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L
1-CONTINUOUS DEPENDENCE OF MILD SOLUTIONS

TO THE FOKKER-PLANCK-BOLTZMANN EQUATION

BY

SEUNG-YEAL HA, HO LEE AND SE EUN NOH

Abstract

We present a uniform L
1-stability estimate for mild so-

lutions to the Fokker-Planck-Boltzmann equation. For stability

estimate, we derive a Gronwall type estimate using dispersion es-

timates for mild solutions due to the hypoelliptic structure of the

Vlasov-Fokker-Planck operator.

1. Introduction

This paper is devoted to the uniform L1-stability estimate of mild so-

lutions to the frictionless Fokker-Planck-Boltzmnn (in short FPB) equation

governing the dynamics of dilute gas particles interacting with its environ-

ment such as a thermal bath. Let f = f(x, ξ, t) be the phase space density of

a dilute gas whose local macroscopic quantities are given as the moments of

f in velocity space. In the high temperature limit, the dynamics of a phase

space density is governed by

∂tf + ξ · ∇xf = σ∆ξf +Q(f, f), x, ξ ∈ R
3, t > 0,

f(x, ξ, 0) = f in(x, ξ).
(1.1)

Here σ is a diffusion coefficient (see [2] for explicit formula), and Q(f, f) is

the collision operator whose explicit form will be given below. Let (ξ, ξ∗) and

(ξ′, ξ′∗) be pairs of pre-collisional and post-collisional velocities satisfying a
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collision transformation:

ξ′ = ξ − [(ξ − ξ∗) · ω)]ω and ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ S2
+, (1.2)

where v · w is the standard inner product between v and w in R
3 and S2

+ =

{ω ∈ S2 : (ξ − ξ∗) · ω ≥ 0}. The Boltzmann collision operator Q(f, f) takes

the form of

Q(f, f)(x, ξ, t) ≡
1

κ

∫

R3×S2
+

q(ξ − ξ∗, ω)(f
′f ′

∗ − ff∗)dωdξ∗, (1.3)

where κ is the Knudsen number which is the ratio between the mean free path

and characteristic length of the flow, and we have used standard abbreviated

notations:

f = f(x, ξ, t), f∗ = f(x, ξ∗, t), f ′ = f(x, ξ′, t), f ′
∗ = f(x, ξ′∗, t).

We assume that the collision kernel q(ξ − ξ∗, ω) satisfies an angular cut-off

soft potential assumption:

q(ξ − ξ∗, ω) = |ξ − ξ∗|
γbγ(θ), −2 < γ < 0,

bγ(θ)

cos θ
≤ b∗ < ∞, (1.4)

where θ is the angle between ξ−ξ∗ and ω. In the sequel, C denotes a generic

positive constant which may depend on initial data, but is independent of

t. Let G = G(x, ξ, t; y, ξ∗, s) be the Green’s function to the Fokker-Planck

equation which is the linear part of the FPB equation (1.1). Then the

equation (1.1) can be rewritten as a mild form (see Section 2):

f(x, ξ, t) =

∫

R6

G(x, ξ, t; y, ξ∗, 0)f
in(y, ξ∗)dξ∗dy

+

∫ t

0

∫

R6

G(x, ξ, t; y, ξ∗, s)Q(f, f)(y, ξ∗, s)dξ∗dyds. (1.5)

The definition of mild solution is given as follows.

Definition 1.1. Suppose that f in ∈ L1(R3 × R
3) and T > 0. Let

f ∈ C([0, T );L1(R3 × R
3)) be a mild solution to (1.1) corresponding to

initial datum f in if and only if f satisfies the mild form (1.5) pointwise a.e.

(x, ξ) ∈ R
3 × R

3.

