
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 2 (2007), No. 4, pp. 935-956

THE STEADY SHOCK PROBLEM

IN REACTIVE GAS MIXTURES

BY

M. GROPPI, G. SPIGA AND S. TAKATA

Dedicated to Prof. Y. Sone on his 70th birthday

Abstract

The shock structure in a gas mixture undergoing a bimolec-

ular chemical reaction is studied by means of a reactive kinetic

model. Rankine-Hugoniot relations and entropy conditions are

investigated. The role of Mach number and concentration frac-

tions, as well as the change of chemical composition across the

shock, are emphasized.

1. Introduction

Bimolecular chemical reactions in dilute gaseous systems may be rigor-

ously studied on the basis of kinetic theory in terms of Boltzmann-like inte-

grodifferential nonlinear equations [1]; indeed, such an approach, in spite of

its intrinsic difficulties of various kinds, is gaining interest in the scientific

literature. Kinetic treatments of chemical reactions go back to pioneering

times [2] and have reached considerable mathematical and physical depth [3].

They are all necessarily in the frame of kinetic theory for gas mixtures, a

quite uneasy field by itself [4, 5, 6, 7], with the additional feature that trans-

fer of mass and of energy of chemical bond in each microscopic interaction

have to be taken into account. A realistic modelling requires also a suitable

description of non–translational degrees of freedom, as done recently by al-

lowing either a discrete or a continuous distribution of internal energy levels
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[8, 9]. Consistent relaxation-time-approximations of the cumbersome Boltz-

mann collision operators (the so called BGK models) have been proposed

for practical and numerical purposes [10, 11].

One of the main motivation of a kinetic approach is the need for a rig-

orous derivation of hydrodynamic equations for the macroscopic fields to

be used in real world applications. But there is simultaneously a growing

interest towards the employment of the kinetic equations themselves for solv-

ing the classical fundamental problems of Fluid Dynamics, like evaporation-

condensation, wave propagation, shock structure, Riemann problem [12].

Reactive detonation waves have been investigated at the Euler level [13, 14],

whereas quite extensive kinetic results on all the above problems are avail-

able in the non-reactive case (see for instance [15, 16] and the books [12, 17]).

To the authors’ knowledge, deterministic reactive kinetic computations are

restricted up to now to space-homogeneous scenarios [18] and to the one-

dimensional Riemann problem [19].

This paper is aimed at moving a first step towards a kinetic approach to

the steady shock wave problem in a reactive mixture. Shock wave structure

has attracted a lot of attention, and has been widely studied in the frame

of hydrodynamics [20] and of extended thermodynamics [21, 22], mainly for

the inert problem without chemical reactions. An analytic investigation at

the kinetic level of the reactive case seems to be lacking in the literature.

For this purpose, we shall use here one of the simplest kinetic model, as

introduced in [23], which, in spite of its simplifications, has been shown to

capture the essential features of the chemical interaction. The main prop-

erties of the model are recalled in Sec. 2 in view of its specific application

to the present problem. Then the reactive shock wave structure is tackled

in Sec. 3, with particular emphasis on the Rankine-Hugoniot conditions fol-

lowing from the conservation laws and on the entropy condition. Results are

discussed in Sec. 4, in comparison to the much simpler scenario occurring

in the inert case. In fact, entropy condition is affected now by the upstream

chemical compositions, and not only by the upstream Mach number. More-

over, the chemical reaction always proceeds in a well defined direction across

the shock.
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2. Reactive Kinetic Equations

A four component gas mixture of species Ai, i = 1, . . . , 4, colliding

among themselves and undergoing the reversible bimolecular chemical reac-

tion

A1 +A2
⇋ A3 +A4 (1)

may be described at the kinetic level, according to the model proposed in [23]

and [8], by the set of nonlinear integrodifferential Boltzmann-like equations

∂f i

∂t
+ v · ∂f

i

∂x
= Qi[f ] i = 1, . . . , 4 (2)

where f is the vector of the four distribution functions f i(x,v, t). The

collision term may be split into its mechanical and chemical parts

Qi[f ] =

4
∑

j=1

Iij(f i, f j) + J i[f ] (3)

where the elastic scattering binary contributions Iij have the standard form

and properties (we refer for instance to the textbook [1]), while the chemical

collision operator J i may be cast as

J i =

∫

R3

∫

S2

Θ(g2 − δhkij )gσ
hk
ij (g, Ω̂ · Ω̂′)

×
[

( µij

µhk

)3

fh
(

vhk
ij

)

fk
(

whk
ij

)

− f i(v)f j(w)

]

dwdΩ̂′ (4)

where (i, j, h, k) is a permutation of the indices 1, 2, 3, 4, uniquely defined

by the selected value of i, and the allowed permutations are respectively

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). Here Θ is the Heaviside function,

µij stands for the reduced mass mimj/(mi + mj) and symbols g and Ω̂

are used to denote modulus and direction of the relative velocity v − w.

