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UNIQUENESS THEOREMS FOR PERIODIC SOLUTIONS

OF CERTAIN FOURTH AND FIFTH ORDER

DIFFERENTIAL SYSTEMS

BY

ERCAN TUNÇ

Abstract

In this paper, we establish sufficient conditions which guar-

antee the existence at the most one ω-periodic solution for certain

two class of fourth and fifth order differential equations. Our re-

sults extend some well-known results carried out in the relevant

literature.

1. Introduction and Statement of the Result

We consider fourth and fifth order nonlinear vector differential equations

X(4) +A1

...

X +F (
..

X) +A3

.

X +G(X) = P1(t), (1.1)

and

X(5) +B1X
(4) +B2

...

X +Φ(
..

X) +B4

.

X +H(X) = P2(t), (1.2)

in the real Euclidean space Rn (with the usual norm denoted in what follows

by ‖.‖) where A1, A3, B1, B2, B4 are constant n × n− matrices; F , G, Φ,

H ∈ C1[Rn, Rn] and P1, P2 ∈ C0[R,Rn]. The matrices A1, A3, B1, B2 and

B4 that appeared in (1.1) and (1.2) are symmetric and the functions P1, P2

are both ω-periodic in t, that is Pi(t + ω) = Pi(t), (i = 1, 2), for some

ω > 0 and all t > 0, t ∈ R. Let Jf (
..

X), Jg(X), Jφ(
..

X), Jh(X) denote the
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Jacobian matrices corresponding to the functions F (
..

X), G(X), Φ(
..

X), H(X)

respectively, that is Jf (
..

X) = ( ∂fi
∂
..
xj
), Jg(X) = ( ∂gi

∂xj
), Jφ(

..

X) = ( ∂φi

∂
..
xj
), Jh(X) =

( ∂hi

∂xj
) where (x1, x2, . . . , xn), (

..
x1,

..
x2, . . . ,

..
xn), (f1, f2, . . . , fn), (g1, g2, . . . , gn),

(φ1, φ2, . . . , φn) and (h1, h2, . . . , hn) are the components of X,
..

X , F , G, Φ

and H, respectively. It will be further assumed as basic throughout the

paper that Jf (
..

X), Jg(X), Jφ(
..

X), Jh(X) are symmetric (for arbitrary X ∈

Rn), so that their eigenvalues, which we denote respectively by λi(Jg(X)),

λi(Jh(X)), (i = 1, 2, . . . , n), are all real.

In 1983, Ezeilo [5] discussed the existence of periodic solutions of the

non-linear vector differential equations

X(4) +A1

...

X +A2

..

X +A3

.

X +G(X) = P1(t)

and

X(5) +B1X
(4) +B2

...

X +B3

..

X +B4

.

X +H(X) = P2(t).

According to the our observations in the relevant literature, we did not

find another research with respect to the continuation of results established

by Ezeilo [5]. It should be noticed that our results extend that obtained

in [5]. However, till now, in a sequence of the works periodic properties

for various third-, fourth-, fifth-, sixth-, seventh and eighth order certain

nonlinear differential equations have been the subject of many investigations.

(See, for example, Ezeilo ([4], [5]), Tejumola [9], Tunç ([13], [14], [15], [16]),

and the references cited therein.)

We establish the following results.

Theorem 1. In addition to the fundamental assumptions imposed F

and G in (1.1), suppose that following condition are satisfied:

Let δ0 = max
i,j

∣

∣

∣

∂fi
∂
..
xj

∣

∣

∣
where Jf (

..

X) = ( ∂fi
∂
..
xj
), and suppose that there exists

a constant α1 >
1
4n

2δ20 such that

λi(Jg(X)) ≥ α1 for i = 1, 2, . . . , n and for arbitrary X ∈ Rn. (1.3)

Then there exists at most one ω-periodic solution of (1.1).
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Theorem 2. Assume that B1 is definite (positive or negative) and let

β1 = inf
i
λi(B1) or − sup

i

λi(B1),

according as B1 is positive or negative definite, where λi(B1) (i = 1, . . . , n)

are the eigenvalues of B1. Let

γ0 = max
i,j

∣

∣

∣

∣

∂φi

∂
..
xj

∣

∣

∣

∣

, where Jφ(
..

X) = (
∂φi

∂
..
xj

).

Suppose that there exists a constant β2 >
1
4n

2γ20β
−1
1 such that

k1λi(Jh(X)) ≥ β2 (1.4)

where

k1 =

{

+1, if B1 is positive definite

−1, if B1 is negative definite.