The FPB equation has been used to model dissipative particle dynamics

in the area of aerosols [12, 13]. However compared to other kinetic equations,
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the FPB equation has not been much studied in previous literatures. The

global existence and vanishing viscosity limit of mild and renormalized solu-

tions were studied in [4, 8, 9, 11], when initial datum is a perturbation of a

vacuum and a global Maxwellian. In particular, the existence theory of mild

solutions in [8] is restricted to the soft potential case γ ∈ (−2, 0) and the

corresponding theory for the hard potential case is still open. This is a rather

strange situation, because when the diffusion coefficient σ is turned off, the

resulting equation, ”Boltzmann equation” near vacuum is well understood

for the hard potential case in existence and stability aspects, hence we can

expect when the good regularizing term σ∆ξf is added to the Boltzmann

equation, the resulting equation, the FPB equation should behave better

than the Boltzmann equation itself. However the Illner-Shinbrot’s trick [10]

for the Boltzmann equation, which interchanges time-integral and velocity-

integral is difficult to implement due to the complicated pointwise nature of

mild solutions. We set an exponentially decaying function ϕ:

ϕ(x, ξ;α, β, λ) ≡ K(x− βξ,
λ3

12
)K(ξ, α), α, β, λ > 0,

where K(x, t) =
1

√

(4πt)3
e−

|x|2

4t .

Assumption (A): For positive constants α, β, λ,

f in(x, ξ) ≤ δϕ(x, ξ;α, β, λ), 0 < δ ≪ 1.

The main result of this paper as follows.

Theorem 1.2. Suppose that γ ∈ (−2, 0). Let f and f̄ be two mild solu-

tions to (1.1) corresponding to initial data f in and f̄ in satisfying assumption

(A) respectively. Then we have a uniform L1-stability estimate:

sup
0≤t<∞

||f(t)− f̄(t)||L1 ≤ M ||f in − f̄ in ||L1 .

Here M is a positive constant independent of time t and || · ||L1 = || ·

||L1(R3×R3).

Remark 1.3.

1. The global existence of mild solutions for soft potential case γ ∈ (−2, 0)

has been established in [8].
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2. In the absence of Fokker-Planck term σ∆ξf in (1.1), a uniform Lp-

stability estimate has been studied in [5, 6].

The rest of the paper is organized as follows. In Section 2, we briefly

review the basic properties of the FPB equation and existence framework of

Hamdache in [8]. Finally, Section 3 is devoted to the uniform L1-stability

estimate of mild solutions.

2. Preliminaries

In this section, we briefly review the basics of the FPB equation (1.1)

and Hamdache’s existence framework on small mild solutions.

2.1. Formal balance laws and H-theorem

In this part, we study formal conservation laws and H-theorem to (1.1).

Lemma 2.1.([3]) Let f be a solution of (1.1). Then we have

(1)
d

dt

∫

R3

(

1, ξ,
|ξ|2

2

)

Q(f, f)dξ = 0.

(2)
d

dt

∫

R3

log fQ(f, f)dξ

= −
1

4

∫

R6×S2
+

q(ξ − ξ∗, ω){f
′f ′

∗ − ff∗} log
f ′f ′

∗

ff∗
dωdξ∗dξ.

Proof. It follows from the structure of Q(f, f) that we have

∫

R3

Q(f, f)φ(ξ)dξ =
1

4

∫

R6×S2
+

q(ξ−ξ∗, ω)[f
′f ′

∗−ff∗][φ+φ∗−φ′−φ′
∗]dωdξ∗dξ.

We take φ = 1, ξ, |ξ|
2

2 , log f to get the desired result. �

We define local macroscopic densities (ρ, u, θ):

ρ ≡

∫

R3

fdξ (mass) ; u(x, t) ≡
1

ρ

∫

R3

ξfdξ (bulk velocity) ;

1

2
ρ(|u|2 + 3θ) ≡

∫

R3

|ξ|2

2
fdξ (energy) .



2007] THE FOKKER-PLANCK-BOLTZMANN EQUATION 897

We now multiply 1, ξ, |ξ|
2

2 to (1.1) to get a system of balanced laws:

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ P ) = 0,

∂t

(

ρ(|u|2 + 3θ)
)

+∇x ·
(ρ

2
(|u|2 + 3θ)u+ Pu+ q

)

= 3σρ.

