UNIQUENESS THEOREMS FOR PERIODIC SOLUTIONS OF CERTAIN FOURTH AND FIFTH ORDER DIFFERENTIAL SYSTEMS

BY

ERCAN TUNÇ

Abstract

In this paper, we establish sufficient conditions which guarantee the existence at the most one ω -periodic solution for certain two class of fourth and fifth order differential equations. Our results extend some well-known results carried out in the relevant literature.

1. Introduction and Statement of the Result

We consider fourth and fifth order nonlinear vector differential equations

$$X^{(4)} + A_1 \ddot{X} + F(\ddot{X}) + A_3 \dot{X} + G(X) = P_1(t), \qquad (1.1)$$

and

$$X^{(5)} + B_1 X^{(4)} + B_2 \ddot{X} + \Phi(\ddot{X}) + B_4 \dot{X} + H(X) = P_2(t), \qquad (1.2)$$

in the real Euclidean space \mathbb{R}^n (with the usual norm denoted in what follows by $\|.\|$) where A_1 , A_3 , B_1 , B_2 , B_4 are constant $n \times n$ - matrices; F, G, Φ , $H \in C^1[\mathbb{R}^n, \mathbb{R}^n]$ and $P_1, P_2 \in C^0[\mathbb{R}, \mathbb{R}^n]$. The matrices A_1, A_3, B_1, B_2 and B_4 that appeared in (1.1) and (1.2) are symmetric and the functions P_1, P_2 are both ω -periodic in t, that is $P_i(t + \omega) = P_i(t)$, (i = 1, 2), for some $\omega > 0$ and all $t > 0, t \in \mathbb{R}$. Let $J_f(\ddot{X}), J_g(X), J_\phi(\ddot{X}), J_h(X)$ denote the

Received May 24, 2006 and in revised form September 20, 2006.

AMS Classification numbers. 34D20, 34C25, 34A34.

Key words and phrases: Nonlinear differential equations of fourth and fifth order, Periodic solution.

ERCAN TUNC

Jacobian matrices corresponding to the functions $F(\ddot{X}), G(X), \Phi(\ddot{X}), H(X)$ respectively, that is $J_f(\ddot{X}) = (\frac{\partial f_i}{\partial \dot{x}_j}), J_g(X) = (\frac{\partial g_i}{\partial x_j}), J_\phi(\ddot{X}) = (\frac{\partial \phi_i}{\partial \dot{x}_j}), J_h(X) = (\frac{\partial h_i}{\partial x_j})$ where $(x_1, x_2, \ldots, x_n), (\ddot{x}_1, \ddot{x}_2, \ldots, \ddot{x}_n), (f_1, f_2, \ldots, f_n), (g_1, g_2, \ldots, g_n), (\phi_1, \phi_2, \ldots, \phi_n)$ and (h_1, h_2, \ldots, h_n) are the components of X, \ddot{X}, F, G, Φ and H, respectively. It will be further assumed as basic throughout the paper that $J_f(\ddot{X}), J_g(X), J_\phi(\ddot{X}), J_h(X)$ are symmetric (for arbitrary $X \in \mathbb{R}^n$), so that their eigenvalues, which we denote respectively by $\lambda_i(J_g(X)), \lambda_i(J_h(X)), (i = 1, 2, \ldots, n)$, are all real.

In 1983, Ezeilo [5] discussed the existence of periodic solutions of the non-linear vector differential equations

$$X^{(4)} + A_1 \ddot{X} + A_2 \ddot{X} + A_3 \dot{X} + G(X) = P_1(t)$$

and

$$X^{(5)} + B_1 X^{(4)} + B_2 \ddot{X} + B_3 \ddot{X} + B_4 \dot{X} + H(X) = P_2(t).$$

According to the our observations in the relevant literature, we did not find another research with respect to the continuation of results established by Ezeilo [5]. It should be noticed that our results extend that obtained in [5]. However, till now, in a sequence of the works periodic properties for various third-, fourth-, fifth-, sixth-, seventh and eighth order certain nonlinear differential equations have been the subject of many investigations. (See, for example, Ezeilo ([4], [5]), Tejumola [9], Tunç ([13], [14], [15], [16]), and the references cited therein.)

