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Abstract

We consider the Fokker-Planck-Boltzmann equation con-

sisting of the Boltzmann equation with an additional diffusion

term in velocity space to simulate for instance the transport in

thermal bath of binary elastic collisional particles, and investigate

the (macroscopic) diffusion properties of solutions in large time.

1. Introduction

When concerned with the motion of particles in thermal bath where the

bilinear interaction is the one of main characters, we have the Fokker-Planck-

Boltzmann type equation. Such type of equations is also used recently in

the description of grazing collision [3], in the area of aerosols [15] and driven

media [2], and so on. In the present paper, we consider the diffusive property

of global classical solutions of the initial value problem (IVP) for Fokker-

Planck-Boltzmann equation

F̃τ + ξ · ∇yF̃ = Q(F̃ , F̃ ) + ε∆ξF̃ , (1.1)

F̃ (y, ξ, 0) = F̃0(y, ξ), (1.2)

with F̃ = F̃ (y, ξ, t), (y, ξ, t) ∈ R
3×R

3×R+ the distribution function and the

Knusden number set to be one. The operator ∆ξ is the Laplacian operator

defined on R
3. In general, it is produced by the Brownian motion of random

particles, or thermal bath effects on particles, etc, and gives rise to a diffusion
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process of particles. The bilinear collision operator Q(F̃ , F̃ ) is taken as the

hard sphere model for elastic collision

Q(F̃ , F̃ ) =

∫

R3

dξ∗

∫

S2

|(ξ − ξ∗) · ω|[F̃ (ξ
′)F̃ (ξ′∗)− F̃ (ξ)F̃ (ξ∗)]dω (1.3)

with

ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ + [(ξ − ξ∗) · ω]ω, ω ∈ S
2,

|ξ′|2 + |ξ′∗|
2 = |ξ∗|

2 + |ξ|2,

where and throughout the paper we often use the abbreviation g′∗ = g(ξ′∗),

g∗ = g(ξ∗), g
′ = g(ξ′). The binary collision term Q(F̃ , F̃ ) can be also

represented in (weak) integral form via a test function ψ = ψ(ξ) in phase

space
∫

R3

Q(F̃ , F̃ )ψ(ξ)dξ

= −
1

4

∫

R6

∫

S2

|(ξ − ξ∗) · ω|[F̃
′F̃ ′

∗ − F̃ F̃∗](ψ + ψ∗ − ψ′ − ψ′
∗)dωdξ∗dξ. (1.4)

Take ψ(ξ) = log(ξ), we have the so-called entropy production functional

D(F̃ ) =
1

4

∫

R6

∫

S2

|(ξ − ξ∗) · ω|[F̃
′F̃ ′

∗ − F̃ F̃∗] log
F̃ ′F̃ ′

∗

F̃ F̃∗

dωdξ∗dξ ≥ 0, (1.5)

due to the inequality (a−b) log a
b ≥ 0 for a, b > 0 and the monotone increase

property of logarithmic function. The equality holds only if the distribution

function F̃ is a (local) Maxwellian

F̃ (y, ξ, τ) =M[ρ(y,τ),u(y,τ),θ(y,τ)](ξ) =
ρ(y, τ)

(2πθ(y, τ))3/2
e
−

|ξ−u(y,τ)|2

2θ(y,τ) .

The simplest consideration is to take the renormalized absolute Maxwellian,

i.e., the stationary state uniform with respect to space and time variables

F̃ (y, ξ, τ) ≡M(ξ) = (2π)−3/2e−
|ξ|2

2 .

Although it still satisfies the entropy production functional (1.5) and is

the equilibrium state of the collision term, the absolute Maxwellian M(ξ),

as pointed out in [12], is not any longer a solution of Eq. (1.1). More-

over, affected by the additional diffusion in velocity space, Eq. (1.1) has an

important difference from classical Boltzmann equation. In fact, although
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Eq. (1.1) still keeps the conservation laws of total mass and total momen-

tum, the total energy (or the temperature), however, grows up with respect

to time due to the heating process of the macroscopic fluid-dynamical part

caused by the diffusion in the following sense

1

2

∫

R3
y,ξ

|ξ|2F̃ (y, ξ, τ)dξdx =
1

2

∫

R3
y,ξ

|ξ|2F̃0(y, ξ)dξdx + 3ετ

∫

R3
y,ξ

F̃0(y, ξ)dξdx.