(2.1)

Here P = (pij) is the stress tensor and q is a heat flux: 1 ≤ i, j ≤ 3,

pij ≡

∫

R3

1

2
(ξi − ui)(ξj − uj)fdξ, qi =

∫

R3

1

2
(ξi − ui)|ξ − u|2fdξ.

Note that mass and momentum are conserved, whereas the energy is increas-

ing due to the energy input by its environment such as a heat bath. As in

the Boltzmann equation [3], we define an H-functional as the phase space

integral of f log f :

H(f(t)) ≡

∫

R6

f log fdξdx.

Proposition 2.2. Let f be a solution of (1.1) and decay fast enough

in phase space. Then H-theorem holds.

d

dt
H(f(t)) = −

1

4

∫

R6×S2
+

q(ξ − ξ∗, ω){f
′f ′

∗ − ff∗} log
f ′f ′

∗

ff∗
dωdξ∗dξ

−
σ

4

∫

R6

|∇ξ

√

f |2dξdx ≤ 0.

2.2. Hamdache’s framework

In this part, we briefly review Green’s function to the Vlasov-Fokker-

Planck (VFP) equation and Hamdache’s framework for mild solution. The

explicit Green’s function to the VFP equation was first constructed in [8],

and was further refined and used to the study of large time behavior of

solutions to the VPFP system in [1, 14, 15, 16]. The explicit presentation

on the Green’s function can be found in [1, 7]. Consider the VFP equation:

∂tf + ξ · ∇xf = σ∆ξf, x, ξ ∈ R
3, t > 0,

f(x, ξ, 0) = f in(x, ξ).
(2.2)

We first recall the definition of Green’s function to (2.2).
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Definition 2.3 Let (x, ξ, t) ∈ R
3 × R

3 × R+ be given. Then Green’s

function G = G(x, ξ, t; y, ξ∗, s) satisfies the following initial value problem

for the adjoint equation in (y, v∗, s)-variables:

∂sG+ ξ∗ · ∇yG+ σ∆ξ∗G = 0, y, ξ∗ ∈ R
3, 0 ≤ s < t,

G(x, ξ, t; y, ξ∗, t) = δ(y − x)δ(ξ∗ − ξ),
(2.3)

where δ(·) is the three dimensional Dirac Delta function.

Then the mild solution f for (2.2) is given by the integral formula:

f(x, ξ, t) =

∫

R6

G(x, ξ, t; y, ξ∗, 0)f
in(y, ξ∗)dξ∗dy. (2.4)

Consider the frictionless VFP equation with a Dirac measure as initial da-

tum:

∂tg + ξ · ∇xg = σ∆ξg, x, ξ ∈ R
3, t > 0,

g(x, ξ, 0) = δ(x)δ(ξ).

Then g satisfies

g(x, ξ, t) ≡ G(x, ξ, t; 0, 0, 0),

where G is Green’s function to (2.3). By taking Fourier transform in x and

ξ-variables, we can find the explicit form of g:

g =
( 3

1

2

2πσt2

)3
exp

{

−
3|x|2 + 3|x− tξ|2 − t2|ξ|2

2σt3

}

.

In this case, Green’s function G is given by

G(x, ξ, t; y, ξ∗, s)

= g(x− y − ξ∗(t− s), ξ − ξ∗, t− s)

=
( 3

1

2

2πσ(t− s)2

)3
exp

{

−
3|x− y − (t−s)(ξ+ξ∗)

2 |2

σ(t− s)3
−

|ξ − ξ∗|
2

4σ(t− s)

}

= K
(

x− y −
t− s

2
(ξ + ξ∗),

σ(t− s)3

12

)

K(ξ − ξ∗, σ(t− s)). (2.5)

We use the above explicit representation (2.5) to derive the following

estimates for G.
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Proposition 2.4.([1, 14]) Green’s function G satisfies

(1)

∫

R6

G(x, ξ, t; z, ξ1, τ)G(z, ξ1, τ ; y, ξ∗, s)dzdξ1 = G(x, ξ, t; y, ξ∗, s).

