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Abstract

A recently proposed consistent BGK–type approach for

chemically reacting gas mixtures is discussed, which accounts for

the correct rates of transfer for mass, momentum and energy, and

recovers the exact conservation equations and collision equilib-

ria, including mass action law. In particular, the hydrodynamic

limit is derived by a Chapman–Enskog procedure, and compared

to existing results for the reactive and non–reactive cases. In ad-

dition, numerical results are presented for non–isotropic space–

homogeneous problems in which physical conditions allow reduc-

tion of the integrations over the three–dimensional velocity space

to only one dimension.

1. Introduction

Kinetic approaches to chemically reacting gas mixtures constitute the

proper tool of investigation in several circumstances, and allow a rigorous

derivation and justification for the most common macroscopic descriptions

used in the hydrodynamic regime [1, 2]. On the other hand, nonlinear chem-

ical collision integrals of Boltzmann type are definitely not easy to deal with
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[3] and simpler approximate models would be convenient for practical ap-

plications. Following the experience of gas kinetic theory, relaxation time

approximations of the type proposed by Bhatnagar, Gross, and Krook [4]

and by Welander [5] (usually denoted as BGK models) seem to be the first

candidates in that direction. Typically, the fine structure of the collision

operator is replaced by a blurred image which retains only its qualitative

and average properties, and prescribes relaxation towards a local equilib-

rium with a strength determined by a suitable characteristic time. The

procedure must be carefully devised in order to avoid well known drawbacks

which arise for a multi–species gas [6, 7], as unavoidable when dealing with

a bimolecular chemical reaction

A1 +A2
⇋ A3 +A4 (1)

as we shall do in this work. Some relaxation models for the chemical col-

lision operator have been introduced quite recently in the literature [8, 9].

In particular, the latter paper follows the consistent BGK strategy proposed

in [7] for inert mixtures, which preserves positivity and indifferentiability

principles, and resorts to a single BGK collision term for each species s

(s = 1, 2, 3, 4), describing both mechanical (elastic) and chemical encounters,

and drifting the distribution function f s towards a suitable local Maxwellian

Ms. Indeed, the macroscopic parameters relevant to such equilibrium are

not the actual fields, moments of f s (number density ns, drift velocity us,

temperature T s), but some other fictitious fields ns,us, Ts, constructed “ad

hoc” in order to recover the exact exchange rates for mass, momentum and

energy, as given by the whole Boltzmann-like collision operator. The ma-

chinery is of course heavier than for chemically inert mixtures, since it has

to account for transfer of mass and for energies of chemical link, but it is

made possible by the explicit knowledge (for Maxwell–type interactions) of

the moments of the chemical collision integrals [10]. It has been shown in

[9] that such relaxation model of BGK type is a consistent approximation

of the Boltzmann kinetic description, which reproduces in particular the

correct macroscopic conservation equations and the correct collision equilib-

ria, as Maxwellians at a common mass velocity and temperature, and with

number densities related by the well known mass action law.

The present paper is aimed at proceeding further along the lines pro-

posed in [9] by investigating some aspects that were left there as a future

work. We shall focus in particular on two points here. The first is the

hydrodynamic limit for small collision times of the present BGK equations
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(via an asymptotic Chapman–Enskog expansion) in the collision dominated

regime, when the reactive collision times are of the same order as the mechan-

ical collision times, and both thermal and chemical equilibrium are reached

eventually. This regime has been already introduced by Ludwig and Heil

[11], and investigated in particular by Ern and Giovangigli [12] for arbitrary

reactive gas mixtures of polyatomic species using Enskog expansions and

Boltzmann-type collision terms. The second point is the extension of illus-

trative numerical calculations to non–isotropic situations, like those which

are symmetric around one space direction (of interest for instance in the clas-

sical evaporation–condensation problem). At this still preliminary stage we

consider only a single bimolecular reaction between monoatomic species and

with Maxwell–type interactions, but the BGK strategy can be extended to

more general situations, where the advantages related to the availability of

explicit formulas for coefficients and to the much easier numerical approach

become even more significant. It might be noticed that reaction (1) includes

as a special case three–atoms reactions like

AB + C ⇋ B +AC, (2)

for which a slightly simpler treatment would be in order [12].

The article is organized as follows. After presenting in Section 2 the main

features of the considered BGK model, Section 3 is devoted to a detailed

asymptotic analysis of the Chapman–Enskog type leading to closed macro-

scopic equations at the Navier–Stokes level, which are compared to analo-

gous results obtained both in the chemically inert case from BGK equations

[7] and in the chemically reactive case via Grad’s expansion technique [13].

Section 4 deals instead with the specialization of the relaxation model to

non-isotropic in velocity and one-dimensional in space physical problems, in

which, following a procedure proposed in [14], the computational machinery

becomes lighter thanks to the reduction of the three–fold velocity integrals to

integrations on the real line. Finally numerical results for some illustrative

space-homogeneous test cases are presented and briefly discussed.