We establish the following results.

Theorem 1. In addition to the fundamental assumptions imposed F and G in (1.1), suppose that following condition are satisfied:

Let $\delta_0 = \max_{i,j} \left| \frac{\partial f_i}{\partial \ddot{x}_j} \right|$ where $J_f(\ddot{X}) = \left(\frac{\partial f_i}{\partial \ddot{x}_j} \right)$, and suppose that there exists a constant $\alpha_1 > \frac{1}{4} n^2 \delta_0^2$ such that

$$\lambda_i(J_q(X)) \ge \alpha_1 \text{ for } i = 1, 2, \dots, n \text{ and for arbitrary } X \in \mathbb{R}^n.$$
 (1.3)

Then there exists at most one ω -periodic solution of (1.1).

Theorem 2. Assume that B_1 is definite (positive or negative) and let

$$\beta_1 = \inf_i \lambda_i(B_1) \quad or \quad -\sup_i \lambda_i(B_1),$$

according as B_1 is positive or negative definite, where $\lambda_i(B_1)$ (i = 1, ..., n)are the eigenvalues of B_1 . Let

$$\gamma_0 = \max_{i,j} \left| \frac{\partial \phi_i}{\partial \ddot{x}_j} \right|, \text{ where } J_{\phi}(\ddot{X}) = (\frac{\partial \phi_i}{\partial \ddot{x}_j}).$$

Suppose that there exists a constant $\beta_2 > \frac{1}{4}n^2\gamma_0^2\beta_1^{-1}$ such that

$$k_1 \lambda_i (J_h(X)) \ge \beta_2 \tag{1.4}$$

where

$$k_1 = \begin{cases} +1, & \text{if } B_1 \text{ is positive definite} \\ -1, & \text{if } B_1 \text{ is negative definite.} \end{cases}$$

Then there exists at most one ω -periodic solution of (1.2).

We need the following algebraic result

Lemma. Let A be a real symmetric $n \times n$ matrix and

$$a' \ge \lambda_i(A) \ge a > 0$$
 $(i = 1, 2, ..., n)$, where a' , a are constants.

Then

 $a'\langle X,X\rangle \geq \langle AX,X\rangle \geq a\langle X,X\rangle$

and

$$a'^2 \left< X, X \right> \ \geq \ \left< AX, AX \right> \geq a^2 \left< X, X \right>.$$

Proof. See [17].

2. Proof of the Theorem 1

Let $X_1(t)$, $X_2(t)$ be any two solutions of (1.1) and set

$$Y(t) = X_2(t) - X_1(t).$$

[September

Then Y = Y(t) satisfies the differential equation

$$Y^{(4)} + A_1 \ddot{Y} + S(t) \ddot{Y} + A_3 \dot{Y} + R(t)Y = 0$$
(2.1)

where the matrices R(t) and S(t) here are defined by

$$R(t) = \int_0^1 J_g(X_1(t) + \sigma(X_2(t) - X_1(t))) d\sigma, \qquad (2.2)$$

$$S(t) = \int_0^1 J_f(\ddot{X}_1(t) + \sigma(\ddot{X}_2(t) - \ddot{X}_1(t))) d\sigma, \qquad (2.3)$$

respectively. If $\langle . \rangle$, here and in what follows, denotes the usual scalar product in \mathbb{R}^n , that is $\langle U, V \rangle = \sum_{i=1}^n u_i v_i$ where (u_1, u_2, \ldots, u_n) , (v_1, v_2, \ldots, v_n) are the respective components of $U, V \in \mathbb{R}^n$, it is clear, from the fact of $J_g(X), J_f(\ddot{X})$ being symmetric for all X, \ddot{X} , that $\mathbb{R}(t), S(t)$ are symmetric and then from conditions of theorem that

$$\langle R(t)U,U\rangle \ge \alpha_1 \|U\|^2 \tag{2.4}$$

and

$$\langle S(t)V,W\rangle \geq -\delta_0 n \|V\| \|W\| \tag{2.5}$$

for all t and for arbitrary $U, V, W \in \mathbb{R}^n$, respectively.

