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Abstract

In the long-time scale, we consider the fluid dynamical lim-

its for the kinetic equations when the fluctuation is decomposed

into even and odd parts with respect to the microscopic veloc-

ity with different scalings. It is shown that when the background

state is an absolute Maxwellian, the limit fluid dynamical equa-

tions are the incompressible Navier-Stokes equations with viscous

heating. This is different from the case when the even and odd

parts of the fluctuation have the same scaling where the standard

incompressible Navier-Stokes equations without viscous heating

are obtained. On the other hand, when the background is a local

Maxwellian, it is shown that the above even-odd decomposition

leads to a non-classical fluid dynamical system without viscous

heating which has been used to describe the ghost effect in the

kinetic theory. In addition, the above even-odd decomposition is

justified rigorously for the Boltzmann equation for the former case

when the background is an absolute Maxwellian.
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1. Introduction

The first derivations of fluid dynamics from kinetic equations go back to

Maxwell [16] and Boltzmann [5]. These early derivations rested on arguments

as how the various terms in a kinetic equation balance each other. These

balance arguments seemed arbitrary to some extent. Hence, Hilbert [12]

proposed that such derivations should be based on a systematic expansion

in a small non-dimensional parameter ǫ > 0, sometimes called the Knudsen

number, which is the ratio of microscopic to macroscopic time scales. A bit

later Enskog [9] proposed a somewhat different systematic expansion, now

often called the Chapman-Enskog expansion, in the same small parameter

ǫ. With this parameter introduced, classical kinetic equations take the form

∂tF + v ·∇xF =
1

ǫ
C(F ) . (1.1)

Here F = F (t, x, v) is a nonnegative mass density of particles with position

x in a smooth domain Ω ⊂ Rd and microscopic velocity v in Rd, while C(F )

is a collision operator that acts only on the v variable. Either the Hilbert

or Chapman-Enskog expansion yields the compressible Euler equations at

leading order, and the compressible Navier-Stokes equations, Burnett equa-

tions, and so-called super Burnett equations at subsequent orders. Justifying

these formal approximations has been proven difficult, in part because many

basic well-posedness and regularity questions are still mostly open for these

fluid equations. Here we mention only [6, 17, 23] on the justification of the

compressible Euler approximation.

Several papers [1, 2, 3, 10, 18] have therefore studied direct derivations of

incompressible Navier-Stokes equations, about which more is known. Denote

the Maxwellian in space dimension d with density ρ, bulk velocity u and

temperature θ by

M(ρ, u, θ) =
ρ

(2πθ)
d
2

exp
(
− |v − u|2

2θ

)
.

More specifically, they consider F to be a perturbation about an absolute

Maxwellian M = M(v). By an appropriate choice of a Galilean frame and

choice of mass and velocity units, it can be assumed that M has the form

M ≡ M(1, 0, 1) =
1

(2π)d/2
exp(−1

2 |v|
2) . (1.2)
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It is assumed that any boundary conditions are consistent with M being

either an exact stationary solution, or a sufficiently good approximation of

a stationary solution of (1.1). Because F is near M , it will therefore evolve

on a longer time scale than that appearing in (1.1). Upon introducing this

longer time scale, these papers considered a scaled kinetic equation of the

form

ǫ ∂tF
ǫ + v ·∇xF

ǫ =
1

ǫ
C(F ǫ) , (1.3)

where the phase space density F ǫ = F ǫ(t, x, v) is of the form

F ǫ = M + ǫ F̃ ǫ . (1.4)

Here F̃ ǫ = F̃ ǫ(t, x, v) denotes the fluctuation of the phase space density

aboutM . The incompressible Navier-Stokes equations are then derived from

(1.3) and (1.4) in the limit of vanishing Knudsen number ǫ. In this set-up,

the Mach number and the Knudsen number are of the same order so as to

obtain a nonzero viscosity [1].

Here, we should mention that the recent major breakthrough to the

Navier-Stokes limit of the Boltzmann equation was made by Golse and Saint-

Raymond, [10]. Roughly speaking, this important result shows that the

limits of suitably rescaled sequences of DiPerna-Lions renormalized solutions

to the Boltzmann equation are the Leray solutions to the incompressible

Navier-Stokes equations. However, since we are concerned with the formal

derivations and the limit of “regular” solutions, we will not go into details

in this direction. Notice also that the fluid dynamical limits with viscous

heating involve higher order corrections so that there may be no room for

weak convergence, such as from renormalized solutions of the Boltzmann

equation to weak solutions of the Navier-Stokes equations, [1, 10].

The associated fluid dynamical variables, mass density ρǫ, bulk velocity

uǫ, and temperature θǫ, are defined in terms of F ǫ by

ρǫ ≡
∫

Rd

F ǫ dv , ρǫuǫ ≡
∫

Rd

v F ǫ dv , ρǫθǫ ≡ 1
d

∫

Rd

|v − uǫ|2F ǫ dv .