(1.6)

This finally may influence the qualitative behaviors of solutions of Eq. (1.1).

As pointed out in [12], one usually can not expect the convergence of global

time-dependent solution of Eq. (1.1) to a global (absolute) Maxwellian even

if for small initial perturbation, although from mathematical point of view

the Fokker-Planck-Boltzmann equation (1.1) is a velocity regularity approx-

imation to the Boltzmann in phase space [11]. Therefore, it is quite natural

to investigate how the diffusion in velocity space influences the qualitative

behaviors of solutions of the Fokker-Planck-Boltzmann equation (1.1)

Concerned with the mathematical analysis on the Fokker-Planck-Boltz-

mann equation (1.1), fewer rigorous analysis was established so far. The

zero diffusion limit ε → 0+ was investigated by Hadamache when solu-

tion is a perturbation of vacuum state [11] and by Li-Matsumura [12] for

classical solutions away from vacuum [12]. The global existence theory of

IVP (1.1)–(1.2) was proven by DiPerna-Lions [4] in L1 framework for re-

normalized solution, and obtained by Hamdache in terms of a direct con-

struction near vacuum state [10]. The global existence of classical solutions

of IVP (1.1)–(1.2) was established by Li-Matsumura for initial date near an

absolute Maxwellian with the help of the micro-macro decomposition and

energy method in [14, 13], where the global classical solution was shown to

converge to a time-dependent self-similar Maxwellian in large time with a

faster time-decay rate than Boltzmann equation [12].

In the present paper, we shall study the time-decay rates of classical

solutions of IVP (1.1)–(1.2) for both homogeneous and inhomogeneous cases

and focus on the (macroscopic) diffusive property of solutions caused by

the diffusion in velocity space. The main purpose is to understand how the

influence of diffusion in velocity space on the time asymptotical behavior of

global classical solutions. For simplicity, we first consider the initial value

problem for spatial homogeneous case, i.e.,

F̃τ = Q(F̃ , F̃ ) + ε∆ξF̃ , (1.7)
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F̃ (0, ξ) = F̃1(ξ), ξ ∈ R
3, (1.8)

with initial data F̃1 near the absolute Maxwellian M[1,0,1](ξ), and we are able

to give an exact description on how the diffusion affects the asymptotical

behavior of global classical solutions.

Denote the global Maxwellian

M(ξ) =M[1,0,1](ξ) =: (2π)−3/2e−
|ξ|2

2

and assume that the distribution function is re-normalized at initial time so

that ∫

R3
ξ

F̃1 dv = 1,

∫

R3
ξ

vF̃1 dv = 0,

∫

R3
ξ

|v|2F̃1 dv = 1. (1.9)

We prove that the global solution of IVP (1.7)–(1.8) exists and converges to

the time-dependent self-similar Maxwellian

M̃ = M̃[1,0,1](ξ, τ) =:
1

(2π(1 + 2ετ))3/2
e
− |ξ|2

2(1+2ετ) (1.10)

in large time. It is easy to verify that the time-dependent self-similar

Maxwellian M̃[1,0,1](ξ, τ) is also a solution of (1.7). We have the following

result.

Theorem 1.1. Assume that (1.9) holds and g0 =: F̃1 −M ∈ Hk(R3,

M−1 dξ), k ≥ 1, with η0 =: ‖M−1/2g0‖Hk(R3) small enough. Then, there

exists ε0 > 0 so that for ε ∈ (0, ε0], there exists a unique global solution F̃

of IVP (1.7)–(1.8) satisfying

F̃ − M̃ ∈ C([0,∞);Hk(R3, M̃−1dξ)) (1.11)

and

‖∂γξ (F̃ − M̃)(τ)‖L1(R3
ξ)

≤ Cη0(1 + 2ετ)−γ/2e−a1τ3/2 , γ = 1, 2, ..., k, (1.12)

with a1 > 0 a constant.