It is assumed for simplicity that particles are endowed with translational

degrees of freedom only, and with an energy of chemical link Ei. We will

conventionally assume as endothermic the direct reaction in (1), namely

∆E = −
4

∑

i=1

ΛiEi = E3 + E4 −E1 − E2 > 0, (5)
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where Λi is a component of the string of the stoichiometric coefficients

(1, 1,−1,−1). Velocity vectors vhk
ij and whk

ij are given by

vhk
ij = αijv + αjiw + αkhghkij Ω̂

′

(6)
whk

ij = αijv + αjiw − αhkghkij Ω̂
′,

where αij = mi/(mi +mj) and

ghkij =
[ µij

µhk
(g2 − δhkij )

]1/2
, (7)

with

δhkij = Λi 2∆E

µij
. (8)

The sign of δhkij determines whether the threshold imposed by the Heaviside

function Θ in (4) is effective. The additional threshold due to the activation

energy is accounted for by the differential cross sections σhk
ij , which obey,

along with obvious symmetry and indistinguishableness properties, the mi-

croreversibility condition

(µij)2g2σhk
ij (g, Ω̂ · Ω̂′) = (µhk)2

(

ghkij

)2

Θ
(

g2 − δhkij

)

σij
hk(g

hk
ij , Ω̂ · Ω̂′). (9)

We recall here for convenience the main properties of equations (2). Tech-

nical details and more information may be found, for instance, in the recent

survey paper [24]. Collision invariants ϕ = (ϕ1, ϕ2, ϕ3, ϕ4), defined by

4
∑

i=1

∫

R3

ϕi(v)Qi[f ]dv = 0 ∀f (10)

constitute a seven dimensional linear subspace of the continuous functions

of v, and a possible basis is provided by the strings

(1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 0, 1), (11)

and by the additional four scalar options

ϕi = miv, i = 1, . . . , 4; ϕi =
1

2
miv2 + Ei, i = 1, . . . , 4, (12)

the latter representing conservation of momentum and total (kinetic plus

chemical) energy. The former describe conservation of particles in the in-
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dependent pairs of species (1, 3)(1, 4)(2, 4), and proper linear combinations

reproduce conservation of total particle number and of total mass. As a

consequence, the following seven, exact but not closed, macroscopic conser-

vation equations hold

∂

∂t
(n1 + n3) +

∂

∂x
· (n1u1 + n3u3) = 0

∂

∂t
(n1 + n4) +

∂

∂x
· (n1u1 + n4u4) = 0

∂

∂t
(n2 + n4) +

∂

∂x
· (n2u2 + n4u4) = 0

(13)
∂

∂t
(ρu) +

∂

∂x
· (ρu⊗ u+P) = 0

∂

∂t

(1

2
ρu2 +

3

2
nKT + U∗

)

+
∂

∂x
·
[

(1

2
ρu2 +

3

2
nKT + U∗

)

u

]

+
∂

∂x
· [P · u+ q+ q∗

]

= 0,

where macroscopic observables are moments of the distribution functions

given in Table 1. Continuity equations for number density and mass density

follow as linear combinations of the first three equations in (14).