(1.5)

By the form (1.4) of F ǫ, these variables may be expressed in terms of their

fluctuations as

ρǫ = 1 + ǫ ρ̃ǫ , uǫ = ǫ ũǫ , θǫ = 1 + ǫ θ̃ǫ . (1.6)
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Then under certain hypotheses these fluctuations will converge as ǫ → 0+

in a convenient topology:

ρ̃ǫ → ρ̃ , ũǫ → ũ , θ̃ǫ → θ̃ , (1.7)

where the limiting velocity fluctuation is governed by

∇x ·ũ = 0 , (1.8a)

∂tũ+ ũ·∇xũ+∇xp̃ = µ∗∆ũ , (1.8b)

while the limiting density and temperature fluctuations are governed by

ρ̃+ θ̃ = 0 , (1.9a)

d+2
2 (∂tθ̃ + ũ·∇xθ̃) = κ∗∆θ̃ . (1.9b)

Here (1.8) are the standard incompressible Navier-Stokes motion equations

with viscosity µ∗, (1.9a) is the Boussinesq relation between the density and

temperature fluctuations, and (1.9b) is the temperature equation with ther-

mal conductivity κ∗. Both µ∗ and κ∗ are positive and have formulas in terms

of the linearization of the collision operator C about the absolute Maxwellian

M .

These equations can also be derived from the compressible Navier-Stokes

equations for an ideal gas. Expressed in terms of ρǫ, uǫ, and θǫ and in terms

of the same long-time scaling used in (1.3), these equations are

ǫ ∂tρ
ǫ +∇x ·(ρǫuǫ) = 0 (1.10a)

ρǫ
(
ǫ ∂t + uǫ ·∇x

)
uǫ +∇xp

ǫ = ǫ∇x ·[µǫσǫ] (1.10b)

d+2
2 ρǫ

(
ǫ∂t+uǫ ·∇x

)
θǫ −

(
ǫ∂t+uǫ ·∇x

)
pǫ = ǫ12µ

ǫ|σǫ|2+ǫ∇x ·[κǫ∇xθ
ǫ]. (1.10c)

Here the pressure pǫ is given by the ideal gas law as pǫ = ρǫθǫ, the viscosity

µǫ and thermal conductivity κǫ are given as positive functions of ρǫ and θǫ

denoted by µǫ = µ(ρǫ, θǫ) and κǫ = κ(ρǫ, θǫ), while the strain-rate tensor σǫ

is given by

σǫ ≡ ∇xu
ǫ + (∇xu

ǫ)T − 2
d∇x ·uǫ I , (1.11)

and |σǫ|2 ≡ tr(σǫ 2) = σǫ : σǫ. If one assumes that ρǫ, uǫ, and θǫ have the

form given by (1.6) and that their fluctuations converge as ǫ → 0+ in a

convenient topology as in (1.7), then their limiting fluctuations satisfy (1.8)

and (1.9).
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There is however more than one incompressible limit for the compressible

Navier-Stokes equations [4]. If one assumes that, rather than (1.6), the fluid

variables may be expressed in terms of their fluctuations as

ρǫ = 1 + ǫ2ρ̃ǫ , uǫ = ǫ ũǫ , θǫ = 1 + ǫ2θ̃ǫ , (1.12)

and that these fluctuations converge as ǫ → 0+ in a convenient topology as in

(1.7), then the limiting velocity fluctuation is again governed by the Navier-

Stokes motion equations (1.8), but the limiting density and temperature

fluctuations are now governed by

p̃ = ρ̃+ θ̃ , (1.13a)
d+2
2 (∂tθ̃ + ũ·∇xθ̃)− (∂tp̃+ ũ·∇xp̃) = 1

2µ
∗|σ̃|2 + κ∗∆θ̃ . (1.13b)

Here p̃ is the limit of the pressure fluctuation p̃ǫ defined by

p̃ǫ ≡ ρ̃ǫ + θ̃ǫ + ǫ2ρ̃ǫθ̃ǫ ; (1.14)

the limiting viscosity and thermal conductivity are given by µ∗ = µ(1, 1)

and κ∗ = κ(1, 1). However, now by virtue of (1.8a), σ̃ is a traceless tensor

and one has:

σ̃ ≡ ∇xũ+ (∇xũ)
T and 1

2 |σ̃|
2 =

∑

ij

(∂ui
∂xj

∂uj
∂xi

)
+

∑

i

(∂ui
∂xi

)2 . (1.15)

Observe that, with the Navier-Stokes equation for ũ and the “Boussinesq

relation” (1.13a), (1.13b) is also equivalent to

∂t(
|ũ|2
2

+
d

2
θ̃− ρ̃)+∇x·

(
ũ(

|ũ|2
2

+
d+ 2

2
θ̃)
)
= µ∗∇x

(
u
(
∇xũ+ (∇xũ)

T
)
+ κ∗∆θ̃

(1.13b′)

which describes the balance of internal energy with a left hand side written

in conservation form.

Equations (1.13) differ from equations (1.9) in that they include the vis-

cous heating term 1
2µ

∗|σ̃|2 and driving terms involving the limiting pressure

fluctuation p̃. These terms have clear antecedents in the compressible Navier

Stokes equations (1.10). They appeared in (1.13) because the scaling (1.12)

gives a balance that includes more physics at the leading order [cf. [4]].

One of the main purposes of the present paper is to show that the

same type of scaling made at the level of a kinetic equation will lead to the

same limit equations. In particular, we show that the structure of the limit
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equations depends on the collision operator (assumed to be in a “reasonable

physical class”) only through the viscosity and heat conduction defined by

this operator. We again derive this incompressible limit from the scaled

kinetic equation (1.3), but we now decompose the fluctuation F̃ ǫ into its

odd and even parts as functions of v, denoted by F̃ ǫ
o and F̃ ǫ

e , and assume

that

F ǫ = M + ǫ F̃ ǫ
o + ǫ2F̃ ǫ

e . (1.16)

Our formal derivation is universal in that it is valid not only for the gen-

uine Boltzmann operator but also for any collision operator C that retains

certain basic abstract “physical” properties of the Boltzmann operator. It

is also moment-based, in the style of the derivation given in [1] of (1.8)

and (1.9) from (1.3) and (1.4). This approach captures the physical spirit

of the balance arguments used by Maxwell and Boltzmann while retaining

the systematic mechanism provided by an asymptotic development in the

small parameter ǫ. This is manifest through its emphasis of the role of the

leading order terms in weak formulations. It thereby requires less control to

establish the convergence of these quantities than to establish the validity of

expansion-based derivations.