2. BGK Equations

We recall and discuss here the main features of the relaxation time

approximation introduced in [9] for the chemical reaction model worked out
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in [3, 15]. Model kinetic equations read as

∂f s

∂t
+ v · ∂f

s

∂x
= νs

(

Ms − f s
)

s = 1, . . . , 4, (3)

where Ms is a local Maxwellian with 5 disposable scalar parameters

Ms(v) = ns

(

ms

2πKTs

)
3
2

exp

[

− ms

2KTs
(v − us)

2

]

s = 1, . . . , 4 (4)

and νs is the inverse of the sth relaxation time, possibly depending on macro-

scopic fields, but independent of v. The above auxiliary fields ns, us, Ts

are determined by requiring that the exchange rates for mass, momentum

and total (kinetic plus chemical) energy following from (3) coincide with

those deduced from the corresponding Boltzmann equations. The latter

rates are known analytically for Maxwell molecules [10], even in the chemi-

cal frame, and may be expressed in terms of some physical parameters like

masses ms (with m1+m2 = m3+m4 = M), reduced masses µsr, energies

of chemical link Es, and energy difference between reactants and products

∆E = −
∑4

s=1 λ
sEs (with λ1=λ2=−λ3=−λ4 = 1), conventionally assumed

to be positive. Other essential parameters are the microscopic collision fre-

quencies (constant with respect to the impact speed g in our assumptions)

νsrk (g) = νrsk (g) = 2πg

∫ π

0
σsr(g, χ)(1 − cosχ)k sinχdχ k = 0, 1 , (5)

and

ν3412(g) = 2πg

∫ π

0
σ3412(g, χ) sin χdχ, (6)

where σ stands for differential cross section, and 0 ≤ νsr1 ≤ 2νsr0 . The above

constraints on the exchange rates result in

ns = ns +
λs

νs
Q

msnsus = msnsus +
1

νs

4
∑

r=1

φsrur +
λs

νs
msuQ (7)

ns
3

2
KTs = ns

3

2
KT s − 1

2
ms[nsu

2
s − ns(us)2] +

1

νs

4
∑

r=1

ψsrT r
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+
1

νs

4
∑

r=1

νsr1
µsr

ms +mr
nsnr(msus +mrur) · (ur − us)

+
λs

νs
Q

[

1

2
msu2 +

3

2
KT +

M −ms

M
KT

(

∆E

KT

)
3
2

e−
∆E

KT

Γ

(

3

2
,
∆E

KT

)

−1− λs

2

M −ms

M
∆E

]

,

where Γ is an incomplete gamma function [16] and

Q = ν3412
2√
π
Γ

(

3

2
,
∆E

KT

)

[

n3n4
(

m1m2

m3m4

)

3
2

e
∆E

KT − n1n2

]

. (8)

In addition, the symmetric singular matrices Φ and Ψ are defined by

φsr = νsr1 µ
srnsnr − δsr

4
∑

l=1

νsl1 µ
slnsnl (9)

ψsr = 3Kνsr1
µsr

ms +mr
nsnr − δsr3K

4
∑

l=1

νsl1
µsl

ms +ml
nsnl, (10)

and global macroscopic parameters (including mass density ρ, viscosity ten-

sor p and heat flux q) are expressed in terms of single component parameters

by

n =

4
∑

s=1

ns, ρ =

4
∑

s=1

msns, u =
1

ρ

4
∑

s=1

msnsus,

nKT =
4
∑

s=1

nsKT s +
1

3

4
∑

s=1

ρs (usku
s
k − ukuk) ,

pij =

4
∑

s=1

psij +

4
∑

s=1

ρs
[

(

usiu
s
j − uiuj

)

− 1

3
δij (u

s
ku

s
k − ukuk)

]

,

qi =
4
∑

s=1

qsi +
4
∑

s=1

psij
(

usj − uj
)

+
5

2

4
∑

s=1

nsKT s (usi − ui)

+
1

2

4
∑

s=1

ρs (usk − uk) (u
s
k − uk) (u

s
i − ui) .

(11)

Actual conserved quantities in the Boltzmann collision process are in number
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of seven, and may be chosen as three combinations of number densities like

n1 + n3, n1 + n4, n2 + n4, the three components of the mass velocity u, and

the total internal (thermal + chemical) energy 3
2nKT +

∑4
s=1E

sns. This

yields a set of 7 scalar exact non-closed macroscopic conservation equations

∂

∂t
(ns + nr) +

∂

∂x
· (nsus + nrur) = 0 (s, r) = (1, 3), (1, 4), (2, 4)

∂

∂t
(ρu) +

∂

∂x
· (ρu⊗ u+P) = 0

∂

∂t

(

1

2
ρ u2 +

3

2
nKT +

4
∑

s=1

Esns

)

+
∂

∂x
·
[(

1

2
ρu2+

3

2
nKT+

4
∑

s=1

Esns

)

u

+P · u+q+

4
∑

s=1

Esns(us−u)

]

=0 (12)

where P = nKT I + p is the pressure tensor. Notice that the three inde-

pendent density combinations conserved by collisions would represent the

atomic densities in the case of reaction (2). The set (12) of exact conserva-

tion equations is correctly reproduced by the relaxation model (3) [9], and

another indication of the robustness of this approximation is the fact, proved

again in [9], that collision equilibria also coincide with the actual ones, and

are provided by a seven–parameter family of Maxwellians

Ms(v) = ns
(

ms

2πKT

)
3
2

exp

[

− ms

2KT
(v − u)2

]

, s = 1, . . . , 4, (13)

with equilibrium densities related by the well known mass action law of

chemistry

n1n2

n3n4
=

(

µ12

µ34

)

3
2

exp

(

∆E

KT

)

. (14)

Other interesting features are in order for these BGK equations, but are

less crucial for the present purposes, and will not be discussed here; the

interested reader is referred to [9] for details. Another point that was left

open in [9] is the most convenient choice of the inverse relaxation times νs,

which in fact will be matter of future investigation. In this paper we will

stick to the option of reproducing the actual average number of collisions

(regardless if mechanical or chemical) taking place for each species, which
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leads to