Another crucial property of the collision term Q is the extended version

of Boltzmann’s lemma, which reads

4
∑

i=1

∫

R3

log
[ f i(v)

(mi)3

]

Qi[f ](v)dv ≤ 0 ∀f (14)

with equal sign iff the string log[f i/(mi)3] is a collision invariant. This

determines in fact collision equilibria, namely the solutions f of the integral

equations

Q[f ](v) = 0 ∀v ∈ R
3 (15)

as the seven parameter family of local Maxwellians

f i
M (v) = ni

( mi

2πKT

)3/2
exp

[

− mi

2KT
(v − u)2

]

i = 1, · · · , 4 (16)

with u and T standing for mass velocity and temperature of the mixture,

and where number densities ni must be related by the mass action law

n1n2

n3n4
=

(µ12

µ34

)3/2
exp

(∆E

KT

)

(17)
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expressing chemical equilibrium between direct and inverse reaction rate

constants at temperature T . One might also introduce the concentration

fractions

χi =
ni

n

4
∑

i=1

χi = 1 (18)

and notice that (17) may be rewritten in equivalent forms, like for instance

KT

∆E
=

[

4
∑

i=1

Λi log
χi

(mi)3/2

]−1

. (19)

Table 1. Macroscopic moments of the distribution functions f i, 1≤ i≤4.

ni =

∫

R3

f idv number density of the i-th component

ui =
1

ni

∫

R3

vf idv drift velocity of the i-th component

n =
4

∑

i=1

ni total number density

ρ =

4
∑

i=1

mini mass density

u =
1

ρ

4
∑

i=1

miniui mass velocity

P =

4
∑

i=1

mi

∫

R3

(v − u)(v − u)f idv pressure tensor

T =
1

3nK
trP kinetic temperature

U∗ =

4
∑

i=1

Eini excitation energy density

q =
1

2

4
∑

i=1

mi

∫

R3

(v − u)2(v − u)f idv thermal heat flux

q∗=

4
∑

i=1

Ei

∫

R3

(v−u)f idv=

4
∑

i=1

Eini(ui−u) excitation heat flux

Another important consequence of (14) is that we can introduce an H-
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functional

H[f ] =
4

∑

i=1

∫

R3

f i log
f i

(mi)3
dv (20)

and prove an equivalent of the H-theorem, namely that H is a strict Lya-

punov functional for stability of equilibria (16), quantifying irreversibility

and dissipativity of the process in agreement with the second law of thermo-

dynamics. Entropy density s at local thermodynamical equilibrium may be

defined for instance as s = −KH/n, and, upon using (16) into (20), reads

as

s = −K

4
∑

i=1

χi log
χi

(mi)3/2
+

3

2
K log T −K log n (21)

where additive constants have been discarded and the last two addends make

up formally the standard single gas entropy. It is obviously understood that

macroscopic fields in (21) are bound together by the mass action law (19), so

that entropy s depends only on four of them. For practical purposes, a closed

set of hydrodynamic equations at macroscopic level would be desirable. The

simplest approximate hydrodynamic closure of the conservation equations

is provided by the Euler equations. In a collision dominated regime, like

the one we will be dealing with in the present paper, such equations are

obtained by expressing all redundant moments by means of the equilibrium

distribution functions (16), with constraint (17). This yields

∂

∂t
(ni + nj) +

∂

∂x
· [(ni + nj)u] = 0 (i, j) = (1, 3), (1, 4), (2, 4)

∂

∂t
(ρu) +

∂

∂x
· (ρu⊗ u) +

∂

∂x
(nKT ) = 0

(22)
∂

∂t

(1

2
ρu2 +

3

2
nKT +

4
∑

i=1

Eini
)

+
∂

∂x
·
[(1

2
ρu2 +

5

2
nKT +

4
∑

i=1

Eini
)

u
]

= 0,

which again must be coupled with the mass action law (17) to provide a set

of eight differential-algebraic equations for the eight unknown functions ni,

u, T . Equations (22) may be linearized around a stationary homogeneous

state with zero drift in one space dimension. The equations for the five
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independent small perturbations ñi, ũ read as

∂ñi

∂t
+

∂ñj

∂t
+ ni∂ũ

∂x
+ nj ∂ũ

∂x
= 0 (i, j) = (1, 3), (1, 4), (2, 4)

∂ũ

∂t
+

KT

ρ

4
∑

i=1

∂ñi

∂x
− n

ρ

(KT )2

∆E

4
∑

i=1

Λi

ni

∂ñi

∂x
= 0 (23)

∂ñ1

∂t
+

(

n1 − nKT

∆E

)∂ũ

∂x
+

3

2
n
(KT

∆E

)2
4

∑

i=1

Λi

ni

∂ñi

∂t
= 0.