The incompressible limits thus obtained, however, are not the only limits

of the scaled Boltzmann equation (1.3). A second purpose of the present

paper is to show that another asymptotic development for small parameter

ǫ leads to a non-classical system of fluid dynamical equations.

Even though the Boltzmann equation has close relation to the classical

systems in fluid dynamics, it provides more information in the mesoscopic

level so that it describes some phenomena which can not be modeled by using

the classical systems of Euler and Navier-Stokes equations. This kind of

interesting phenomena, such as the thermal creep flow in a rarefied gas, was

known already at the time of Maxwell. The mathematical formulation and

numerical computation on the basis of kinetic equations have been studied

since 1960’s, cf. [19]. The explicit forms of the fluid dynamical equations

derived there are reproduced in (4.6) in Section 4. One of the main features

is that they exhibit the “ghost effect”.

We will show that these non-classical equations can be derived again

from the scaled Boltzmann equation (1.3) but under the new scaling

F ǫ = M(ρǫ, ǫũǫ, θǫ) + ǫGǫ, (1.17)
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where M(ρǫ, ǫũǫ, θǫ) is the local Maxwellian determined by the solution F ǫ

itself while Gǫ is the microscopic component of the solution. When ǫ tends

to zero, even though the bulk velocity approaches to zero, the scaled flow

velocity ũ as the limit of ũǫ appears in the equations governing the mo-

tion of the limit density ρ and the limit temperature θ. The infinitesimal

quantity ũ is not a “real-world” quantity and hence a “ghost”. Thus, this

fluid dynamical system describes a non-classical phenomenon such that the

“real-world” quantities ρ and θ are governed by the “ghost” ũ. Notice that

the appearance of the “ghost effect” comes through the boundary or from

infinity in physics, see Remark 4.1. Moreover, this system does not contain

the viscous heating, see Remark 4.2.

Straightforward calculation shows that the above decomposition with

scaling is equivalent to the following even-odd decomposition

F ǫ = M(ρ, 0, θ) + ǫ F̃ ǫ
o + ǫ2F̃ ǫ

e , (1.18)

where ρ and θ are not constant, but functions of (x, t). In other words,

M(ρ, 0, θ) is a local Maxwellian which is different from the case in (1.16).

Moreover, it is stressed that in contrast to (1.16), the odd-even decompo-

sition in (1.18) is a consequence of the setting of the scaling but not the

assumption, see Theorem 4.1, where the formal derivation based on the

decomposition (1.17) is given. The purpose there is to give a systematic

derivation of the non-classical fluid dynamical system. The well-posedness

of the system and the justification of the limit will not be discussed in this

paper.

In the above, we saw that the same equation (1.3) has different limits

if different scalings are introduced to the solutions. This fact may be in

analogy with the Weierstrass-Picard theorem on the behavior of holomolphic

functions near essential singularities: ǫ = 0 is something like an essential

singularity of the scaled Boltzmann equation (1.3) and different scalings

result in different limits.

After the above formal derivations, we go on to show that the conver-

gence can be established in the setting of the Boltzmann equation for the

hard sphere model and cutoff hard potentials in R
3 when the background is

an absolute Maxwellian. How to justify the case for the non-classical fluid

dynamic limit is not in the scope of this paper and is left for future inves-

tigation. Our result parallels the convergence proof of Bardos and Ukai [3]

for the formal moment-based derivation found in [1] of (1.8) and (1.9) from
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(1.3) and (1.4). It works with classical solutions of the Boltzmann equation

defined in certain Grad spaces.

Our paper is laid out as follows. In Section 2, we will identify the

general class of collision operators C for which our formal derivation holds.

In this setting, we will develop identities that will play a central role in

the subsequent formal derivations. In Section 3, we will present the formal

moment-based derivation with even-odd decomposition of the fluctuation

when the background is an absolute Maxwellian. When the background is

a local Maxwellian, the formal derivation of the non-classical fluid dynamic

limit will be given in Section 4. Section 5 establishes the limit for certain

classical solutions of the Boltzmann equation for the hard sphere model

and the cutoff hard potentials in R
3 to justify the incompressible limit with

viscous heating derived in Section 3.

2. Properties of the Collision Operator

The collision operator C is assumed to be defined over a domain D(C)
that is contained within the cone of nonnegative functions of v with conve-

nient decay at infinity. It is assumed that C enjoys the following properties

which relate to local conservation, local dissipation, Galilean invariance, and

its expansion about an equilibrium. These properties are shared by a wide

range of classical collision operators. They are expressed with the following

notations. The integral of any scalar or vector-valued integrable function

f = f(v) over Rd will be denoted by 〈f〉, so that

〈f〉 =
∫

f(v) dv . (2.1)

All functions in this paper are understood to be measurable in all variables.