ν1 =

4
∑

r=1

ν1r0 n
r +

2√
π
Γ

(

3

2
,
∆E

KT

)

ν3412n
2

ν2 =
4
∑

r=1

ν2r0 n
r +

2√
π
Γ

(

3

2
,
∆E

KT

)

ν3412n
1

(15)

ν3 =

4
∑

r=1

ν3r0 n
r +

2√
π
Γ

(

3

2
,
∆E

KT

)(

µ12

µ34

)

3
2

e
∆E

KT ν3412n
4

ν4 =
4
∑

r=1

ν4r0 n
r +

2√
π
Γ

(

3

2
,
∆E

KT

)(

µ12

µ34

)

3
2

e
∆E

KT ν3412n
3 .

3. Hydrodynamic Regime

Equations (3) may be scaled, measuring all quantities in terms of some

typical values in order to make them dimensionless. Using macroscopic scales

for space and time variables, and measuring relaxation times in units of a

typical microscopic value, leads to equations which look exactly the same

as (3), if the same symbol is retained for dimensionless variables, with only

the appearance of the Knudsen number ε, ratio of the microscopic to the

macroscopic time scales, downstairs on the right hand side

∂f s

∂t
+ v · ∂f

s

∂x
=

1

ε
νs
(

Ms − f s
)

s = 1, . . . , 4. (16)

The parameter ε is small in collision dominated regime, and tends to zero

in the continuum limit we are interested in. We shall perform a formal

Chapman–Enskog asymptotic analysis with respect to such small parameter,

to first order accuracy, in order to achieve Navier–Stokes–like hydrodynamic

equations as a closure of the conservation equations (12). To this end the

distribution functions f s are expanded as

f s = f s(0) + εf s(1), (17)

and consequently similar expansions hold for ns, us, T s. However, hydrody-

namic variables must remain unexpanded [17], namely

ns + nr = ns(0) + nr(0) (s, r) = (1, 3), (1, 4), (2, 4)
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u =
1

ρ

4
∑

s=1

msns(0)us(0) (18)

3

2
nT +

4
∑

s=1

Esns =
3

2
nT (0) +

4
∑

s=1

Esns(0)

(with n =
∑4

s=1 n
s(0) and ρ =

∑4
s=1m

sns(0) not expanded either), yielding

the constraints

n1(1) = n2(1) = −n3(1) = −n4(1) = 3n

2∆E
T (1)

4
∑

s=1

msns(0)us(1) +

4
∑

s=1

msns(1)us(0) = 0.
(19)

Notice that internal energy is, as usual, an hydrodynamic field, but, contrary

to classical (non–reactive) gas dynamics for monoatomic particles, it is not

amenable only to the gas temperature T , so that the latter must be also

expanded, as T (0) + εT (1).

These expansions induce of course similar expansions for all variables, in par-

ticular for the auxiliary fields and for the Maxwellians Ms. The macroscopic

collision frequencies νs, depending on the densities ns, must be expanded as

well. Equating finally equal powers of ε in (16) yields to leading order (ε−1)

M(0)
s (v)− f s(0)(v) = 0, (20)

and to the next order (ε0)

ν(0)s

[

M(1)
s (v) − f s(1)(v)

]

=
∂0f

s(0)

∂t
+ v · ∂f

s(0)

∂x
(21)

where
∂0

∂t
is the first term of a formal expansion of the time derivative oper-

ator, to be considered as an unknown of the problem.

3.1. Zero order solution

Equations (20), (21) are uneasy, highly nonlinear, integro–functional

equations in the unknowns f s(i), since their integral moments are needed

in the definition of the parameters determining the auxiliary Maxwellians

M(i)
s . However, equations (20) yield, in cascade, n

(0)
s = ns(0), u

(0)
s = us(0),
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T
(0)
s = T s(0), then

Q(0) = ν3412
2√
π
Γ

(

3

2
,
∆E

T (0)

)

[

n3(0)n4(0)
(

m1m2

m3m4

)

3
2

e
∆E

T
(0) − n1(0)n2(0)

]

= 0,

(22)

from which the zero–order mass action law follows

n1(0)n2(0)

n3(0)n4(0)
=

(

µ12

µ34

)

3
2

exp

(

∆E

T (0)

)

. (23)

We have further on

4
∑

s=1

φsr(0)ur(0) = 0, s = 1, . . . , 4 (24)

from which, due to the properties of matrix φsr(0) [13], us(0) = u for all s

and
4
∑

s=1

msns(0)us(1) = 0, (25)

and finally

4
∑

s=1

ψsr(0)T r(0) = 0, s = 1, . . . , 4 (26)

implying, again for the properties of matrix ψsr(0) [13], T s(0) = T (0) for

all s. Notice that all species share, to leading order, the same drift velocity,

equal to the global mass velocity u, and the same temperature, equal to the

leading term of the global temperature T , in agreement with the fact that

u is an hydrodynamic variable, whereas T is not, and must be expressed as

T (0) + εT (1). In conclusion we have

f s(0)(v) = Ms(0)(v) = ns(0)
(

ms

2πT (0)

)
3
2

exp

[

− ms

2T (0)
(v − u)2

]

, (27)

for s = 1, . . . , 4, with seven free parameters, since the ns(0) and T (0) must

be bound together by (23). Equations (27) yield immediately p
s(0)
ij = 0 and

q
s(0)
i = 0 for all s, from which also p

(0)
ij = 0 and q

(0)
i = 0 for the leading terms

of viscosity tensor and heat flux.