Then there exists at most one ω-periodic solution of (1.2).

We need the following algebraic result

Lemma. Let A be a real symmetric n× n matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, . . . , n), where a′, a are constants.

Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See [17]. �

2. Proof of the Theorem 1

Let X1(t), X2(t) be any two solutions of (1.1) and set

Y (t) = X2(t)−X1(t).
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Then Y = Y (t) satisfies the differential equation

Y (4) +A1

...

Y +S(t)
..

Y +A3

.

Y +R(t)Y = 0 (2.1)

where the matrices R(t) and S(t) here are defined by

R(t) =

∫ 1

0
Jg(X1(t) + σ(X2(t)−X1(t)))dσ, (2.2)

S(t) =

∫ 1

0
Jf (

..

X1 (t) + σ(
..

X2 (t)−
..

X1 (t)))dσ, (2.3)

respectively. If 〈.〉 , here and in what follows, denotes the usual scalar prod-

uct in Rn, that is 〈U, V 〉 =
∑n

i=1 uivi where (u1, u2, . . . , un), (v1, v2, . . . , vn)

are the respective components of U, V ∈ Rn, it is clear, from the fact of

Jg(X), Jf (
..

X) being symmetric for all X,
..

X , that R(t), S(t) are symmetric

and then from conditions of theorem that

〈R(t)U,U〉 ≥ α1‖U‖2 (2.4)

and

〈S(t)V,W 〉 ≥ −δ0n‖V ‖‖W‖ (2.5)

for all t and for arbitrary U, V,W ∈ Rn, respectively.

We shall now prove that, subject to (2.4) and (2.5), the equation (2.1)

has no nontrivial ω-periodic solutions, which will thereby verify the theorem.

Let then Y = Y (t) be an ω-periodic solution of (2.1) and consider the

scalar function θ = θ(t) defined by

θ =
〈 .

Y ,
..

Y

〉

−
〈

Y,
...

Y

〉

−
〈

Y,A1

..

Y

〉

−
1

2
〈Y,A3Y 〉+

1

2

〈 .

Y ,A1

.

Y

〉

.

We have, by an elementary differentiation, that

.

θ= ‖
..

Y ‖2 +
〈

S(t)Y,
..

Y

〉

+ 〈R(t)Y, Y 〉

thus

.

θ ≥ ‖
..

Y ‖2 + α1‖Y ‖2 − δ0n‖Y ‖‖
..

Y ‖

=
(

‖
..

Y ‖ −
1

2
δ0n‖Y ‖

)2
+

(

α1 −
1

4
δ20n

2
)

‖Y ‖2 ≥ 0, (2.6)
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since

α1 >
1

4
n2δ20 .

Thus θ(t) is nondecreasing in t, and, being bounded (in view of the continuity

and the assumed ω-periodicity of Y (t)), it therefore tends to a unique limit

as t→ ∞. In particular, since

θ(t) = θ(t+Nω) (2.7)

for arbitrary t and for any integer N , it follows then on letting N → ∞ in

(2.7) that θ(t) = constant, and therefore that

.

θ (t) = 0 (2.8)

for all t. It is clear from (2.6) and (2.8) that

Y (t) ≡ 0 for all t

and the theorem now follows. �

3. Proof of the Theorem 2

The procedure here is similar to that used above in section 2. If X1(t),

X2(t) are any two solutions of (1.2), then Y = Y (t) = X2(t)−X1(t) satisfies

the equation

Y (5) +B1Y
(4) +B2

...

Y +M(t)
..

Y +B4

.

Y +N(t)Y = 0 (3.1)

where N(t) and M(t) are the symmetric matrices defined by

N(t) =

∫ 1

0
Jh

(

X1(t) + σ(X2(t)−X1(t))
)

dσ (3.2)

and

M(t) =

∫ 1

0
Jφ

( ..

X1 (t) + σ(
..

X2 (t)−
..

X1 (t))
)

dσ, (3.3)

respectively.
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If (1.4) holds, then

k1 〈N(t)U,U〉 ≥ β2‖U‖2 for all t and for arbitrary U ∈ Rn; (3.4)

and the objective once again will be to show that, subject to (3.4), there are

no nontrivial ω−periodic solutions whatever of (3.1).

Let then Y = Y (t) be any ω−periodic solution of (3.1) and consider the

scalar function ψ = ψ(t) defined by

ψ =
〈 .