The usual ansatz ñi(x, t) = ni exp(λt+ ikx), ũ(x, t) = u exp(λt+ ikx) yields

an homogeneous algebraic system for ni, u, whose determinant provides the

dispersion relation det(A) = 0, where the matrix A is



















λ 0 λ 0 ik(n1+n
3)

λ 0 0 λ ik(n1+n
4)

0 λ 0 λ ik(n2+n
4)

ik
KT

ρ

(

1−KT

∆E

1

χ1

)

ik
KT

ρ

(

1−KT

∆E

1

χ2

)

ik
KT

ρ

(

1+KT

∆E

1

χ3

)

ik
KT

ρ

(

1+KT

∆E

1

χ4

)

λ

λ

[

1+ 3

2

(

KT

∆E

)2
1

χ1

]

λ
3

2

(

KT

∆E

)2
1

χ2 −λ
3

2

(

KT

∆E

)2
1

χ3 −λ
3

2

(

KT

∆E

)2
1

χ4 ik

(

n
1
−

nKT

∆E

)



















(24)

Long but standard manipulations show that it can be cast as

λ3(λ2 + k2c20) = 0 (25)

where

c0 =

{

5

3

nKT

ρ

[

4
∑

i=1

1

χi
+

2

5

(∆E

KT

)2

]

/

[

4
∑

i=1

1

χi
+

2

3

(∆E

KT

)2

]}1/2

(26)

is thus the speed of sound for the considered reactive mixture. This ex-

pression is in agreement with thermodynamical considerations and with a

result in [14] on detonation waves. It shows a deviation from the standard

value for the inert mixture,
√

5
3
nKT
ρ , determined by chemical composition

(affecting also T via (17)), but, remarkably enough, independent of the jump

∆E in the energies of chemical bonds, as a consequence of (19). The devia-

tion vanishes when concentrations χi are such that ∆E/(KT ) → 0 (limiting

case of diverging equilibrium temperature), and the correction is always a

reduction on the sound speed, which anyway can never decrease beyond the

lower bound
√

nKT
ρ . It might be noticed that the inert value

√

5
3
nKT
ρ is
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approached also in the opposite limiting case ∆E/(KT ) → ∞, which occurs

when one of the products tends to vanish.

3. Shock Wave Structure

The steady shock problem may be formulated as follows [12]. Consider

the governing equations in the simple stationary form in one space dimension

v1
∂f i

∂x
= Qi[f ] i = 1, . . . , 4 (27)

with x = x1 and with v1 standing for the first component of the velocity

vector v. Equation (27) has to be solved for −∞ < x < +∞ with boundary

conditions

lim
x→±∞

f i(x,v) = M i
±(v) (28)

whereM i
± denote families of Maxwellian distributions describing equilibrium

outside the shock region, characterized by upstream (−) and downstream (+)

parameters ni
±, u± = u1±, T±. They read as

M i
±(v) = ni

±

( mi

2πKT±

)3/2
exp

[

−mi (v1 − u±)
2 + v22 + v23

2KT±

]

(29)

and constitute each a five parameter family, since, for instance, temperature

is not independent, but follows from the mass action law

χ1
±χ

2
±

χ3
±χ

4
±

= η exp
( ∆E

KT±

)

(30)

where the parameter η, defined by

η =
(m1m2

m3m4

)3/2
(31)

depends on the pre- and post-collisional masses, and turns out to be different

from unity if an actual reaction takes place (due to mass conservation, η = 1

may occur only if m1 = m3, m2 = m4 or m1 = m4, m2 = m3). In addition,

because of (19), this parameter is subject to the constraint

0 < η <
χ1
±χ

2
±

χ3
±χ

4
±

. (32)
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As well known, the 10 free upstream and downstream parameters cannot

be chosen arbitrarily, since they must be related by the Rankine-Hugoniot

conditions, which simply express the conservation laws for the present prob-

lem. In one space dimension we can rely on five collision invariants, given

by the appropriate version of (11)–(12), namely

ϕ = (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1) (33)

and

ϕi = miv1, ϕi =
1

2
mi(v21 + v32 + v23) + Ei, i = 1, . . . , 4 (34)

so that in principle we may deduce the five downstream parameters in terms

of the set of the corresponding upstream ones. It suffices in fact to take

the weak forms of (27) relevant to the test functions (33)–(34) to get rid of

the collision term and to yield conservation equations for the corresponding

fluxes

d

dx

4
∑

i=1

∫

R3

v1ϕ
i(v)f i(x,v)dv = 0. (35)