We shall now prove that, subject to (2.4) and (2.5), the equation (2.1) has no nontrivial ω -periodic solutions, which will thereby verify the theorem.

Let then Y = Y(t) be an ω -periodic solution of (2.1) and consider the scalar function $\theta = \theta(t)$ defined by

$$\theta = \left\langle \dot{Y}, \ddot{Y} \right\rangle - \left\langle Y, \ddot{Y} \right\rangle - \left\langle Y, A_1 \ \ddot{Y} \right\rangle - \frac{1}{2} \left\langle Y, A_3 Y \right\rangle + \frac{1}{2} \left\langle \dot{Y}, A_1 \ \dot{Y} \right\rangle.$$

We have, by an elementary differentiation, that

$$\dot{\theta} = \parallel \ddot{Y} \parallel^2 + \left\langle S(t)Y, \ddot{Y} \right\rangle + \left\langle R(t)Y, Y \right\rangle$$

thus

$$\dot{\theta} \geq \| \ddot{Y} \|^{2} + \alpha_{1} \| Y \|^{2} - \delta_{0} n \| Y \| \| \ddot{Y} \|$$

$$= \left(\| \ddot{Y} \| - \frac{1}{2} \delta_{0} n \| Y \| \right)^{2} + \left(\alpha_{1} - \frac{1}{4} \delta_{0}^{2} n^{2} \right) \| Y \|^{2} \geq 0,$$

$$(2.6)$$

since

$$\alpha_1 > \frac{1}{4}n^2\delta_0^2$$

Thus $\theta(t)$ is nondecreasing in t, and, being bounded (in view of the continuity and the assumed ω -periodicity of Y(t)), it therefore tends to a unique limit as $t \to \infty$. In particular, since

$$\theta(t) = \theta(t + N\omega) \tag{2.7}$$

for arbitrary t and for any integer N, it follows then on letting $N \to \infty$ in (2.7) that $\theta(t) = \text{constant}$, and therefore that

$$\theta(t) = 0 \tag{2.8}$$

for all t. It is clear from (2.6) and (2.8) that

$$Y(t) \equiv 0$$
 for all t

and the theorem now follows.

3. Proof of the Theorem 2

The procedure here is similar to that used above in section 2. If $X_1(t)$, $X_2(t)$ are any two solutions of (1.2), then $Y = Y(t) = X_2(t) - X_1(t)$ satisfies the equation

$$Y^{(5)} + B_1 Y^{(4)} + B_2 \ddot{Y} + M(t) \ddot{Y} + B_4 \dot{Y} + N(t)Y = 0$$
(3.1)

where N(t) and M(t) are the symmetric matrices defined by

$$N(t) = \int_0^1 J_h \Big(X_1(t) + \sigma (X_2(t) - X_1(t)) \Big) d\sigma$$
 (3.2)

and

$$M(t) = \int_0^1 J_\phi \left(\ddot{X}_1(t) + \sigma (\ddot{X}_2(t) - \ddot{X}_1(t)) \right) d\sigma,$$
(3.3)

respectively.

801

[September

If (1.4) holds, then

$$k_1 \langle N(t)U, U \rangle \ge \beta_2 ||U||^2$$
 for all t and for arbitrary $U \in \mathbb{R}^n$; (3.4)

and the objective once again will be to show that, subject to (3.4), there are no nontrivial ω -periodic solutions whatever of (3.1).