Y ,
...

Y

〉

+
〈 .

Y ,B1

..

Y

〉

−
〈

Y,
....

Y +B1

...

Y +B2

..

Y

〉

+
1

2

〈

B2

.

Y ,
.

Y

〉

−
1

2

〈 ..

Y ,
..

Y

〉

−
1

2
〈B4Y, Y 〉 .

It is a straightforward matter to verify that

.

ψ=
〈

B1

..

Y ,
..

Y

〉

+ 〈N(t)Y, Y 〉+
〈

M(t)
..

Y , Y
〉

,

so that, by (3.3) and the definition of γ0,

.

ψ ≥ β1‖
..

Y ‖2 + β2‖Y ‖2 − γ0n‖
..

Y ‖‖Y ‖

= β1

(

‖
..

Y ‖ −
1

2
nγ0β

−1
1 ‖Y ‖

)2

+

(

β2 −
1

4
n2γ20β

−1
1

)

‖Y ‖2 (3.5)

if B1 is positive definite, and

.

ψ ≤ −β1‖
..

Y ‖2 − β2‖Y ‖2 + γ0n‖
..

Y ‖‖Y ‖

= −β1

(

‖
..

Y ‖ −
1

2
nγ0β

−1
1 ‖Y ‖

)2

−

(

β2 −
1

4
n2γ20β

−1
1

)

‖Y ‖2 (3.6)

if B1 is negative definite. Thus, since β2 >
1
4n

2γ20β
−1
1 , ψ(t) is monotone

(increasing or decreasing according as B1 is positive or negative definite) in

t, and, being bounded, thus tends to a limit as t→ ∞. As before this implies

that ψ(t) = constant for all t, and in turn, therefore, that

.

ψ (t) = 0 for all t. (3.7)

It is evident from (3.5)-(3.7) that Y (t) = 0 for all t, and the theorem

follows. �
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Remark. In the special case when the matrix Jf (
..

X) = ( ∂fi
∂
..
xj
) is diago-

nal, the estimate (2.6) can be readily refined to

.

θ≥

(

‖
..

Y ‖ −
1

2
δ0‖Y ‖

)2

+

(

α1 −
1

4
δ20

)

‖Y ‖2

so that Theorem 1 holds here subject to the weaker condition α1 >
1
4δ

2
0 on

G.

Similarly if the matrix Jφ(
..

X) = ( ∂φi

∂
..
xj
) is diagonal, the estimates (3.5)

and (3.6) can be relaxed respectively to

.

ψ ≥ β1

(

‖
..

Y ‖ −
1

2
γ0β

−1
1 ‖Y ‖

)2

+

(

β2 −
1

4
γ20β

−1
1

)

‖Y ‖2,

.

ψ ≤ −β1

(

‖
..

Y ‖ −
1

2
γ0β

−1
1 ‖Y ‖

)2

−

(

β2 −
1

4
γ20β

−1
1

)

‖Y ‖2

so that Theorem 2 in this case holds subject to the weaker condition β2 >
1
4γ

2
0β

−1
1 .

Acknowledgment

The author would like to thank the anonymous referee for his/her

valuable suggestions and comments that helped improving the original

manuscript.

References

1. J. Andres and J. Voracek, Periodic solutions to a nonlinear parametric differential

equation of the third order, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),

77 (1984), 3-4, (1985), 81-86.

2. E. A. Barbasin, The stability in the large of the zero solution of a certain third

order nonlinear equation, Differ. Uravn., 5(1969), 424-429.

3. J. O. C. Ezeilo, A generalization of a Theorem of Reissig for a certain third order

differential equation, Ann. Mat. Pura Appl., 87(1970), 349-356.

4. J. O. C. Ezeilo, A further result on the existence of periodic solutions of the

equation
...
x +ψ(

.
x)

..
x +φ(x)

.
x +θ(t, x,

.
x,

..
x) = p(t) with a bounded θ, Lincei-Rend. Sc. Fis.

Mat. Nat., LXV (1978), 51-57.

5. J. O. C. Ezeilo, Uniqueness theorems for periodic solutions of certain fourth and

fifth order differential systems. J. Nigerian Math. Soc., 2(1983), 55-59.



804 ERCAN TUNÇ [September
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10. C. Tunç, Boundedness of solutions of a third-order nonlinear differential equation,

J. Inequal. Pure Appl. Math., 6(2005), No.1, Art. 3.
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