Remark 1.2. Theorem 1.1 describes a complete phenomena on how

the diffusion affects the asymptotic behaviors of global solution of IVP (1.7)-

(1.8). In fact, the exponential time-decay rate on the right hand side term

of (1.12) is made of the combined effects of both the binary collision and a

pure diffusion process of velocity space, and the algebraic time-decay rate



2007] THE FOKKER-PLANCK-BOLTZMANN EQUATION 925

on the right hand side term of (1.12) is produced by the diffusion process.

It is different from the case for the homogeneous Boltzmann equation where

the optimal time-decay rate in L1 norm is exponential [1]

‖(F̂ −M)(τ)‖L1(R3
ξ)

≤ Ce−a2τ

with a2 > 0 a constant.

Similar diffusive phenomena can be also observed for spatial inhomoge-

neous case, namely, the IVP problem (1.1)–(1.2). Let us recall the defini-

tion of the self-similar Maxwellian M̃[ρ,u,θ](ξ, τ) and the global Maxwellian

M[ρ,u,θ](ξ) as follows

M̃[ρ,u,θ](ξ, τ) =:
ρ√

(2πθ(1 + 2ετ))3
e
−

|ξ−u|2

2θ(1+2ετ) ,

(1.13)
M[ρ,u,θ](ξ) =:

ρ√
(2πθ)3

e−
|ξ−u|2

2θ .

We have the following result.

Theorem 1.3. Assume that ε > 0 small. Let the initial data F̃0(y, ξ) to

the IVP problem (1.1)–(1.2) satisfy δ =M
−1/2
[1,0,θ∗]

(F̃0−M[1,0,1])‖H5(R3
x)×H2(R3

ξ)

small enough with θ∗ ∈ (0, 1). Then, the classical solution F̃ of the IVP (1.1)–

(1.2) exists globally in time and satisfies

‖(F̃−M̃[1,0,1])‖L∞([0,∞);H4(R3
x)×H2(R3

ξ ,M̃
−1
− dξ)∩H5(R3

x)×L2(R3
ξ ,M̃

−1
− dξ))

≤Cδ,

(1.14)

where M̃− = M̃[1,u−,θ−] with u− and θ− ∈ (θ∗, 1) two constants satisfying

µ =: |u−|+ 1− θ− small enough. Moreover, it holds for γ = 0, 1 that

‖∂γξ (F̃ − M̃[1,0,1])(τ)‖L∞(R3
y)×L1(R3

ξ)
≤ Cδ(1 + 2ετ)−

γ
2
− 9

8 . (1.15)

Remark 1.4.

(1) Theorem 1.1–1.3 is established for Fokker-Planck-Boltzmann equation

starting initially away from vacuum (near an absolute Maxwellian) and

shows a diffusive phenomena caused by velocity diffusion.

(2) The reason why we only get the time-decay rate (1.15) of macroscopic

fluid-dynamical parts of the solutions is mainly because of the trans-

portation in space influenced by streaming operator ξ ·∇y (or the trans-

port operator with respect to space) which results in an interaction be-
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tween macroscopic fluid-dynamical and microscopic non-fluiddynamical

parts of the solutions and makes the convergence slower.

(3) Note that the combination of spatial transport operator and velocity

diffusion is a hyper-elliptic operator which can have smoothing effect on

solutions. An interesting and important problem is whether this prop-

erty can be used to study the regularity of DiPerna-Lions’ re-normalized

solution of Fokker-Planck-Boltzmann equation [4], this is under forth-

coming investigation.

2. Proof of Main Results

We shall prove the Theorem 1.1 and Theorem 1.3 about the diffusive

property of Fokker-Planck-Boltzmann equation (1.1). For simplicity, we

show the property for homogeneous case, i.e., the Theorem 1.1, in the frame-

work of macro-micro decomposition and energy method [14, 13]. The case of

inhomogeneous case, i.e., Theorem 1.3, can be proven by a similar argument.