Before going on to the next step, we can select as unknowns for the
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sought Navier–Stokes type equations the seven scalar variables ns(0), s =

1, . . . , 4, and u, and express T (0), wherever needed, by means of (23). Con-

servation equations may be rewritten as

∂

∂t

(

ns(0) + nr(0)
)

+
∂

∂x
·
[

(

ns(0) + nr(0)
)

u
]

+ε
∂

∂x
·
(

ns(0)us(1)+nr(0)ur(1)
)

=0

(s, r) = (1, 3), (1, 4), (2, 4)
∂

∂t
(ρu) +

∂

∂x
· (ρu⊗ u) +

∂

∂x
(nT (0)) + ε

∂

∂x
(nT (1)) + ε

∂

∂x
· p(1) = 0

∂

∂t

(

1

2
ρ u2 +

3

2
nT (0) +

4
∑

s=1

Esns(0)

)

+
∂

∂x
·
[(

1

2
ρ u2 +

5

2
nT (0) +

4
∑

s=1

Esns(0)

)

u

]

+ ε
∂

∂x
·
(

nT (1)u
)

+ε
∂

∂x

(

p(1) · u
)

+ ε
∂

∂x
· q(1) + ε

∂

∂x
·
(

4
∑

s=1

Esns(0)us(1)

)

= 0

(28)

and their closure is achieved if we are able to determine, resorting to (21),

constitutive equations for the quantities us(1), T (1), p
(1)
ij , and q

(1)
i , for which

we have further

nT (1)=

4
∑

s=1

ns(0)T s(1), p
(1)
ij =

4
∑

s=1

p
s(1)
ij , q

(1)
i =

4
∑

s=1

q
s(1)
i +

5

2
T (0)

4
∑

s=1

ns(0)u
s(1)
i .

(29)

3.2. First order correction

Standard manipulations allow to evaluate the time and space derivatives

of f s(0), and to express M(1)
s as the derivative of Ms with respect to ε at

ε = 0; in this way we obtain a formal solution of (21) as

f s(1) = f s(0)
{

1

ns(0)
n(1)s +

ms

T (0)
u(1)
s ·(v−u)+

1

T (0)
T (1)
s

[ ms

2T (0)
(v−u)2− 3

2

]

}

− 1

ν
(0)
s

f s(0)

{

1

ns(0)
∂0n

s(0)

∂t
+
ms

T (0)

∂0u

∂t
·(v−u)+

1

T (0)

∂0T
(0)

∂t

[ ms

2T (0)
(v−u)2− 3

2

]

}

− 1

ν
(0)
s

f s(0)

{

1

ns(0)
∂ns(0)

∂x
·v+ ms

T (0)

∂u

∂x
:v⊗(v−u)

+
1

T (0)

∂T (0)

∂x
·
[ ms

2T (0)
(v−u)2− 3

2

]

v

}

(30)
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where

n(1)s = ns(1) +
λs

ν
(0)
s

Q(1)

msns(0)u(1)
s = msns(0)us(1) +

1

ν
(0)
s

4
∑

r=1

φsr(0)ur(1) (31)

ns(0)
3

2
T (1)
s = ns(0)

3

2
T s(1) +

1

ν
(0)
s

4
∑

r=1

ψsr(0)T r(1)

+
λs

ν
(0)
s

Q(1)

[

M −ms

M
T (0)

(

∆E

T (0)

)
3
2

e
−

∆E

T
(0)

Γ

(

3

2
,
∆E

T (0)

) − 1− λs

2

M −ms

M
∆E

]

,

and Q(1) = −n1(1)Q̃, with

Q̃ = ν3412
2√
π
Γ

(

3

2
,
∆E

T (0)

)

×
{[

n3(0)+n4(0)+
2

3

n3(0)n4(0)

n

(∆E

T (0)

)2](m1m2

m3m4

)
3
2
e

∆E

T
(0) +n1(0)+n2(0)

}

. (32)

A patient algebra allows now to recompute the auxiliary fields n
(1)
s , u

(1)
s ,

T
(1)
s from the distribution functions (30) and to make this solution effective

by using (31) and (32). Skipping technical details, density fields provide the

compatibility conditions

∂0n
s(0)

∂t
+

∂

∂x
· (ns(0)u) = −λsn1(1)Q̃ s = 1, . . . , 4. (33)

Velocity fields yield the compatibility conditions

∂0u

∂t
+ u · ∂u

∂x
= −1

ρ

∂

∂x
(nT (0)) (34)

and the algebraic equations

4
∑

s=1

φsr(0)ur(1) =
∂

∂x
(ns(0)T (0))− ρs(0)

ρ

∂

∂x
(nT (0)), s = 1, . . . , 4. (35)

This set of equations is the same which arises when the Chapman–Enskog

algorithm is applied to the reactive Grad 13–moment equations [13], and, at

the same time, it coincides with the results obtained in [7] for a chemically
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inert mixture (apart from the superscript (0), not necessary there). The

matrix φsr(0) is singular, but (35) is uniquely solvable when coupled to the

constraint (25). The solution, mutatis mutandis, goes through the same

steps of either [7] or [13], and may be cast as

us(1) = −
4
∑

r=1

Lsr(0) 1

ρs(0)ρr(0)
∂

∂x
(nr(0)T (0)) (36)

where Lsr(0) is a suitable matrix, depending on the ns(0), which can be

proved to be symmetric [7], reproducing thus the Onsager relations [18].