Integrating on the real line and applying limiting conditions (28) leads, via

easy algebra allowed by the expressions (29) for upstream and downstream

equilibria, to the version of the Rankine-Hugoniot conditions pertinent to a

reactive mixture

(ni
− + nj

−
)u− = (ni

+ + nj
+)u+ (i, j) = (1, 3), (1, 4), (2, 4)

n−KT− + ρ−u
2
− = n+KT+ + ρ+u

2
+

(36)
1

2
ρ−u

3
− +

5

2
n−KT−u− +

4
∑

i=1

Eini
−u−

=
1

2
ρ+u

3
+ +

5

2
n+KT+u+ +

4
∑

i=1

Eini
+u+,

with T± defined by (30). The first three of them may be rewritten as

(χi
+ + χj

+)n+u+ = (χi
− + χj

−)n−u−, (i, j) = (1, 3), (1, 4), (2, 4), (37)

and simple manipulations show that n+u+ = n−u−, and that the variations

of concentrations ∆χi = χi
+−χi

− must be related by ∆χ1 = ∆χ2 = −∆χ3 =
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−∆χ4. Introducing ∆χ = ∆χ1 as independent variable, we may write

χi
+ = χi

− + Λi∆χ, i = 1, . . . , 4;
n+

n−

=
u−
u+

=
ρ+
ρ−

. (38)

Therefore, it is easily realized that, for given upstream parameters ni
−, u−,

all downstream quantities are determined from the knowledge of only two

unknowns, namely ∆χ and the ratio n+/n−, that can be in turn evaluated

as solution of the last two equations in (36).

In order to achieve explicit expressions for the results of the present

manipulations, it proves convenient resorting to an equivalent but slightly

different strategy, which consists in assigning instead all ni
− and ∆χ, and in

considering u− as an unknown, like the other downstream quantities. In this

way, we see that (38) still solves the Rankine-Hugoniot conditions, provided

we are able to determine the unknowns u− and n+/n−, for given ∆χ, from

the last two equations in (36). It is then matter of some standard algebra

to deduce the quadratic algebraic equation

KT+

(n+

n−

)2

+ 2
[

∆E∆χ− 2K(T+ − T−)
]n+

n−

−KT− = 0 (39)

where again T± follows from (30) with all χi
+ given by (38). This equation,

by its own structure, always admits a unique meaningful solution

n+

n−

= 2
(

1− T−

T+

)

− ∆E

KT+

∆χ+

√

[

2
(

1− T−

T+

)

− ∆E

KT+

∆χ
]2

+
T−

T+

. (40)

Assuming conventionally u− > 0, we have then

u− =

√

n−KT−

ρ−

[n+

n−

1− (n+/n−)(T+/T−)

1− (n+/n−)

]1/2
(41)

provided
(

1− n+

n−

T+

T−

)(

1− n+

n−

)

> 0 (42)

which may be considered as “a posteriori” constraint on the choice of ∆χ.

Finally, from (38), we have u+ = u−/(n+/n−), which completes the proce-

dure and determines uniquely all downstream parameters and u− in terms

of ni
− and ∆χ.
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Along with the Rankine-Hugoniot conditions, there is another crucial

physical feature of the shock wave problem that follows from the mathemat-

ical properties of the collision operator, and is related to the H-theorem and

to the second law of thermodynamics. Such an entropy condition is quan-

tified by Boltzmann’s lemma (14) which, applied to the governing equation

(27), leads to a weak form of (27) itself that can be cast as a differential

inequality for the entropy flux

d

dx

4
∑

i=1

∫

R3

v1f
i log

[ f i

(mi)3

]

dv ≤ 0. (43)

Again, integration from −∞ to +∞, accounting for limiting values (29),

yields a relationship between upstream and downstream entropy fluxes of

the kind

n+u+

4
∑

i=1

χi
+ log

[

ni
+(2πm

iKT+)
−3/2

]

≤ n−u−

4
∑

i=1

χi
− log

[

ni
−(2πm

iKT−)
−3/2

]

(44)

from which, on account of (38) and of the fact that u− > 0,

4
∑

i=1

χi
+ log

[ χi
+

(mi)3/2

]

− 3

2
log T+ + log n+

≤
4

∑

i=1

χi
− log

[ χi
−

(mi)3/2

]

− 3

2
log T− + log n−. (45)

It can be noticed that the last inequality, bearing in mind the expression

(21) for entropy at local thermodynamical equilibrium, amounts to the re-

quirement

∆s = s+ − s− ≥ 0, (46)

of clear physical meaning.