Let then Y = Y(t) be any ω -periodic solution of (3.1) and consider the scalar function $\psi = \psi(t)$ defined by

$$\psi = \left\langle \dot{Y}, \ddot{Y} \right\rangle + \left\langle \dot{Y}, B_1 \ddot{Y} \right\rangle - \left\langle Y, \ddot{Y} + B_1 \ddot{Y} + B_2 \ddot{Y} \right\rangle + \frac{1}{2} \left\langle B_2 \dot{Y}, \dot{Y} \right\rangle - \frac{1}{2} \left\langle \ddot{Y}, \ddot{Y} \right\rangle - \frac{1}{2} \left\langle B_4 Y, Y \right\rangle.$$

It is a straightforward matter to verify that

$$\dot{\psi} = \left\langle B_1 \ \ddot{Y}, \ddot{Y} \right\rangle + \left\langle N(t)Y, Y \right\rangle + \left\langle M(t) \ \ddot{Y}, Y \right\rangle,$$

so that, by (3.3) and the definition of γ_0 ,

$$\dot{\psi} \geq \beta_1 \| \ddot{Y} \|^2 + \beta_2 \| Y \|^2 - \gamma_0 n \| \ddot{Y} \| \| Y \|$$

$$= \beta_1 \left(\| \ddot{Y} \| - \frac{1}{2} n \gamma_0 \beta_1^{-1} \| Y \| \right)^2 + \left(\beta_2 - \frac{1}{4} n^2 \gamma_0^2 \beta_1^{-1} \right) \| Y \|^2$$

$$(3.5)$$

if B_1 is positive definite, and

$$\dot{\psi} \leq -\beta_1 \| \ddot{Y} \|^2 - \beta_2 \| Y \|^2 + \gamma_0 n \| \ddot{Y} \| \| Y \|$$

$$= -\beta_1 \left(\| \ddot{Y} \| -\frac{1}{2} n \gamma_0 \beta_1^{-1} \| Y \| \right)^2 - \left(\beta_2 - \frac{1}{4} n^2 \gamma_0^2 \beta_1^{-1} \right) \| Y \|^2$$

$$(3.6)$$

if B_1 is negative definite. Thus, since $\beta_2 > \frac{1}{4}n^2\gamma_0^2\beta_1^{-1}$, $\psi(t)$ is monotone (increasing or decreasing according as B_1 is positive or negative definite) in t, and, being bounded, thus tends to a limit as $t \to \infty$. As before this implies that $\psi(t) = \text{constant}$ for all t, and in turn, therefore, that

$$\psi(t) = 0 \text{ for all } t. \tag{3.7}$$

It is evident from (3.5)-(3.7) that Y(t) = 0 for all t, and the theorem follows.

Remark. In the special case when the matrix $J_f(\ddot{X}) = \left(\frac{\partial f_i}{\partial \ddot{x}_j}\right)$ is diagonal, the estimate (2.6) can be readily refined to

$$\dot{\theta} \ge \left(\parallel \ddot{Y} \parallel -\frac{1}{2}\delta_0 \parallel Y \parallel \right)^2 + \left(\alpha_1 - \frac{1}{4}\delta_0^2\right) \parallel Y \parallel^2$$

so that Theorem 1 holds here subject to the weaker condition $\alpha_1 > \frac{1}{4}\delta_0^2$ on G.

Similarly if the matrix $J_{\phi}(\ddot{X}) = (\frac{\partial \phi_i}{\partial \ddot{x}_j})$ is diagonal, the estimates (3.5) and (3.6) can be relaxed respectively to

$$\begin{split} \dot{\psi} &\geq \beta_1 \left(\| \ddot{Y} \| - \frac{1}{2} \gamma_0 \beta_1^{-1} \| Y \| \right)^2 + \left(\beta_2 - \frac{1}{4} \gamma_0^2 \beta_1^{-1} \right) \| Y \|^2, \\ \dot{\psi} &\leq -\beta_1 \left(\| \ddot{Y} \| - \frac{1}{2} \gamma_0 \beta_1^{-1} \| Y \| \right)^2 - \left(\beta_2 - \frac{1}{4} \gamma_0^2 \beta_1^{-1} \right) \| Y \|^2 \end{split}$$

so that Theorem 2 in this case holds subject to the weaker condition $\beta_2 > \frac{1}{4}\gamma_0^2\beta_1^{-1}$.