2.1. Basic assumptions about the collision operator

First, the operator C is assumed to have 1, v, and |v|2 as locally conserved

quantities; this means

〈C(f)〉 = 0 , 〈v C(f)〉 = 0 , 〈|v|2C(f)〉 = 0 , for every f ∈ D(C) . (2.2)

Moreover, it is assumed that every locally conserved quantity is a linear

combination of these three, so that for any g = g(v) with convenient decay
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at infinity the following statements are equivalent:

(i) 〈g C(f)〉 = 0 , for every f ∈ D(C) ;
(ii) g ∈ E ≡ span{1, v

1
, v

2
, . . . , v

d
, |v|2}.

(2.3)

The relations (2.2) represent the physical laws of mass, momentum, and

energy conservation during collisions and (2.3) states that there are no other

local conservation laws.

Second, the operator C is assumed to satisfy the local dissipation relation

〈log f C(f)〉 ≤ 0 , for every f ∈ D(C) . (2.4)

The quantity on the left of (2.4) is the so-called local entropy dissipation

rate. The local equilibrium of C are assumed to be characterized by the

vanishing of the local entropy dissipation rate and to be given by the class

of Maxwellian densities, i.e., those of the form

f = M(ρ, u, θ) ≡ ρ

(2πθ)
d
2

exp

(
− |v − u|2

2θ

)
, (2.5)

for some (ρ, u, θ) ∈ R+ × Rd× R+. More precisely, for every f ∈ D(C) the

following statements are assumed to be equivalent:

(i) 〈log(f) C(f)〉 = 0 ,

(ii) C(f) = 0 ,

(iii) f is a Maxwellian density given by (2.5).

(2.6)

These assumptions about C merely abstract some of the consequences of

Boltzmann’s celebrated H-theorem.

Third, the operator C is assumed to commute with the actions of transla-

tional and orthogonal transformations on v. Specifically, given any f = f(v),

then for every vector u ∈ Rd and for every orthogonal matrix O ∈ R
d×d de-

fine functions Auf and Aof by

Auf = Auf(v) ≡ f(v − u) , Aof = Aof(v) ≡ f(OT v) . (2.7)

It is assumed that if f is in D(C), then so are Auf and Aof with

AuC(f) = C(Auf) , AoC(f) = C(Aof) . (2.8)
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These relations reflect the Galilean invariance of the microscopic collisional

dynamics and implies that when Ω = Rd, the kinetic equation (1.3) formally

retains Galilean invariance.

Fourth, it is assumed that when acting on smooth functions with con-

venient decay at infinity, the collision operator C is four times Fréchet dif-

ferentiable, the first, second, and third derivatives being denoted by C′, C′′,

and C′′′. In particular for any given Maxwellian M of the form (2.5), the

operator C has the formal Taylor expansion

1

MC
(
M(1 + ǫ g̃)

)
= −ǫL

M
g̃ + ǫ2Q

M
(g̃, g̃) + ǫ3T

M
(g̃, g̃, g̃) +O(ǫ4) . (2.9)

with the identifications:

L
M
g̃ = − 1

MC′(M)(Mg̃),

Q
M
(g̃, g̃) =

1

2MC′′(M)(Mg̃,Mg̃), (2.9’)

T
M
(g̃, g̃, g̃) =

1

3!MC′′′(M)(Mg̃,Mg̃,Mg̃).

The linear and symmetric multi-linear operators L
M
, Q

M
, and T

M
are defined

by the relation (2.9’) in H
M
, the Hilbert space with the weighted inner

product
(
h̃ | g̃

)
M

≡ 〈h̃Mg̃〉 . (2.10)

They are assumed to be closed operators from H
M

into H
M

with domains

D(L
M
), D(Q

M
), and D(T

M
) which contain the set of smooth functions g̃ with

at most polynomial growth as |v| → ∞, and therefore, which are dense in

H
M

.

2.2. Some Consequences of the basic assumptions and further

hypotheses

The assumptions made in the previous section contain much more in-

formation on the structure of the collision operator. Given any Maxwellian

M = M(ρ, u, θ) of the form (2.5), many properties of L
M
, Q

M
, and T

M
now

follow directly from those of C.
First, combining the local conservation relations (2.2) with the definition

(2.9) of L
M
, Q

M
, and T

M
gives:
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Proposition 2.1. Let ξ ∈ E, where E is the space of locally conserved

quantities defined in (2.3). Then

〈ξML
M
g̃〉 = 0 , for every g̃ ∈ D(L

M
) ; (2.11a)

〈ξMQ
M
(g̃, g̃)〉 = 0 , for every g̃ ∈ D(Q

M
) ; (2.11b)

〈ξMT
M
(g̃, g̃, g̃)〉 = 0 , for every g̃ ∈ D(T

M
) . (2.11c)

Second, combining the local dissipation relation (2.4) with the definition

(2.9) of L
M
, Q

M
, and T

M
and the expansion

log
(
M(1 + ǫ g̃)

)
= log(M) + ǫ g̃ − 1

2ǫ
2g̃2 + 1

3ǫ
3g̃3 − · · · , (2.12)

while using (2.9) with the fact log(M) ∈ E, gives:

Proposition 2.2. For every g̃ ∈ C∞(Rd) with at most polynomial

growth as |v| → ∞, one has

0 ≤ −
〈
log

(
M(1 + ǫ g̃)

)
C
(
M(1 + ǫ g̃)

)〉

= ǫ2〈g̃ML
M
g̃〉 − ǫ3

(
1
2〈g̃

2ML
M
g̃〉+ 〈g̃MQ

M
(g̃, g̃)〉

)
+ ǫ4

(
1
3〈g̃

3ML
M
g̃〉

+1
2〈g̃

2MQ
M
(g̃, g̃)〉−〈g̃MT

M
(g̃, g̃, g̃)〉

)
+O(ǫ5). (2.13)

From the above expansion one deduces the relation

0 ≤ 〈g̃ML
M
g̃〉, (2.14)

or the fact that the “unbounded” operator L
M

is non-negative.