The expressions given by (36) also coincide with classical expressions for

diffusion velocities of inert mixtures [19, 20], the only difference being the

presence of ns(0) instead of the actual densities ns. Indeed, matrix Lsr(0) is

contributed only by elastic scattering and is independent from the chemical

reaction and from ∆E, and number densities would be hydrodynamic fields

in the non–reactive case. Finally, temperature fields recomputed from (30)

yield, after some algebra, a set of linear algebraic equations for the T s(1)

with matrix coefficients ψsr(0) (not shown here for brevity, since useless for

our purposes) plus the compatibility condition

∂0T
(0)

∂t
+ u · ∂T

(0)

∂x
+

2

3
T (0) ∂

∂x
· u = − 2

3n
Q̃ ∆E n1(1). (37)

Now T (0) can be evaluated from (23) and
∂0T

(0)

∂t
may be cast in terms of

the derivatives
∂0n

s(0)

∂t
, as

∂0T
(0)

∂t
= − (T (0))2

∆E

4
∑

s=1

λs
1

ns(0)
∂0n

s(0)

∂t
, (38)

which implies an additional compatibility condition between (33) and (37),

determining n1(1) in terms of the chosen unknowns and of their spatial gra-

dients. Bearing the first of (19) in mind, and resorting to (23) in order to

eliminate unnecessary spatial gradients, the calculation yields

T (1) = −2

3
T (0)

{

Q̃
[

1 +
3

2
n
(T (0)

∆E

)2
4
∑

s=1

1

ns(0)

]}

−1 ∂

∂x
· u , (39)

and it is interesting to remark that it coincides with the temperature cor-

rection found in [13] for the same physical problem by resorting to the Grad
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13–moment method. Of course this correction is specific for the chemical

reaction (1) and would not appear in any non–reactive gas mixture. In

particular, T (1) would vanish in the limit ∆E → 0.

3.3. Viscous stress and heat flux

In principle, the asymptotic problem to first order for the distribution

functions is solved, since it is easy to see that the algebraic system for the

T s(1) is uniquely solvable as well, and that also all zero–order time deriva-

tives can be made explicit. However, in order to achieve the desired hydro-

dynamic equations from (28), it suffices to compute p
(1)
ij and q

(1)
i by suitable

integrations of the distribution functions. More precisely we have

P
s(1)
ij =ms

∫

R3

(vi − ui)(vj − uj)f
s(1)(v) d3v, p

s(1)
ij =P

s(1)
ij −δij

1

3
trPs(1) (40)

and

q
s(1)
i =−5

2
T (0)ns(0)u

s(1)
i +

1

2
ms

∫

R3

(vi − ui)(v − u)2f s(1) d3v (41)

to be used then in (29). When computing P
s(1)
ij , it is not difficult to check

that the addend of f s(1) involving the first order corrections yields a tensor

proportional to the identity, which contributes nothing to the deviatoric part

p
s(1)
ij , and the same occurs to the second addend, involving the

∂0

∂t
operator.

For the third addend, involving spatial gradients, the same feature is in

order for the gradients of ns(0) and T (0), whereas the rate of strain tensor

contributes a term

−n
s(0)T (0)

ν
(0)
s

[

δij

(

2
∂ui

∂xi
+

∂

∂x
· u
)

+ (1− δij)

(

∂ui

∂xj
+
∂uj

∂xi

)]

(42)

where the square bracket is the sum of
∂ui

∂xj
+
∂uj

∂xi
and of an isotropic tensor.

Going on and computing p
s(1)
ij and p

(1)
ij , one ends up with

p
(1)
ij = −T (0)

4
∑

s=1

ns(0)

ν
(0)
s

(

∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂

∂x
· u δij

)

. (43)

This Newtonian constitutive equation corresponds to a viscosity coefficient

µ = T (0)
4
∑

s=1

ns(0)

ν
(0)
s

, (44)
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exactly the same obtained in [7] from the BGK equations for a chemically

inert gas mixture. An expression of the same type was obtained for the

reactive case in [13] by the Grad method, but with a different viscosity co-

efficient, that was provided there by formal inversion of suitable matrices.

Passing to (41), we may split again f s(1) in three different addends and eval-

uate separately the relevant contributions. The first one, with first order

corrections, leaves after integration only the term 5
2T

(0)ns(0)u
(1)
is . In a sim-

ilar fashion, from the second addend we have only −5
2T

(0) ns(0)

ν
(0)
s

∂0ui

∂t . More

contributions come from the spatial gradients, and they can be put together

as

−5

2

T (0)

ms

T (0)

ν
(0)
s

∂ns(0)

∂xi
− 5

2
T (0)n

s(0)

ν
(0)
s

u · ∂ui
∂x

− 5
ns(0)T (0)

msν
(0)
s

∂T (0)

∂xi
,

so that there results

q
s(1)
i = −5

2

ns(0)T (0)

ν
(0)
s

[

∂0ui

∂t
+ u · ∂ui

∂x
+

1

ρs(0)
∂

∂xi
(ns(0)T (0))

]

−5

2

ns(0)T (0)

msν
(0)
s

∂T (0)

∂xi
+

5

2
T (0)ns(0)(u

(1)
is − u

s(1)
i ) (45)

and, upon using the second of (31) for u
s(1)
i , and (34) and (35) for the square

bracket, we end up simply with

q
s(1)
i = −5

2
T (0) n

s(0)

msν
(0)
s

∂T (0)