Let us introduce the variable transformation to Fokker-Planck-Boltzmann

equation (1.7) as

t =
(1 + 2ετ)3/2 − 1

3ε
, v =

ξ

(1 + 2ετ)1/2
, (2.16)

and the transformation of distribution function F̃ (ξ, τ)

F (v, t) = (1 + 3εt)F̃

(
v(1 + 3εt)1/3,

(1 + 3εt)2/3 − 1

2ε

)
. (2.17)

Then, by (1.7)–(1.8) the distribution function F = F (v, t) satisfies

Ft = Q(F,F ) + ε(1 + 3εt)−1LFPF, (2.18)

F (v, 0) = F̃1(v), v ∈ R
3. (2.19)

Here the Fokker-Planck operator LFP is defined on R
3 as

LFPF = ∇v · [∇vF + vF ].

Let us introduce a local Maxwellian M[ρ,u,θ](v, t) as

M[ρ,u,θ](v, t) =
ρ(t)√

(2πθ(t))3
e
−

|ξ−u(t)|2

2θ(t) (2.20)
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where the macroscopic quantities density ρ, velocity u and temperature θ

correspond to the first three moments of F





ρ(t) =

∫

R3
v

F (v, t)dv, ρu(t) =

∫

R3
v

vF (v, t) dv,

1

2
ρ(|u|2 + 3θ)(t) =

1

2

∫

R3
v

|v|2F (v, t) dv.

(2.21)

We make use of the micro-macro decomposition and energy method

established recently in [14, 13] to investigate the diffusive property of Fokker-

Planck-Boltzmann equation. Introduce a linear collision operator LM in

terms of the nonlinear collision operator Q(f, f) by

LMf =Q(M + f,M + f)−Q(f, f) (2.22)

=Q(M,f) +Q(f,M).

For hard sphere collision model, the linearized collision operator LM takes

the form [7, 3]

(LMf)(v) = −ν(|v|)f(v) +K(f)(v), (2.23)

where K is a L2-compact symmetric operator and ν(v) is the collision fre-

quency satisfying

ν−(1 + |v|) ≤ ν(|v|) ≤ ν+(1 + |v|), v ∈ R
3,

for two constants ν± > 0.

Denote 〈., .〉 the inner product of the Hilbert space L2(R3) with respect

to the local Maxwellian M[ρ,u,θ](v, t) as

〈f, g〉 =

∫

R3

1

M
f(v)g(v) dv, ∀f, g ∈ L2(R3).

Following the argument by Grad [7], it is easy to verify that the operator LM

is a self-adjoint, non-positive, Fredhlom operator with respect to the inner

product 〈., .〉

〈Lf, g〉 = 〈f, Lg〉, 〈Lf, f〉 ≤ 0,

and its kernel (nullspace) consists of the space of five-fold spanned by the

collision invariants parameterized by macroscopic variables. Namely, there
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exist five normalized orthogonal basis χi = χi(v, t), i = 0, .., 4, with respect

to above inner product





χ0 =
M[ρ,u,θ]√
ρ(τ)

, χj =
ξ − u(τ)√
ρ(τ)θ(τ)

M[ρ,u,θ], j = 1, 2, 3,

χ4 =
1√
6ρ(τ)

(
|ξ − u(t)|2

θ(t)
− 3

)
M[ρ,u,θ].

This five functions span a space of fluids component of the solution F , and

Ker(LM) consists of χ0, χ1, χ2, χ3, χ4 and their linear combination. This

is actually one of the important facts related to the macro-micro decom-

position, that is, one can take advantage of the dissipation of the collision

operator based on the H-Theorem to control the microscopic part [7, 13]

−

∫

R3
v

M−1hLMhdv ≥ ν∗

∫

R3
v

M−1(1 + |v|)h2 dv, h ∈ Ker(LM )⊥ (2.24)

where ν∗ = ν∗(ρ, u, θ) > 0 and we recall M is defined by (2.20).

Thus, we can define the projection operator P0 onto the space Ker(LM)

and the projection operator P1 onto the space Ker(LM )⊥ as

P0(g) =
4∑

j=0

〈χj, g〉χj , P1(g) = (I −P0)g.

It holds obviously that

P2
0 = P0, P2

1 = P1, P0P1 = P1P0 = 0.

And we can decompose F (v, t) into two parts as

F =M + g, M = P0(F ), g = P1(F ) = F −M. (2.25)

By (2.18) we easily conclude that the first three moment of g always is zero

∫

R3
v

gdv =

∫

R3
v

vgdv =

∫

R3
v

|v|2gdv = 0.