It is worth comparing the results of the previous investigation to the

corresponding ones relevant to the case of a non reacting gas. In fact, it is

well known [12] that the pertinent version of the entropy condition (46) can
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be worked out, and that it is equivalent to the requirement

Ma− ≥ 1, (47)

implying in turn Ma+ ≤ 1, where Ma± denote the up- and downstream

Mach numbers

Ma± = u±/c0±. (48)

Here c0 denotes the sound speed corresponding to the relevant asymptotic

equilibrium state, which in the present reactive case would be provided by

(26). So, in the inert case, the shock problem has a meaning only if it

describes transition from a supersonic to a subsonic flow. The proof of

the above statements follows simply from the fact that the inert Rankine–

Hugoniot conditions read as

ni
+

ni
−

=
n+

n−

=
u−
u+

=
4Ma2−

Ma2
−
+ 3

T+

T−

=
(Ma2− + 3)(5Ma2− − 1)

16Ma2
−

, (49)

while the entropy jump takes the explicit form

∆s =
K

2
log

(Ma2− + 3)5(5Ma2− − 1)3

48Ma10−
, (50)

so that it depends solely on the upstream Mach number, ∆s = ∆s(Ma−),

with

∆s(1) = 0, ∆s ≥ 0 ⇐⇒ Ma− ≥ 1. (51)

Indeed, the plot of ∆s versus Ma− shows a typical piecewise monotonically–

increasing trend with flex point at Ma− = 1.

4. Discussion

For our problem, it would be interesting to investigate whether a com-

plicated inequality like (45), involving in principle all upstream parameters

(or, in our strategy, the five independent variables ∆χ, n− and three out of

the χi
−), can be linked to a form like (47), possibly modified, or to some

other specific parameter. Actually, since the ratio n+/n− is determined by

(40), it can be easily verified that the entropy jump ∆s depends actually

only on four parameters, which may be chosen as ∆χ and three independent

fractions χi
−.
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Let us remark preliminarily that the jump ∆χ must imply a positive

and finite T+. Some algebra shows that this leads to the restriction

−χ∗

− < ∆χ < min{χ3
−, χ

4
−} (52)

where χ∗
− > 0 is given by

χ∗

− =
1

2(1 − η)

{

χ1
− + χ2

− + ηχ3
− + ηχ4

−

−
√

(χ1
− + χ2

− + ηχ3
− + ηχ4

−)
2 − 4(1− η)(χ1

−χ
2
− − ηχ3

−χ
4
−)

}

, (53)

valid for any η 6= 1; in particular, χ∗
− < min{χ1

−, χ
2
−}. Once T+ and n+/n−

are computed, the variable ∆χ must be tested also versus condition (42), so

that the procedure can be completed by computing u−. It should be born

in mind that the chosen ∆χ turns out to represent the change of chemical

composition that would be determined in the shock, if that u− were cho-

sen as input datum together with the other upstream parameters. Also, it

should be noticed that the case of no chemical variations, ∆χ = 0, is always

included in the range (52). At this point, however, one is able to test if the

crucial condition (45) is fulfilled by the considered choice of the independent

variables.

Let us consider first the very special case ∆E = 0, which requires a

modified approach. In fact, temperatures T± are not determined by con-

centrations χi
± any more, and should be regarded as independent variables

themselves. On the other hand, chemical equilibrium reads now as

χ1
±χ

2
±

χ3
±
χ4
±

= η, (54)

so that only two out of the χi are independent, both up- and downstream.

For fixed upstream conditions, downstream equilibrium reads as a quadratic

equation for ∆χ, with roots ∆χ = 0 and, with η 6= 1,

∆χ =
χ1
− + χ2

− + ηχ3
− + ηχ4

−

η − 1
. (55)

It is immediately realized that (55) always violates (52), so that only the

solution with no chemical changes is left. The remaining Rankine-Hugoniot

conditions yield then the same relationships as for an inert mixture, namely

equation (49). It can be then easily verified that the entropy condition
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(45) yields exactly the same constraint of a non reactive mixture, namely

inequality (47). In conclusion, the chemical compositions of the upstream

and downstream equilibria coincide for ∆E = 0 and the jump conditions

are exactly the same that would occur if the four species were non reactive.

