low

priority’ parts, i.e. with a due date far in the future, of 60 parts per unit

time. At time t = 40 ’hot lots’ (parts with a much closer due date) arrive at

a rate of 60 parts per unit time. With these data, the first bottleneck with

µ = 80 can accommodate the flow of one of either parts (hot or low) but not

both together. The second bottleneck (µ = 40) cannot even accommodate

one single flow. Within the low priority lot and the hot lot population the

due dates are chosen randomly in a given interval.

The phenomena we expect to see are the following. The low priority

lots pass freely through the first bottleneck but start to pile up at station

15. This is the picture until the hot lots arrive at t = 40. Once the hot lots

arrive, they pass freely through the first bottleneck, but constrict the flow

of the low priority lots there. As soon as they reach the second bottleneck,

they start to pile up and strangle the low priority flow there completely.

Once the hot lots have passed through, the queues start to dissolve. The

simulation runs from t = 0 to t = 140 using 8000 particles for the particle

model.

To compare the 2-phase simulations with the particle ones, we have arti-

ficially generated particles from the solutions of the 2-phase model. Indeed,

as an output of the 2-phase model, we have the values of the attributes Y1

and Y2 and of the densities n1, n2. For each of the phases, we generate

∆xnk(xm) particles in the interval (xm, xm+1) with attribute values ran-

domly set around y = Yk. We insist on the fact that these are not real

computational particles but only an artifact which is aimed at facilitating

the comparisons with the particle model. Figure 1 shows a comparison be-

tween the particle and 2-phase models on snapshots of the particle locations

for different times. In the first snapshot (at t = 50) the hot lots have already

constricted the flow of the regular lots at the first bottleneck, but have not
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reached the second bottleneck yet. Regular lots are already piling up at the

second bottleneck since it cannot even accommodate the flow of the regular

lots. In the second snapshot (at t = 70) the hot lots have strangled the flow

of regular lots at the station 15 completely. Finally in the third snapshot

(at t = 90) all the hot lots have passed through the first bottleneck and the

regular lots start to flow again through station 5. Note, that the bottlenecks

at station 5 and 15 have the effect of ordering the particles. That is, once

particles have been held back at a bottleneck they will leave strictly in the

order of their due date. Therefore, the ’cold’ particles in the left panel of

Figure 1 reduce to a straight line (one particle per x− value) as soon as they

leave the bottleneck. This effect is not visible, of course, in the right panel

since the artificial particles, generated from the two phase model, are always

generated with a certain bandwidth.
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Figure 1. Comparison of the particle picture, left panel: particle model,

right panel: pseudo particles generated from the 2-phase model.

To give a more quantitative comparison, we have also performed the

reverse transformation, i.e. generate 2-phase solutions out of particle solu-
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tion. Given the particle solution, we first compute its first four moments

m0, . . . ,m3 and compute a corresponding phase and density according to

(3.8). The corresponding result is compared with the solution of the 2-phase

model in Figure 2 for different times. The solid and the dashed lines denote

the hot and the cold phase of the 2-phase model. The triangles and ×’s

denote the data points for the corresponding phases extracted from the par-

ticle model. (Note, that, numerically, there will always be two phases!). The

left panel shows the values of the attributes Y1 and Y2, and the right panel

shows the densities n1 and n2. The densities are plotted on a logarithmic

scale. So, for perfect agreement, the × symbols, the values for the ’cold’

phase of the particle model, should be on top of the dashed line, the ’cold’

phase of the two phase model. The triangles, the values for the ’hot’ phase

of the particle model, should be on top of the solid line, the ’hot’ phase of

the two phase model.
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densities, ×,△ = particles, ’-,-.’ = 2phase model.
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Finally, we compare the expectation of the time to due date in the last

cell (i.e. m1

m0
) in Figure 3. Again, the dots are the particle solution and the

solid lines are the 2-phase model.

-20

0

a
v
e
ra

g
e
ti
m
e
to

d
u
e
d
a
te

o
n

o
u
tp

u
t

20

20

40

40

60

60

80

80

100

100

120

120 140

time

Figure 3. Expected time to due date in the last station (on time perfor-

mance) ’.’=particles, ’-’=2phase model.

Figures 1, 2 and 3 show a reasonable agreement between the parti-

cle solution and the 2-phase model, although the latter underestimates the

throughput time somewhat (see Figure 3). The obvious question arises why

there is any discrepancy between the models at all. Since there are basically

two phases (hot lots and regular lots), and there is no passing within the

two groups, the 2-phase model should actually be exact. The reason for this

paradox can be found in the boundary conditions and, as a matter of fact,

points to a fundamental difficulty in comparing multi-phase closures to par-

ticle based solutions of kinetic equations. In order to obtain a meaningful

quantitative comparison the influx data for the particle solution, which con-

sist of a superposition of δ− functions in time concentrated at the discrete

arrival times, have to be smoothed out to provide a smooth influx density

for any differential equation model. Because of this smoothing, the resulting

kinetic equations will not have an exact 2-phase solution, even at the left

boundary point, as can be seen in Figure 2. In the left upper panel, for

t = 33.75, there are two phases at station 1 although at this point no hot

lots have arrived yet. In order to obtain an exact 2-phase solution the time
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scale of the intervals between individual arrivals would have to be resolved,

which would result in an unacceptably small time step.

Now, we comment on the computing efficiencies of the various models.

The particle scheme requires about the same CPU time as the Discrete

Event Simulator (1.1). More importantly, the CPU time for the kinetic

model scales at least linearly with the number of parts, which is comparable

with a DES simulator. On the other hand, the numerical complexity of

the multiphase fluid model is independent of the number of parts, which

is an enormous advantage for the simulation of large systems. Typically,

the kinetic simulations which have been described in this section take a few

hours of CPU time on a current size PC, while the multiphase models give

almost instantaneous answers. In both cases, the codes have been developed

using MATLABr.

6. Conclusion

In this paper, we have presented several models of a supply chain. The

distinctive feature of these models is that they incorporate part attribute

numbers (such as time to due-date) which allow to define processing policies.

In this paper, we have considered a policy consisting in processing parts by

increasing attribute number. We have derived a first model of kinetic type

and have proposed a particle discretization of it. We also have derived fluid-

type models from a moment expansion of the kinetic model. The moment

models are closed by by a multiphase ansatz which has been shown to behave

satisfactorily on a typical test problem.

One main deficiency of these models are their fully deterministic char-

acter, while in practice, many parameters are incompletly known, and the

characteristics of the processors themselve involve some statistical fluctua-

tions (some may undergo breakdown, or scheduled maintenance, and so on).

In future work, we shall propose probabilistic versions of the present models

which, to some extent, remedy to the deficiencies of the present model.
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