Project the equation (2.18) onto the space of microscopic (non-fluid

dynamical) part, the IVP problem for g(v, t) = F (v, t) −M(v, t) is

gt = LMg +Q(g, g) + ε(1 + 3εt)−1∇·[∇g + vg], (2.26)
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g(v, t) = g0 =: F̃1(v)−M(v), v ∈ R
3, (2.27)

where we recall that the local Maxwellian M is defined by (2.20).

We need to understand more about the local Maxwellian defined by

(2.20). The evolutional equations for macroscopic quantities ρ(t), u(t), θ(t)

are obtained from equation (2.18) by taking the first three moments as





ρt = 0, (ρu)t = ε(1 + 3εt)−1

∫

R3
v

vLFPF dv,

1

2
(ρ|u|2 + 3ρθ)t =

1

2
ε(1 + 3εt)−1

∫

R3
v

|v|2LFPF dv,

(2.28)

which indeed gives



ρt = 0, (ρu)t = −2ε(1 + 3εt)−1ρu,

1

2
(ρ|u|2 + 3ρθ)t = −ε(1 + 3εt)−1ρ(|u|2 + 3θ − 3).

(2.29)

Since we can always re-normalize the distribution function so that
∫

R3

F̃1 dv = 1,

∫

R3

vF̃1 dv = 0,

∫

R3
v

|v|2F̃1 dv = 3,

it follows from (2.29) that

ρ(t) = 1, u(t) = 0, θ(t) = 1, t ≥ 0. (2.30)

This implies that the local Maxwellian M[ρ,u,θ](v) is in fact an absolute one,

namely

M =M[1,0,1](v) = (2π)−3/2 e−
|ξ|2

2 . (2.31)

What we shall do is to establish the following a-priori estimates.

Proposition 2.1. Let T > 0. Under the assumptions of Theorem 1.1,

the solutions F of IVP (2.26)–(2.27) satisfies for t ∈ [0, T ] that

k∑

|α|=0

∫ t

0

∫

R3

(1 + |v|)|∂αv (F −M)(v, t)|2 + ε(1 + 3εs)−1|∇∂αv (F −M)(v, t)|2

M

· dvds ≤ Cη0, (2.32)
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k∑

|α|=0

∫

R3

|∂αv (F −M)(v, t)|2

M
dv ≤ Cη0e

−νt, (2.33)

with C > 0 and ν > 0 two constants independent of ε > 0.

Proof. Assume that the solution F of Eq. (2.26)–(2.27) satisfies

δT = sup
t∈[0,T ]

√√√√
∑

0≤γ≤k

∫

R3

|∂γv g(v, t)|2

M
dv ≪ 1. (2.34)

Take inner product between (2.26) and gM−1 with respect to v. We have

1

2

d

dt

∫

R3

g2

M
dv −

∫

R3

gLMg

M
dv − ε(1 + 3εt)−1

∫

R3

g∇·[∇g + vg]

M
dv

=

∫

R3

g Q(g, g)

M
dv. (2.35)

Recall the definition of the global Maxwellian M(v) = (2π)−3/2e−
|v|2

2 , note

that it still holds
∫

R3

M−1g∇·[∇g + vg] dv = −

∫

R3

M−1|∇g + vg|2 dv, (2.36)

∫

R3

M−1g∇·[∇g + vg] dv = −

∫

R3

M−1(|∇g|2 − 3g2) dv, (2.37)

ν0

∫

R3

(1 + |v|)g2M−1 dv ≤ −

∫

R3

gLMgM
−1 dv, (2.38)

∫

R3

M−1gQ(g, g) dv ≤ c0 sup
s≥0

√∫

R3

M−1|g(s, v)|2dv

·

∫

R3

M−1(1+|v|)g2dv, (2.39)

we have

1

2

d

dt

∫

R3

g2

M
dv + a0

∫

R3

(1 + |v|)g2

M
dv

+
1

2
ε(1 + 3εt)−1

∫

R3

|∇g|2 + |∇g + vg|2

M
dv ≤ 0 (2.40)

with a0 =: ν03ε0 − c0δT > 0. Thus, as ε > 0 and initial perturbation
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‖M−1/2g20‖L2(R3
v)

small enough, we can obtain

∫ t

0

∫

R3

(1 + |v|)g2

M
dv + ε

∫ t

0
(1 + 3εs)−1

∫

R3

|∇g|2 + |∇g + vg|2

M
dv

≤

∫

R3

g20
M

dv, (2.41)

and ∫

R3

|g(v, t)|2

M
dv ≤ e−ν0t

∫

R3

g20
M

dv. (2.42)