Let L†
M

denote the adjoint of L
M

over H
M

with its domain denoted by

D(L†
M
). It will be assumed that the domains of these two operators coincide

D(L†
M
) = D(L

M
) . (2.15)

With (2.14) and the classical Hilbertian theory, the operators L
M

and L†
M

are maximal positive, their spectra is contained in the half plane

Re λ ≥ 0,

and the present analysis relies, as usual, on the fact that 0 belongs to this

spectra. Let N(L
M
) and N(L†

M
) denote the null spaces of L

M
and L†

M
, and
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let R(L
M
) and R(L†

M
) denote their ranges. With the positivity, one has

g̃ ∈ N(L
M

+ L†
M
) if and only if 〈g̃ML

M
g̃〉

M
= 0, which then implies

N(L
M
) = N(L†

M
) ⊂ N(L

M
+ L†

M
) . (2.16)

Third, let Mǫ = M(ρǫ, uǫ, θǫ), where (ρǫ, uǫ, θǫ) is an arbitrary analytic

parametrization that has an expansion for small ǫ of the form

Mǫ = M
(
1 + ǫm(1) + ǫ2m(2) + ǫ3m(3) +O(ǫ4)

)
, (2.17)

then one can use (2.9) to expand the relation C(Mǫ) = 0 in ǫ, and thereby

obtain:

Proposition 2.3. Given m(j) as defined in (2.17), one has

L
M
m(1) = 0 , (2.18a)

L
M
m(2) = Q

M
(m(1),m(1)) , (2.18b)

L
M
m(3) = 2Q

M
(m(1),m(2)) + T

M
(m(1),m(1),m(1)) . (2.18c)

The family of Maxwellians

Mǫ = M(1+ ǫ2ρ̃, ǫ ũ, 1+ ǫ2θ̃) =
1 + ǫ2ρ̃

(2π(1 + ǫ2θ̃))
d
2

exp

(
− |v − ǫ ũ|2

2(1 + ǫ2θ̃)

)
(2.19)

is motivated for our application by the scaling in (1.12), in which the density

and temperature fluctuations are of order two while the velocity fluctuation

of order one. It has the following Taylor expansion:

Mǫ = M
(
1 + ǫm(1) + ǫ2m(2) + ǫ3m(3) +O(ǫ4)

)
(2.20)

with m(1), m(2), and m(3) given by:

m(1) = ũ·v ,
m(2) = ρ̃+ (12 |ũ|

2 + d
2 θ̃)

2
d(

1
2 |v|

2 − d
2) +

1
2A(v)·(ũ ∨ ũ) ,

m(3) = ρ̃ũ·v + θ̃ũ·B(v) + 1
3C(v)·(ũ ∨ ũ ∨ ũ) .

(2.21)

In (2.21) the traceless symmetric matrix A(v), the vector B(v), and the
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symmetric three-tensor C(v) are defined by

A = A(v) = v∨v − 1

d
|v|2I ,

B = B(v) =
(
1
2 |v|

2v − d+2
2 v

)
,

C = C(v) = 1
2 (v∨v∨v − 3I ∨ v) ,

(2.22)

where ∨ denotes the symmetric tensor product.

In particular, for M = M given by (1.2) one has the identities

L
M
(m(1)) = L

M
(ũ·v) = 0 , (2.23a)

L
M
(m(2)) =L

M
(ρ̃+ (12 |ũ|

2 + d
2 θ̃)

2
d(

1
2 |v|

2 − d
2) +

1
2A(v)·(ũ ∨ ũ))

= Q
M
(ũ·v, ũ·v) .

(2.23b)

Since the parameters ρ̃, θ̃ and ũ are independent, the relation (2.23b) is

equivalent to the relations

L
M
(ρ̃+ θ̃(12 |v|

2 − d
2)) = 0 (2.23c)

and

L
M
(12A(v)·(ũ ∨ ũ))) = Q

M
(ũ·v, ũ·v) . (2.23d)

Eventually, the last equation of (2.22) can also be written as:

L
M
(m(3)) = 2Q

M
(ũ·v,m(2)) + T

M
(ũ·v, ũ·v, ũ·v) . (2.24)

Finally, fix a local equilibrium M = M(ρ, u, θ). Every orthogonal ma-

trix O ∈ R
d×d defines the transformation Oo ≡ AuAoA−1

u where Au and

Ao are defined by (2.7). It is easily checked that OoM = M and that Oo

is an orthogonal transformation over H
M
. Upon using (2.9) to expand the

commutation relations (2.8) about M, one obtains that the operators L
M
,

Q
M
, and T

M
commute with the orthogonal transformations Oo:

Proposition 2.4. Let O ∈ R
d×d be an orthogonal matrix. If g̃ ∈ D(L

M
),

then Oog̃ ∈ D(L
M
), and

OoLM
g̃ = L

M
Oog̃ and OoL†

M
g̃ = L†

M
Oog̃ . (2.25a)
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If g̃ ∈ D(Q
M
), then Oog̃ ∈ D(Q

M
), and

OoQM
(g̃, g̃) = Q

M
(Oog̃,Oog̃) . (2.25b)

If g̃ ∈ D(T
M
), then Oog̃ ∈ D(T

M
), and

OoTM(g̃, g̃, g̃) = T
M
(Oog̃,Oog̃,Oog̃) . (2.25c)

By specializing Proposition 2.4 to the case O = −I, the operators L
M
,

Q
M
, and T

M
are seen to respect even and odd symmetries. For example, if

g̃e and g̃o denote any functions that are even and odd in v − u respectively,

then these symmetries imply that L
M
g̃e, QM

(g̃e, g̃e), and Q
M
(g̃o, g̃o) are even

functions of v − u, while L
M
g̃o, QM

(g̃o, g̃e), and T
M
(g̃o, g̃o, g̃o) are odd.