Therefore, since species may always be ordered in such a way that ∆E is

non negative, we shall stick below only to the option ∆E > 0.

Since ∆χ = 0 implies T+ = T− and n+ = n− (see (40)), and

∆s =
3

2
log

T+

T−

− log
n+

n−

− ∆E

KT+

∆χ−
4

∑

i=1

χi
− log

(

1 + Λi∆χ

χi
−

)

, (56)

it is immediately realized that ∆s = 0 for ∆χ = 0 (indeed, states at ±∞
are identical in this case). It is interesting to evaluate the upstream velocity

u− that actually induces a chemical variation ∆χ = 0. This can be done by

taking the limit of (41) for ∆χ → 0, formally an indeterminate form 0/0. It

is not difficult to show that

T−

T+

= 1 +
(KT−

∆E

4
∑

i=1

1

χi
−

)

∆χ+O(∆χ2) (57)

n+

n−

= 1−
( ∆E

KT−

+
3

2

KT−

∆E

4
∑

i=1

1

χi
−

)

∆χ+O(∆χ2), (58)

from which

lim
∆χ→0

n+

n−

1− (n+/n−)(T+/T−)

1− (n+/n−)
=

( ∆E

KT−

)2

+
5

2

4
∑

i=1

1

χi
−

( ∆E

KT−

)2

+
3

2

4
∑

i=1

1

χi
−

, (59)

and then finally

lim
∆χ→0

u− = c0− or lim
∆χ→0

Ma− = 1. (60)

In other words, also for a reactive mixture, sonic upstream conditions de-

termine no variations downstream (in fact, ∆χ = 0, T+ = T−, n+ = n−,

u+ = u−), namely a constant solution all over the real line. It is then natural

to conjecture that moving u− across the critical value c0− should produce a

change of sign in ∆s, as well as in ∆χ, so that, at least locally in a neigh-

borhood of the sound speed, only one side will be allowed to the upstream
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velocity in order to fulfill the entropy condition (45), and, correspondingly,

the allowed chemical transition will be characterized by a well defined sign of

∆χ. The situation is rather tricky since, if ∆χ is used again as independent

variable, it is possible to prove, on account of (56)−(58), that

lim
∆χ→0

∂(∆s)

∂(∆χ)
= 0. (61)

An analytical proof of the previous conjecture seems very difficult, because

of complicated dependence on so many parameters, but there is indeed nu-

merical evidence that it holds true, and that it turns out to be valid not

only locally, but also globally. More precisely, following again our strat-

egy, extensive computations, randomly covering the whole range allowed to

each parameter, indicate that both ∆s and u− are monotonically decreasing

functions of ∆χ (the former only piecewise, due to the horizontal tangent in

∆χ = 0 implied by (61)). Therefore, we have ∆s > 0 only in the interval

−χ∗
− < ∆χ < 0, and in that range u− always exceeds c0−, namely Ma−

always exceeds unity. The remaining part of the interval (52), correspond-

ing to Ma− < 1, must be discarded, since it yields ∆s < 0. In addition,

the observed one-to-one correspondence between u− and ∆χ indicates the

uniqueness of the downstream equilibrium state once the upstream one has

been given. Thus, like for an inert shock, there are exactly two kinetic

equilibria sharing the same conserved quantities.

In conclusion, necessary and sufficient condition for occurrence of the

shock turns out to be given again by (47), like for inert mixtures, with equal

sign only for the degenerate case of no discontinuity. However, an impor-

tant difference with respect to the non reactive case actually occurs, namely

a change of chemical composition definitely takes place (∆χ 6= 0). And

it is remarkable that the variation always goes in a well defined direction,

characterized by ∆χ < 0, which corresponds to an enhancement of the prod-

ucts at the expenses of the reactants (macroscopically endothermic shift).

The downstream chemical equilibrium carries then a larger chemical energy

(∆E > 0, ∆χ < 0) as well as a larger thermal energy (T+ > T−, as follows

from (19) and from ∆χ < 0).