To consider the derivative with respect to v, let us differentiate the

equation (2.26) on v to have

∂vgt = LM∂vg + (∂vLM )g +Q(∂vg, g) +Q(g, ∂vg)

+ε(1 + 3εt)−1∇·[∇∂vg + ∂v(vg)]. (2.43)

Take inner product between the equation (2.43) and gv. After integration

by parts and the application of the similar properties to (2.36)–(2.39), we

have

1

2

d

dt

∫

R3

|∂vg|
2

M
dv + (a0 − δT )

∫

R3

(1 + |v|)|∂vg|
2

M
dv

+
1

2
ε(1 + 3εt)−1

∫

R3

|∇∂vg|
2 + |∇∂vg + v∂vg|

2

M
dv

≤

∫

R3

|∂vg(∂vLM)g|

M
dv + Cε(1 + 3εt)−1

∫

R3

|∂vg|
2

M
dv

≤ Cβ

∫

R3

g2

M
dv + β

∫

R3

|∂vg|
2

M
dv + Cε(1 + 3εt)−1

∫

R3

|∂vg|
2

M
dv (2.44)

with β > 0 a constant small enough, where we have used the fact that

∂vν(|v|) and ∂vK are bounded operators from Hk(R3
v,M

−1 dv) to Hk(R3
v,

M−1 dv) (see [7, 8] for instance) and that it holds for collision operator [5]

∫

R3

Q(f, g)2

(1 + |v|)M
dv ≤ C

∫

R3

(1 + |v|)f2

M
dv ·

∫

R3

g2

M
dv

+C

∫

R3

f2

M
dv ·

∫

R3

(1 + |v|)g2

M
dv (2.45)

with C > 0 a constant.

Making a summation between c0×(2.40) and (2.44) with c0 = 2max{Cβ,
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C} and applying the Gronwall’s inequality, we are able to obtain

∫ t

0

∫

R3

(1 + |v|)|∂vg|
2

M
dvds+ε

∫ t

0
(1+3εs)−1

∫

R3

|∂2vg|
2+|∇∂vg+v∂vg|

2

M
dvds

≤

∫

R3

M−1(|g0(v)|
2 + |∂vg0(v)|

2) dv, (2.46)

and
∫

R3

|g(v, t)|2

M
dv +

∫

R3

|∂vg(v, t)|
2

M
dv ≤ e−ν1t

∫

R3

|g0(v)|
2 + |∂vg0(v)|

2

M
dv

(2.47)

with ν1 > 0 a constant.

The higher order estimates can be obtained by taking inner product be-

tween ∂αv (2.26) and M−1∂αv g, 1 ≤ |α| ≤ k, and a complicated but straight-

forward computation (we omit the details) and using (2.41)–(2.42), (2.46)–

(2.47). Finally, we have (2.32)–(2.33) for F =M + g based on (2.25).

Proof of Theorems 1.1-1.3. With the help of local existence [12] and

the application of standard continuity argument, we can obtain the global

existence of solutions F = M + g of the IVP (2.18)–(2.19), and hence by

(2.17), we can obtain the global existence of solutions F̃ of IVP (1.7)–(1.8)

and its time-convergence rate to the self-similar Maxwellian for general initial

data satisfying (1.9) and small perturbation as

‖∂γξ (F̃ − M̃)(τ)‖L1(R3
ξ)

≤ Cη0(1 + 2ετ)−γ/2e−a1τ3/2 . (2.48)

The proof of Theorem 1.1 is completed.

The proof of Theorem 1.3 can be established in a similar argument to

Theorem 1.1, besides a complicated resolution of fluid-dynamical part and

its coupling to Fokker-Planck operator, the reader can refer to [12], we omit

the details.
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