∂xi
. (46)

In conclusion, from (29)

q
(1)
i = −5

2
T (0)

4
∑

s=1

ns(0)

msν
(0)
s

∂T (0)

∂xi
+

5

2
T (0)

4
∑

s=1

ns(0)u
s(1)
i , (47)

a Fourier conduction law with a thermal conductivity

λ =
5

2
T (0)

4
∑

s=1

ns(0)

msν
(0)
s

. (48)

Once more, this result coincides with the corresponding one for the same

BGK strategy applied to a non–reactive mixture [7], and reproduces the

structure of heat flux for the reactive case as obtained in [13], where again

conductivity was given by the inversion of certain matrices.
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3.4. Conclusions

Summarizing our results, hydrodynamic equations of Navier–Stokes type

for the present relaxation model of the chemical reaction (1) in a gas mixture

is provided by the set (28) of seven partial differential equations for the

seven scalar unknowns ns(0) and u, coupled to the transcendental algebraic

equation (23) for T (0), and to the constitutive equations (36) for u
s(1)
i , (39)

for T (1), (43) for p
(1)
ij , and (47) for q

(1)
i . All together, they read as

∂

∂t

(

ns(0) + nr(0)
)

+
∂

∂x

[

(

ns(0) + nr(0)
)

u
]

+ε
∂

∂x

(

ns(0)us(1)+nr(0)ur(1)
)

= 0

(s, r) = (1, 3), (1, 4), (2, 4)

∂

∂t
(ρu) +

∂

∂x
(ρu⊗ u) +

∂

∂x
(nT (0)) + ε

∂

∂x
(nT (1)) + ε

∂

∂x
· p(1) = 0

∂

∂t

(1

2
ρu2+

3

2
nT (0)+

4
∑

s=1

Esns(0)
)

+
∂

∂x
·
[(1

2
ρu2+

5

2
nT (0)+

4
∑

s=1

Esns(0)
)

u
]

+ε
∂

∂x
·
(

nT (1)u
)

+ε
∂

∂x
·
(

p(1) · u
)

+ ε
∂

∂x
· q(1)+ε

∂

∂x
·
(

4
∑

s=1

Esns(0)us(1)
)

= 0

n1(0)n2(0)

n3(0)n4(0)
=

(

µ12

µ34

)

3
2

exp

(

∆E

T (0)

)

us(1) = −
4
∑

r=1

Lsr(0) 1

ρs(0)ρr(0)
∂

∂x
(nr(0)T (0))

T (1) = −2

3
T (0)

{

Q̃
[

1 +
3

2
n
(T (0)

∆E

)2
4
∑

s=1

1

ns(0)

]}

−1 ∂

∂x
· u

p
(1)
ij = −T (0)

4
∑

s=1

ns(0)

ν
(0)
s

(

∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂

∂x
· u δij

)

q
(1)
i = −5

2
T (0)

4
∑

s=1

ns(0)

msν
(0)
s

∂T (0)

∂xi
+

5

2
T (0)

4
∑

s=1

ns(0)u
s(1)
i . (49)

Euler equations correspond to the limiting case ε = 0. This BGK asymp-

totic limit has the same form of the Boltzmann asymptotic limit worked out

in [13] via a Grad 13–moment expansion, and only the definition of viscos-

ity coefficient and thermal conductivity differ in the two approaches. The

present result differs instead substantially from the BGK asymptotic limit

that would be in order if the chemical reaction were switched off, that was
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thoroughly derived and discussed in [7]. In such a case in fact the kernel

of the collision operator is eight–dimensional, and all densities, as well as

the temperature, are hydrodynamic variables, so that Navier–Stokes equa-

tions are made up by eight partial differential equations, including continuity

equations for each species. In other words, also with Boltzmann models, the

linearized collision operator in the present regime contains terms account-

ing for reactive collisions, as opposed to the one that would be obtained if

chemical reactions were absent, or were considered a much slower process. It

is remarkable however that all first order corrections needed for the closure

(except, of course, the temperature correction, or additional reactive scalar

pressure, which is peculiar of the chemical reaction [2, 21]) are expressed by

constitutive equations which are, mutatis mutandis, the same in the reactive

and in the non–reactive case. This fact reproduces known results established

at the Boltzmann level [12]. At the BGK level, there are additionally reac-

tive contributions in the transport coefficients through the factors νs in (15),

which are affected by the reactive collision frequency ν3412 . These contribu-

tions however affect only viscosity and thermal conductivity through ν
(0)
s in

(44) and (48).

4. Axially Symmetric Problems

As stated in the Introduction, we specialize now our BGK equations

(3), (4), (7) to problems with axial symmetry with respect to an axis (say,

x1 ≡ x), in the sense that all transverse spatial gradients vanish, and the

gas is drifting only in the axial direction. In other words, distribution func-

tions f s depend on the full velocity vector v (molecular trajectories are

three–dimensional) but dependence on the azimuthal direction around the

symmetry axis is such that all transverse components of the macroscopic ve-

locities us vanish. This occurs, for instance, when the distribution functions

depend on v only through its modulus and its latitudinal angle with respect

to that axis. As well known in the literature [14], this allows a sensible sim-

plification of the calculational apparatus, and a practical reduction to a fully

one–dimensional problem, though describing still a three–dimensional veloc-

ity space. On the other hand, this kind of problem is not only important for

theoretical investigation, but also quite frequent in practical applications: it

suffices to recall here the classical evaporation–condensation problems [22].