As a sample of the above numerical investigation, we report in the fol-

lowing figures some trends of ∆s and ∆χ versus the upstream Mach num-

ber Ma−. First, we consider a case for which η = 0.6125 < 1, relevant

to the following choice of masses [10]: m1 = 11.7, m2 = 3.6, m3 = 8,
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m4 = 7.3, with ∆E = 10, and select different values for upstream concen-

trations (Figures 1−3). Then we change masses according to the reaction

H2 + Cl ⇋ HCl + H [11], namely m1 = 0.335, m2 = 5.886, m3 = 6.054,

m4 = 0.167, and obtain a case for which η = 2.7237 > 1 (Figures 4−5); here

∆E = 3.98. In all cases, the physically allowed region corresponds to an ab-

scissa ranging from 1 to +∞, and the limiting values of ∆χ at the two edges

correspond to 0 and to its lower bound −χ∗
−, respectively. In the unphysical

(subsonic) region, the variable Ma− can not range down to 0, since other

consistency (positivity) requirements would be violated. Its lower bound is

given by















1

5

1 +
2

3

∆E

KT−

min{χ3
−, χ

4
−}

2

3

( ∆E

KT−

)2

+

4
∑

i=1

1

χi
−

2

5

( ∆E

KT−

)2

+

4
∑

i=1

1

χi
−















1/2

, (62)

and the corresponding limit for ∆χ turns out to be just min{χ3
−, χ

4
−} (see

equation (52)). It can be noted that the bound (62) can never exceed the

value 1/
√
3, and that, in both limiting cases when ∆E/KT− → 0 and

∆E/KT− → ∞, it tends to the typical value 1/
√
5, which characterizes

the inert case.

Figure 1. ∆s (left) and ∆χ (right) versus Ma− for the first reaction consid-

ered in the text. Upstream concentrations: χ1
− = 0.25, χ2

− = 0.3, χ3
− = 0.01,

χ4
− = 0.44 (χ∗

− = 0.0915).
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Figure 2. ∆s (left) and ∆χ (right) versus Ma− for the first reaction

considered in the text. Upstream concentrations: χ1
− = 0.05, χ2

− = 0.35,

χ3
− = 0.05, χ4

− = 0.55 (χ∗
− = 8.55× 10−4).

Figure 3. ∆s (left) and ∆χ (right) versus Ma− for the first reaction consid-

ered in the text. Upstream concentrations: χ1
− = 0.2, χ2

− = 0.2, χ3
− = 0.036,

χ4
− = 0.564 (χ∗

− = 0.0366).

The trend of ∆χ versus Ma− is monotonic, as anticipated. The trend of

∆s versus Ma− closely resembles the inert one, whose analytical expression

is given by (50). There is now a further dependence of ∆s on the upstream

chemical composition, described by three independent concentrations χi
−.

Such a dependence is clearly shown by the numerical outputs of the dif-

ferent cases, though hardly visible on the figures, where the universal inert

curve is plotted as a dashed line. However, it does not affect the general and
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crucial implications of the entropy condition, and turns out to be quite weak,

in the sense that discrepancies of the different ∆s at fixed Ma− range typ-

ically from zero to few percents for varying boundary data of the upstream

concentrations. An example is provided in Figure 6.

Figure 4. ∆s (left) and ∆χ (right) versus Ma− for the second reaction

considered in the text. Upstream concentrations: χ1
− = 0.25, χ2

− = 0.3,

χ3
− = 0.01, χ4

− = 0.44 (χ∗
− = 0.0343).

Figure 5. ∆s (left) and ∆χ (right) versus Ma− for the second reaction

considered in the text. Upstream concentrations: χ1
− = 0.4, χ2

− = 0.4,

χ3
− = 0.036, χ4

− = 0.164 (χ∗
− = 0.0954).

Actual determination of the reactive shock wave profiles and of their

properties will be subject of further investigation. Kinetic computations by
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means of a suitable BGK model [10] are scheduled as future work and will

be matter of a next paper.

Figure 6. Difference between ∆s as evaluated in the inert case (∆sinert)

and ∆s as computed for the reactive case of Figure 5 (∆sreact).
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Dipartimento di Matematica Università di Parma, Viale G. P. Usberti 53/A - 43100 Parma,

Italy.

E-mail: giampiero.spiga@unipr.it

Department of Mechanical Engineering and Science & Advanced Research Institute of

Fluid Science and Engineering, Kyoto University, Kyoto 606-8501, Japan.

E-mail: takata@aero.mbox.media.kyoto-u.ac.jp


	1. Introduction
	2. Reactive Kinetic Equations
	3. Shock Wave Structure
	4. Discussion