(2)

∫

R6

G(x, ξ, t; y, ξ∗, s)dξdx =

∫

R6

G(x, ξ, t; y, ξ∗, s)dξ∗dy = 1.

(3)

∫

R3

G(x, ξ, t; y, ξ∗, s)dξ ≤
C

(σ(t− s)3)
3

2

exp
{

−
3|x− y − (t− s)ξ∗|

2

4σ(t− s)3

}

.

(4)

∫

R3

G(x, ξ, t; y, ξ∗, s)dx ≤
C

(σ(t− s))
3

2

exp
{

−
|ξ − ξ∗|

2

4σ(t− s)

}

.

Here x, ξ, y, ξ∗ ∈ R
3 and t > τ > s ≥ 0, moreover we have

(5) |∇xG(x, ξ, t; y, ξ∗, s)|, |∇yG(x, ξ, t; y, ξ∗, s)|

≤
C

(σ(t− s)3)
1

2

G[2](x, ξ, t; y, ξ∗, s).

(6) |∇ξG(x, ξ, t; y, ξ∗, s)|, |∇ξ∗G(x, ξ, t; y, ξ∗, s)|

≤
C

(σ(t− s))
1

2

G[2](x, ξ, t; y, ξ∗, s).

Here we used the simplified notation G[k] for scaled Green’s function in phase

space by k, i.e.,

G[k](x, v, t; y, v∗, s) ≡ G
(x

k
,
v

k
, t;

y

k
,
v∗

k
, s
)

, k > 0.

Remark 2.5. In L1-stability estimate in next section, we will use the

nonnegativity and the property (2) of Green’s function:

G(x, ξ, t; y, ξ∗, s) > 0 and

∫

R6

G(x, ξ, t; y, ξ∗, s)dξdx = 1.

Theorem 2.6.([8]) Let α, β, λ be positive constants. Suppose that γ ∈

(−2, 0) and the initial datum f in is majorized by ϕ, i.e.,

f in(x, ξ) ≤ δϕ(x, ξ;α, β, λ), 0 < δ ≪ 1.

Then there exists a unique mild solution f to (1.1) satisfying a pointwise

bound

f(x, ξ, t) ≤
Cδ

E(t)
3

2

exp
(

−
4α|x − (t+ β)ξ|2

E(t)

)

,
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where E(t) is explicitly given by

E(t) ≡ 16σαt
( t

2
+ β

)2
+

4

3
(σt+ α)(σt3 + λ3).

3. Uniform L1-Stability Estimate

In this section, we present a uniform L1-stability estimate for the fric-

tionless FPB equation:

∂tf + ξ · ∇xf − σ△ξf = Q(f, f), x, ξ ∈ R
3, t > 0,

f(x, ξ, 0) = f in(x, ξ).
(3.1)

Below we provide key estimates to be used in L1-stability estimate.

Lemma 3.1. Assume γ ∈ (−2, 0) and let f and f̄ be two mild solutions

given in Theorem 2.6. Then we have

(1)
∥

∥

∥

∫

R3

|ξ − ξ∗|
γf(x, ξ∗, t)dξ∗

∥

∥

∥

L∞
x,ξ

≤ C(t+ β)−(γ+3), t ≥ 0.

(2) ||Q(f, f)(t)−Q(f̄ , f̄)(t)||L1 ≤
C

(t+ β)γ+3
‖f(t)− f̄(t)‖L1 .

Here E(t) is the function in Theorem 2.6.