2.3. The pseudo inverse of the linearized collision operator

In order to carry out our formal calculations, we will need to make ad-

ditional assumptions regarding the linearization L
M

of the collision operator

C about a Maxwellian M.

With the relation (2.11a) of Proposition 2.1, the space E of locally con-

served quantities is a subset of N(L†
M
). With the relations (2.23) it is also a

subspace of N(L
M
). Eventually one has

E ⊂ N(L
M
) = N(L†

M
) ⊂ N(L

M
+ L†

M
) . (2.26)

These properties of L
M

are not generally sufficient to carry out formal deriva-

tions of the Navier-Stokes equations, so we now add two assumptions regard-

ing L
M

to the basic assumptions in Section 2.1.

First, we shall assume that inclusions (2.26) are equalities. More pre-

cisely, for every g̃ ∈ D(L
M
) the following statements are assumed to be

equivalent:

(i) 〈g̃ML
M
g̃〉 = 0 ,

(ii) L
M
g̃ = 0 ,

(2.27)
(iii) L†

M
g̃ = 0 ,

(iv) g̃ ∈ E .
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An important special case which includes all classical collision operators is

when L
M

is self-adjoint (L†
M

= L
M
). In this case (2.26) implies that (i), (ii),

and (iii) in (2.26) are always equivalent, so the only assertion in (2.27) is the

equivalence of (iv) to the others.

Second, we assume that L
M

satisfies the Fredholm alternative R(L
M
) =

E
⊥. Specifically, this means we are assuming that R(L

M
) is closed, a prop-

erty that does not hold for all classical collision operators but does hold for

that of Boltzmann in the case of Maxwell molecules or hard potentials with

an angular cutoff [11]. One could include the case of the soft potentials if

the Fredholm assumption is replaced with the weaker one that L
M

satisfies

the Fredholm alternative in a space that is appropriately related to H
M
, but

for simplicity we will not do so here.

The Fredholm alternative implies that the equations

L
M
g̃ = h̃ and L†

M
g̃∗ = h̃ (2.28)

have a solution if and only if h̃ ∈ E
⊥, in which case these solutions (g̃ and g̃∗)

are unique in E
⊥. Therefore, the pseudo-inverse operators L−1

M
and (L†

M
)−1

are uniquely defined by the relations:

L
M
L−1

M
= I − P

M
, L−1

M
L

M
⊂ I − P

M
,

L†
M
(L†

M
)−1 = I − P

M
, (L†

M
)−1L†

M
⊂ I − P

M
,

(2.29)

where P
M

denotes the orthogonal projection of H
M

onto E explicitly given

by the formula:

P
M
g̃ =

1

ρ

[
〈Mg̃〉+ (v − u) · 〈(v − u)Mg̃〉

θ

+

( |v − u|2
2θ

− d

2

)
2

d

〈( |v − u|2
2θ

− d

2

)
Mg̃

〉]
. (2.30)

The dissipation relation (2.14) ensures that the quadratic forms associ-

ated with L
M

and L−1
M

enjoy the positivity properties:

〈g̃ML
M
g̃〉 = 〈g̃ML†

M
g̃〉 > 0, for every nonzero g̃ ∈ E

⊥ ∩D(L
M
),

〈g̃ML−1
M

g̃〉 = 〈g̃M(L†
M
)−1g̃〉 > 0, for every nonzero g̃ ∈ E

⊥.
(2.31)

In the case that L
M

is self-adjoint this means that L
M

and L−1
M

are positive

definite over E⊥.
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Since the measure dv is invariant under action by any Oo, it follows from

Proposition 2.4 that

〈g̃ML
M
g̃〉 = 〈Oo(g̃ML

M
g̃)〉 = 〈(Oog̃)ML

M
Oog̃〉 ,

〈g̃ML−1
M

g̃〉 = 〈Oo(g̃ML−1
M

g̃)〉 = 〈(Oog̃)ML−1
M

Oog̃〉 ,
(2.32)

for every orthogonal matrix O ∈ R
d×d. This so-called orthogonal symmetry

simplifies the evaluation of many tensors that appear subsequently.

The tensor and vector-valued functions A(v) and B(v) belong to E
⊥ =

N(L
M
)⊥ (this can be proved by direct computation or deduced from (2.18)

and (2.19)), and therefore the functions

L−1
M

A , L−1
M

B , (L†
M
)−1A , (L†

M
)−1B ,

are well defined.