It is immediately seen that the previous assumptions imply us2 = us3 = 0,
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and then u2 = u3 = 0 and u2s = u3s = 0 (for all s). It is convenient to

introduce new unknowns

φs =

∫∫

f sdv2dv3, ψs =

∫∫

(v22 + v23)f
sdv2dv3, (50)

(integrations range from −∞ to +∞), each depending only on one space and

one velocity variable. Of course, φs and ψs provide a reduced description

of the velocity distributions, if compared to f s, but they suffice for several

purposes, as shown below. Dropping the subscript 1 also from velocities, the

fundamental macroscopic parameters are in fact determined by φs and ψs

as

ns =

∫

φs dv, us =
1

ns

∫

vφsdv,

3KT s

ms
=

1

ns

[
∫

(v − us)2φsdv +

∫

ψsdv

]

.
(51)

Setting

Ms(v) = ns

(

ms

2πKTs

)1/2

exp

[

− ms

2KTs
(v − us)

2

]

, (52)

multiplication of (3) by 1 and (v22 + v23) and integration with respect to

(v2, v3) ∈ R
2 yields then the pair of BGK equations

∂φs

∂t
+ v

∂φs

∂x
= νs(Ms − φs)

∂ψs

∂t
+ v

∂ψs

∂x
= νs

(

2KTs
ms

Ms − ψs

)

,

(53)

which are actually coupled, since parameters ns, us, Ts appearing in (52)

follow from (7) and from (51). Collision equilibria are given by φs = M s,

ψs =
2KT

ms
M s, where

M s(v) = ns
(

ms

2πKT

)1/2

exp

[

− ms

2KT
(v − u)2

]

. (54)

It is now a five–parameter family of Maxwellians, with densities related by

the mass action law (14).

We have processed numerically equations (53) in some simple space–

homogeneous test case, mainly for illustrative purposes, without having

in mind a specific reactive mixture, all quantities being measured in suit-
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able scales. Moments of the distribution functions φs and ψs appearing in

(51) have been numerically evaluated by means of the composite trapezoidal

quadrature rule on a sufficiently large bounded velocity interval [−R,R].

As reference problem (Problem A) we have taken an isotropically scat-

tering mixture (then νsr1 = νsr0 ) where the microscopic pair collision frequen-

cies νsr0 are given by Table 1.

Table 1. Elastic collision frequencies νsr0 .

νsr0 1 2 3 4

1 0.3 0.4 0.1 0.4

2 0.4 0.3 0.4 0.6

3 0.1 0.4 0.3 0.2

4 0.4 0.6 0.2 0.4

The reactive endothermic chemical collision frequency is instead ν3412 =

0.01, namely the typical chemical collision time is about one order of mag-

nitude larger than the typical scattering collision time. This is done merely

in order to possibly separate in the numerical outputs the effects due to

mechanical encounters from those due to chemical reaction, and it is under-

stood that we remain in the physical regime described in the Introduction

[11, 12]. Masses take the values

m1 = 11.7, m2 = 3.6, m3 = 8, m4 = 7.3, (55)

chosen just as an illustrative example, and the energy difference in the chem-

ical bonds is ∆E = 10. Initial conditions have been selected as Maxwellian

shapes characterized by the parameters

n1(0) = 9 n2(0) = 12 n3(0) = 13 n4(0) = 11

u1(0) = 1 u2(0) = 2 u3(0) = 3 u4(0) = 6

T 1(0) = 1 T 2(0) = 5 T 3(0) = 4 T 4(0) = 2.

(56)

These values determine uniquely, via the five disposable independent first

integrals (n1+n3, n1+n4, n2+n4, u, and 3
2nT +

∑4
s=1E

sns) and the mass

action law (14), the unique Maxwellian equilibrium, described by (54), with

parameters which turn out to be

n1 = 10.688 n2 = 13.687 n3 = 11.312 n4 = 9.312

u = 2.9614 T = 12.2145.
(57)
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Evolution of all macroscopic parameters can be deduced from (51) upon in-

tegration of the numerically computed φs and ψs. As discussed in [9], such

evolution is correctly reproduced by the present BGK equations, and indeed

our results coincide to computer accuracy with the ones of [10]. Typical

trends are shown in Figures 1 and 2. Equalization of velocities and tem-

peratures is due to elastic scattering, and it actually occurs on the short

(mechanical) scale. Relaxation of densities ns and temperature T (non–

conserved quantities) is due instead to chemical interactions, and is ruled
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Figure 1. Trends of densities ns (left) and of velocities us (right) versus

time for problem A.
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long (right) time scale for Problem A.
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by the longer reactive characteristic time. In the considered problem we ob-

serve an overall transformation of products into reactants, and a correspond-

ing temperature increase due to transformation of energy from chemical to

thermal. In general, overshoot or undershoot of some species temperature

can occur, as indicated by Figure 2.
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Figure 3. Function φ3 versus t and v for Problem A.