Proof. We first consider the following elementary estimate: For positive

constants µ1 ∈ (0, 3) and µ2, we have

I(µ1, µ2, β) ≡ sup
x,ξ∈R3

∫

R3

|ξ − ξ∗|
−µ1 exp

(

− µ2|x− (t+ β)ξ∗|
2
)

dξ∗

≤ C(t+ β)µ1−3(1 + µ
− 3

2

2 ). (3.2)

The proof of (3.2). Let x, ξ ∈ R
3 be fixed. We use a change of variable

η = (t+ β)ξ∗:

dξ∗ = (t+ β)−3dη and |ξ − ξ∗| =
|η − (t+ β)ξ|

(t+ β)

to get
∫

R3

|ξ − ξ∗|
−µ1 exp

(

− µ2|x− (t+ β)ξ∗|
2
)

dξ∗
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= (t+ β)µ1−3

∫

R3

|η − (t+ β)ξ|−µ1 exp
(

− µ2|η − x|2
)

dη

≤ (t+ β)µ1−3
[

∫

|η−(t+β)ξ|≤1
|η − (t+ β)ξ|−µ1 exp

(

− µ2|η − x|2
)

dη

+

∫

|η−(t+β)ξ|>1
|η − (t+ β)ξ|−µ1 exp

(

− µ2|η − x|2
)

dη
]

= (t+ β)µ1−3
(

J1(x, t) + J2(x, t)
)

.

We now estimate Ji(x, t) separately.

J1(x, t) ≤

∫

|η−(t+β)ξ|≤1
|η − (t+ β)ξ|−µ1dη ≤ C,

and

J2(x, t) ≤

∫

|η−(t+β)ξ|>1
exp

(

− µ2|η − x|2
)

dη ≤
( π

µ2

)
3

2

.

We combine the above two estimates to get the desired result.

(1) We use the pointwise bound of f in Theorem 2.6 and (3.2) to find

∫

R3

|ξ − ξ∗|
γf(x, ξ∗, t)dξ∗

≤ C

∫

R3

|ξ − ξ∗|
γ 1

E(t)
3

2

exp
(

−
4α|x− (t+ β)ξ∗|

2

E(t)

)

dξ∗

≤
C

E(t)
3

2

∫

R3

|ξ − ξ∗|
γ exp

(

−
4α

E(t)
|x− (t+ β)ξ∗|

2
)

dξ∗

=
C

E(t)
3

2

I
(

− γ,
4α

E(t)
, β

)

≤ C(t+ β)−(γ+3).

Here we used

(1 + E(t)
3

2 )

E(t)
3

2

≤ C.

(2) Note that

|(f ′f ′
∗ − ff∗)− (f̄ ′f̄ ′

∗ − f̄ f̄∗)| ≤ |f − f̄ |′f ′
∗ + f̄ ′|f − f̄ |′∗ + |f − f̄ |f∗ + f̄ |f − f̄ |∗

By straightforward calculation, we have

‖Q(f, f)(t)−Q(f̄ , f̄)(t)‖L1

≤

∫

R6

(

∫

R3×S2
+

q(ξ − ξ∗, ω)
(

|f − f̄ |′f ′
∗ + f̄ ′|f − f̄ |′∗

)

dωdξ∗dξdx
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+

∫

R6

(

∫

R3×S2
+

q(ξ − ξ∗, ω)
(

|f − f̄ |f∗ + f̄ |f − f̄ |∗

)

dωdξ∗dξdx

≡ K1(t) +K2(t).

Note that the change of variable (ξ′, ξ′∗) → (ξ, ξ∗) yields

K1(t) = K2(t).

Hence it suffices to consider the term K2(t). The first term in K2(t) can be

estimated as follows.
∫

R6

(

∫

R3×S2
+

q(ξ − ξ∗, ω)|f − f̄ |f∗dωdξ∗

)

dξdx

≤ C
∥

∥

∥

∫

R3

|ξ − ξ∗|
γf∗dξ∗

∥

∥

∥

L∞
||f(t)− f̄(t)||L1

≤
C

(t+ β)γ+3
||f(t)− f̄(t)||L1 .