Due to its frequent appearance in the computations, the vector valued

function (L†
M
)−1B is denoted by B̃. The following formulas are obtained

〈Aij M L−1
M

Akl〉 = 〈Aij M (L†
M
)−1Akl〉

= 1
(d−1)(d+2) 〈A :M L−1

M
A〉

(
δikδjl+δilδjk−

2

d
δijδkl

)
, (2.33a)

〈BiM (L†
M
)−1Bj〉 = 〈Bi M B̃j〉 = 1

d 〈B ·M B̃〉δij , (2.33b)

leading to the definition of two strictly positive numbers which represent the

viscosity and the thermal diffusivity:

µ∗ = 1
(d−1)(d+2) 〈A :M L−1

M
A〉 , (2.34a)

κ∗ = 1
d 〈B ·M B̃〉 . (2.34b)

In the analysis of the energy balance equation, two other tensor value func-

tions appear:

〈Aij MvkB̃l〉 and 〈(L−1
M

(A))ij MvkB̃l〉 .

They have the same symmetry properties as the tensor given by (2.33a). In

particular, the following formulas will be used:

〈Aij M vkB̃l〉 − 〈Aik M vjB̃l〉 =
2

d
κ∗

(
δikδjl − δijδkl

)
(2.35)
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and

〈L−1
M

(A)ijMvkB̃l〉

= 1
(d−1)(d+2) 〈L

−1
M

(A) :Mv ⊗ B̃l〉
(
δikδjl + δilδjk −

2

d
δijδkl

)
. (2.36)

Proofs and comments:

To obtain the formulas (2.33a) and (2.33b), one uses the symmetries of

the tensors A(v) and B(v), the relation (2.30) for the operators and the fact

that tr(A) = 0. The fact that the constants µ∗ and κ∗ are strictly positive

is a consequence of the strict positivity of the operator L−1
M

defined on E
⊥

(use (2.14)).

To prove (2.35), we use the expression Aij(v) = vivj− |v|2

d δij and observe

that

〈vk(1d |v|
2)MB̃l〉 = 2

d〈vk
( |v|2 − (d+ 2)

2

)
MB̃l〉 = 2

dκ
∗δkl .

To obtain the relation (2.36), we use the symmetry of B̃ deduced from the

symmetry of B, the symmetry of L−1(A) and the fact that this tensor has

zero trace. With the form of the right hand side of (2.36) and the incom-

pressibility condition ∇x ·ũ = 0, the explicit value of the constant

〈L−1
M

(A)ij MvkB̃l〉

does not appear in our derivation.

2.4. A new identity

The derivation of the internal energy balance equation involves higher

order terms and therefore it requires one extra identity which is the object

of the

Proposition 2.5. For any vector u ∈ Rd, one has that

2〈Q
M
(v ·u,L−1

M
A)MB̃〉+ 〈u·vAMB̃〉 = 〈(L−1

M
A)MAu〉 , (2.37)

or equivalently “component-wise”

2〈(Q
M
(viui, (L−1

M
(A))kl)MB̃j〉+ 〈uiviAklMB̃j〉 = 〈(L−1

M
(A))klMuiAij〉

(2.37′)
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Proof. Rotational invariance has been used for the previous relation. In

the present step the translational invariance is also used.

For u ∈ R
d the functions:

Mu = AuM =
1

(2π)
d
2

exp

(
− |v − u|2

2

)
,

Au = AuA = A(v − u)

Bu = AuB = B(v − u)

(2.38)

are introduced. The commutation relation (2.8) implies that one has:

L−1
Mu

Au = AuL−1
M A

and therefore, by parity reasons, for any u ∈ R
d and any s ∈ R one has

s 7→ h(s) = 〈L−1
Msu

(Asu),MsuBsu〉 = 0 . (2.39)

The proof of the identity (2.37) is done with the computation of the deriva-

tive of h(s) at s = 0.

First, one has the following trivial identities:

d

ds

(
M(su)

)
|s=0 = u·vM,

d

ds

(
(M(su))

−1
)
|s=0 = −u·vM−1 ,

d

ds

(
Asu

)
|s=0 = −(v ⊗ u+ u⊗ v − 2

d
v ·uI) ,

d

ds

(
Bsu

)
|s=0 = −(Au+

d+ 2

d
(
|v|2 − d

2
u)) .

(2.40)

Second, using the differentiability up to the order two of the collision oper-

ator, the derivative of LMsu at s = 0 is given by

d

ds
LMsu(g̃) = − d

ds

d

dǫ

( 1

Msu
C
(
Msu(1 + ǫ g̃)

))∣∣∣∣
ǫ=0

= − d

dǫ

[( d

ds

( 1

Msu

))
C
(
Msu(1 + ǫ g̃)

)

+(
1

Msu
)C′

(
Msu(1 + ǫ g̃)

)( d

ds
Msu(1 + ǫ g̃)

)]∣∣∣∣
ǫ=0

= −
( d

ds

( 1

Msu

))
C′
(
Msu

)
(Msug̃)

− 1

Msu
C′
(
Msu

)
(
d

ds
Msug̃)
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− 1

Msu
C′′

(
Msu

)(
(Msug̃), (

d

ds
Msu)

)
. (2.41)

With s = 0 and ǫ = 0 in (2.41), the relations (2.40) and the Taylor

expansion (2.9), one obtains the formula:

d

ds
(LMsu)s=0(g̃) = −(u·v)L

M
g̃ + L

M
(u·vg̃)− 2Q

M
(u·v, g̃) . (2.42)

Since the operator LMsu is defined on the space E⊥ which is independent of

s, one has

d

ds

(
L−1
Msu

)
= −L−1

Msu

d

ds

(
LMsu

)
L−1
Msu

. (2.43)

Since

〈BsuMsuL−1
Msu

(
d

ds
A(su))〉

= −〈(L†
Msu

)−1BsuMsu

(
(v − su)⊗ u+ u⊗ (v − su)− 2

d
(v − su)·uI

)
〉 = 0 ,

(2.44)

the differentiation at s = 0 of the relation (2.39) gives:

0 = −〈(L−1
M

A)MAu〉+ 〈Bu·vML−1
M

A〉− 〈(L†)−1BM(
d

ds
LMsu)s=0(L−1A)〉 .