Relaxation of the distribution functions φs towards the equilibria (54) is

illustrated by Figure 3, relevant to s = 3, on the (v, t) plane. As expected, the

initial shape gets strongly modified in a first short initial time–layer, domi-

nated by mechanical encounters, then a restored, but different, Maxwellian

evolves smoothly, at the chemical pace, towards the equilibrium M3, follow-

ing the slow time variations of n3 and T 3, and with a practically constant

u3. The approach of φs to the associated local Maxwellian

M
s = ns

(

ms

2πKT s

)1/2

exp

[

− ms

2KT s
(v − us)2

]

, (58)

where ns, us, T s are the actual time–dependent macroscopic parameters, is

well depicted by the deviation φs−M
s versus v and t, shown in Figure 4 for

s = 2. The deviation is zero initially, because of the initial Gaussian shape,

then undergoes positive and negative variations, which remain confined how-

ever both in amplitude (order one tenth) and in domain (a neighborhood of
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the varying macroscopic velocity). In addition, the deviation vanishes iden-

tically in a very short time, of the order of the mechanical relaxation time,

and even smaller than the velocity or temperature equalization time.
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Figure 4. Zoom of the deviation φ2 −M
2 versus t and v for Problem A.
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Figure 5. Difference between actual and auxiliary mean velocities (us and

us respectively) versus time: s = 1, 3 (left), s = 2, 4 (right) for Problem A.

Finally, a measure of the approach to equilibrium is provided also by

the difference between the actual and the auxiliary macroscopic fields, which

must relax to zero for increasing time. We exhibit here the trend of the

velocities us and us in Figure 5. Differences are again rather modest, and

tend quickly to vanish, on the fast mechanical scale. As predicted by the
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BGK equations themselves, we have u̇s < 0 (u̇s > 0) for us < us (us > us);

in particular, we can observe that crossing of the actual and fictitious curves

may occur only for the species with a non–monotonic trend for us (i.e.,

s = 2, 3), and it actually occurs when u̇s = 0.
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Figure 6. Initial and final velocity profiles for φs in Problem B.

We next examine the response of our relaxation model to a change of ini-

tial shape from a Gaussian to a bimodal distribution, as depicted in Figure 6

(Problem B). Such distributions are made up by two identical symmetrically

displaced Maxwellians, chosen in such a way that the macroscopic initial con-

ditions remain the same of Problem A, as given by (56). This requirement

determines them uniquely, once the peak separation ∆u is assigned. We

have taken here

∆u1 = 0.8 ∆u2 = 4 ∆u3 = 2 ∆u4 = 1. (59)

Since equations (56) are unchanged with respect to Problem A, evolution of

all macroscopic variables remains the same, as well as the final equilibrium

distributions M s, which are also given in Figure 6. The three–dimensional
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plot of Figure 7 shows φ3 versus v and t; after a rapid transition to a unimodal

shape, it evolves essentially in the same way as for Problem A (see Figure 3).

Figure 8, to be compared to Figure 4, reports on the deviation of φ2 from the

local Maxwellian M
2 for Problem B on the short time scale. It can be noticed

that relaxation to local thermodynamical equilibrium occurs essentially on

the same time scale as for Problem A, but differences are larger by almost

two orders of magnitude, due to strong deviation of the initial shape from a

Gaussian (it is almost a double stream distribution for this species).

t
v

φ3

0

0
0

1

2

3

4

4

5

5

6

7

8

10
15

25
20

-4

Figure 7. Function φ3 versus t and v for Problem B.
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Figure 8. Zoom of the deviation φ2 −M
2 versus t and v for Problem B.
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time for problem C.

Finally, we have considered a third test case (Problem C) in order to

see the response of our model to anisotropy of scattering. For this pur-

pose we change, with respect to Problem A, only the microscopic collision

frequencies for momentum transfer νsr1 , by taking a uniform reduction fac-

tor, i.e. νsr1 = 1
5ν

sr
0 , ∀(s, r), which replaces the equality νsr1 = νsr0 relevant

to isotropic scattering. In this way, scattering is quite forwardly peaked

(mainly grazing collisions), which means that, though mechanical encoun-

ters are still much more frequent than chemical reactions, momentum and

energy transfer in elastic scattering becomes much less effective, and then

all relaxation phenomena driven by mechanical collisions become slower and

almost comparable to chemical relaxations. This is indeed what we actually

verified numerically, and is illustrated by Figure 9, where we plot velocities

and temperatures versus time, and realize that equalization times have in-

creased, roughly speaking, by a factor of 5 with respect to the Problem A

(see Figures 1 and 2). The slower rate of variation of macroscopic parameters

has then interesting implications at the kinetic level. In fact, in agreement

with a lower magnitude of time derivatives, we observe a sensible decrease of

the differences between actual and auxiliary macroscopic fields. An example

is provided by Figure 10, where we plot for comparison the temperatures T s

and Ts for Problem A and for Problem C (notice again the different time

scales for the two problems). As a consequence of the much smaller devia-

tions of fictitious fields from the actual ones, the auxiliary Maxwellians Ms

towards which our collision relaxation model forces particle distributions are

much closer now to the actual local Maxwellians Ms than for the reference
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Figure 10. Comparison of actual and auxiliary temperatures (T s and Ts

respectively) versus time for problem A (above) and Problem C (below).
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problem. Deviations of distribution functions φs from the corresponding

local Maxwellians are then smaller than for Problem A. This is shown, for s =

2, in Figure 11, where the differences, initially zero because of the Gaussian

initial shape, tend again to zero (corresponding to local equilibrium) on a

short time scale which is slightly longer than for Problem A, but undergo

fluctuations that remain at least one order of magnitude smaller than in

Figure 4.

References

1. C. Cercignani, Rarefied Gas Dynamics. From Basic Concepts to Actual Calcula-

tions, Cambridge University Press, Cambridge, 2000.

2. V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser Verlag, Boston, 1999.
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Dipartimento di Matematica, Università di Parma, Viale G. P. Usberti 53/A, 43100 Parma,

Italy.

E-mail: maria.groppi@unipr.it
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