Acknowledgment

The author would like to thank the anonymous referee for his/her valuable suggestions and comments that helped improving the original manuscript.

References

 J. Andres and J. Voracek, Periodic solutions to a nonlinear parametric differential equation of the third order, *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8), 77 (1984), 3-4, (1985), 81-86.

2. E. A. Barbasin, The stability in the large of the zero solution of a certain third order nonlinear equation, *Differ. Uravn.*, **5**(1969), 424-429.

3. J. O. C. Ezeilo, A generalization of a Theorem of Reissig for a certain third order differential equation, *Ann. Mat. Pura Appl.*, **87**(1970), 349-356.

4. J. O. C. Ezeilo, A further result on the existence of periodic solutions of the equation $\ddot{x} + \psi(\dot{x}) \ddot{x} + \phi(x) \dot{x} + \theta(t, x, \dot{x}, \ddot{x}) = p(t)$ with a bounded θ , *Lincei-Rend. Sc. Fis. Mat. Nat.*, **LXV** (1978), 51-57.

5. J. O. C. Ezeilo, Uniqueness theorems for periodic solutions of certain fourth and fifth order differential systems. J. Nigerian Math. Soc., **2**(1983), 55-59.

6. A. M. Lyapunov, Stability of Motion, Academic Press, 1966, p.203.

7. R. Reissig, G. Sansone and R. Conti, *Non-linear Differential Equations of Higher Order*, Translated from the German, Noordhoff International Publishing, Leyden, 1974.

8. W. A. Skrapek, Instability results for fourth-order differential equations. *Proc. Roy. Soc. Edinburgh Sect. A*, **85**(1980), No.3-4, 247-250.

9. H. O. Tejumola, Instability and periodic solutions of certain nonlinear differential equations of orders six and seven, *Ordinary Differential Equations* (Abuja, 2000), 56-65, *Proc. Natl. Math. Cent. Abuja Niger.*, 1.1, *Natl. Math. Cent., Abuja*, 2000.

 C. Tunç, Boundedness of solutions of a third-order nonlinear differential equation, J. Inequal. Pure Appl. Math., 6(2005), No.1, Art. 3.

11. C. Tunç, A global stability result for a certain system of fifth order nonlinear differential equations, *Acta Comment. Univ. Tartu. Math.*, **2**(1988), 3-13.

12. C. Tunç, An instability theorem for a certain vector differential equation of the fourth order, *J. Inequal. Pure Appl. Math.*, **5**(2004), No.1, Art. 5.

13. E. Tunç, Instability of solutions of certain nonlinear vector differential equations of third order, *Electron. J. Differential Equations*, **2005**(2005), No.51, 1-6.

14. E. Tunç, On the periodic solutions of a certain vector differential equation of eighth-order, Adv. Stud. Contemp. Math., **11**(2005), No.1, 61-66.

15. E. Tunç, On the periodic solutions of certain fourth and fifth order vector differential equations. *Math. Commun.*, **10**(2005), No.2, 135-141.

16. E. Tunç, A result about periodic solutions of a certain class of seventh-order vector differential equations. *Analele Universitatii Din Timisoara*, (in press).

17. C. Tunç, An instability result for certain system of sixth order differential equations. *Appl. Math. Comput.*, **157**(2004), No.2, 477-481.

Faculty of Arts and Sciences, Department of Mathematics, Gaziosmanpaşa University, 60250, Tokat, TURKEY.

E-mail: ercantunc72@yahoo.com