By symmetry, we can treat the second term in K2(t) in the same way. Finally

we obtain the desired estimate.

K1(t) = K2(t) ≤
C

(t+ β)γ+3
||f(t)− f̄(t)||L1 . �

We next study the uniform L1-stability estimate for mild solutions in

Hamdache’s framework in Section 2. Let f and f̄ be two mild solutions

corresponding to initial data given by f in and f̄ in respectively.

Then f and f̄ satisfy

f(x, ξ, t) =

∫

R6

G(x, ξ, t; y, ξ∗, 0)f
in(y, ξ∗)dξ∗dy

+

∫ t

0

∫

R6

G(x, ξ, t; y, ξ∗, s)Q(f, f)(y, ξ∗, s)dξ∗dyds, (3.3)

f̄(x, ξ, t) =

∫

R6

G(x, ξ, t; y, ξ∗, 0)f̄
in(y, ξ∗)dξ∗dy

+

∫ t

0

∫

R6

G(x, ξ, t; y, ξ∗, s)Q(f̄ , f̄)(y, ξ∗, s)dξ∗dyds. (3.4)

We now subtract (3.4) from (3.3) and take L1-norm to find

‖f(t)− f̄(t)‖L1
≤

∥

∥

∥

∫

R6

G(x, ξ, t; y, ξ∗, 0)|f
in(y, ξ∗)− f̄ in(y, ξ∗)|dydξ∗

∥

∥

∥

L1
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+
∥

∥

∥

∫ t

0

∫

R6

G(x, ξ, t; y, ξ∗, s)|Q(f, f)−Q(f̄ , f̄)|(y, ξ∗, s)dydξ∗ds
∥

∥

∥

L1

≡ L1(t) + L2(t). (3.5)

Lemma 3.2. The terms Li(t), i = 1, 2 satisfy the following estimates.

(1) L1(t) ≤ ‖f in − f̄ in‖L1 .

(2) L2(t) ≤

∫ t

0
||Q(f, f)(s)−Q(f̄ , f̄)(s)||L1ds.

Proof. We use Remark 2.5 and Hausdorff-Young’s inequality to get

L1(t) ≤ ‖G(·, ·, t; y, ξ∗, 0)‖L1‖f in − f̄ in‖L1 ≤ ‖f in − f̄ in‖L1 ,

L2(t) ≤

∫ t

0
||G(·, ·, t; y, ξ∗, s)||L1 ||Q(f, f)(s)−Q(f̄ , f̄)(s)||L1ds

≤

∫ t

0
||Q(f, f)(s)−Q(f̄ , f̄)(s)||L1ds. �

The proof of Theorem 1.1. Let f and f̄ be mild solutions to (1.1) corre-

sponding to initial data f0 and f̄0 satisfying A respectively in Hamdache’s

framework. In (3.5), we use Lemma 3.2 and Lemma 3.1 (2) to see

‖f(t)− f̄(t)‖L1 ≤ ‖f in − f̄ in‖L1 +C

∫ t

0

‖f(s)− f̄(s)‖L1ds

(s+ β)γ+3
.

Then it follows from Gronwall’s lemma that

‖f(t)− f̄(t)‖L1 ≤ ‖f in − f̄ in‖L1 exp
(

∫ t

0

C

(s + β)γ+3
ds
)

. (3.6)

Since −2 < γ < 0 and β > 0, Gronwall’s lemma yields

‖f(t)− f̄(t)‖L1 ≤ M‖f in − f̄ in‖L1 . (3.7)

Here M does not depend on time t. This completes the proof. �

Remark 3.3. In [7], the first author and Se Eun Noh show that the

Vlasov-Poisson-Fokker-Planck system is uniformly L1-stable, when initial

data is sufficiently small and decay fast enough in phase space. Hence

when the self-consistent electric field is added in (1.1), the resulting sys-

tem ”Vlasov-Poisson-Fokker-Planck-Boltzmann system” is also L1-stable.
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