(2.45)

For the last term on the right hand side of (2.45) the relation (2.42) is used

so that the identity (2.37) is obtained. �

3. Formal Derivation of the Incompressible System with Viscous

Heating

In this section, the formal convergence theorem is proven. The word

“formal” refers to the fact that the solutions of the rescaled equation are

assumed to be bounded in a space of functions where all the convergence

results needed will be true. It is assumed that for any ǫ the solution of the

scaled kinetic equation

ǫ ∂tF
ǫ + v ·∇xF

ǫ =
1

ǫ
C(F ǫ) , (3.1)
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fluctuates about an absolute Maxwellian according to the formula:

F ǫ = M(1 + ǫ G̃ǫ
o + ǫ2G̃ǫ

e) (3.2)

where G̃ǫ
o is v-odd and G̃ǫ

e is v-even.

Theorem 3.1. Let F ǫ(t, x, v) be a sequence of nonnegative solutions to

the scaled kinetic equation (3.1) such that, when written according to formula

(3.2), the sequences G̃ǫ
o and G̃ǫ

e are bounded in a convenient Banach subspace

of C(R+
t (D(Rd

v × R
d
x)) where the following Taylor expansion

1

M
C
(
M(1 + ǫ G̃ǫ

o + ǫ2G̃ǫ
e)
)
= −ǫLG̃ǫ

o + ǫ2
(
− LG̃ǫ

e +Q(G̃ǫ
o, G̃

ǫ
o)
)

+ ǫ3
(
T (G̃ǫ

o, G̃
ǫ
o, G̃

ǫ
o) + 2Q(G̃ǫ

o, G̃
ǫ
e)
)
+Rǫ ,

(3.3)

with Rǫ = O(ǫ4), is uniformly valid.

Assume also that in the sense of distribution, i.e. in D(Rd
v × Rd

x), the

functions G̃ǫ
o , G̃ǫ

e and Q(G̃ǫ
o, G̃

ǫ
o) converge to the three corresponding func-

tions G̃o, G̃e andQ(G̃ǫ
o, G̃

ǫ
o) as ǫ goes to zero. Finally, assume for the moment

that the following convergence in D(Rd
x) holds:

(v|G̃ǫ
o)M → (v|G̃o)M , (vG̃ǫ

o|B̃)
M

→ (v G̃o|B̃)
M
,

(v∨v|G̃ǫ
e)M → (v∨v|G̃e)M , (vG̃ǫ

e|B̃)
M

→ (vG̃e|B̃)
M
,

and

{2(Q(G̃ǫ
o, G̃

ǫ
e)|B̃)

M
+ (T (G̃ǫ

o, G̃
ǫ
o, G̃

ǫ
o), B̃)

M
}

to

{2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o), B̃)
M
} .

Assume also that the reminder term Rǫ in the formula (3.3) satisfies the

estimate:

lim
ǫ→0

ǫ−2(Rǫ|B̃)
M

= 0 .

Then the limits G̃o and G̃e have the form

G̃o = v ·ũ , (3.4)
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G̃e =
(
ρ̃+(12 |ũ|2 + d

2 θ̃)
2
d (

|v|2 − d

2
)+ 1

2A(v) : (ũ ∨ ũ)
)
−L−1A(v) :∇xũ . (3.5)

The velocity ũ is divergence free while the density and temperature fluctu-

ations, ρ̃ and θ̃, satisfy the Boussinesq relation:

∇x ·ũ = 0 , (3.6a)

p̃ = ρ̃+ θ̃ . (3.6b)

Moreover, the functions ρ̃, ũ, and θ̃ are weak solutions of the equations

∂tũ+ ũ·∇xũ− µ∗∆xũ = −∇xp̃ , ∇x ·ũ = 0 , (3.7)

and

∂t(
d
2 θ̃+

1
2 |ũ|

2− ρ̃)+∇x·
(
ũ(d+2

2 θ̃+ 1
2 |ũ|

2)
)
= κ∗∆xθ̃+µ∗∇x·

(
ũ(∇xũ+(∇xũ)

T )
)
.

(3.8)

Proof. With the expansion (3.2), the following “moment equations” are

deduced from the local conservation properties:

ǫ2∂t(1|G̃ǫ
e)M +∇x ·(v|G̃ǫ

o)M = 0 , (3.9a)

∂t(v|G̃ǫ
o)M +∇x ·(v∨v G̃ǫ

e)M = 0 , (3.9b)

ǫ2∂t((
1
2 |v|

2 − d+2
2 )|G̃ǫ

e))M +∇x ·(v (12 |v|
2 − d+2

2 )|G̃ǫ
o)M = 0 . (3.9c)

Proposition 2.4 implies that LG̃e, Q(G̃o, G̃o), and Q(G̃e, G̃e) are v-even,

while LG̃o, Q(G̃o, G̃e), and T (G̃o, G̃o, G̃o) are v-odd. It is therefore possible

to deduce from (3.2) and (3.3) the equations

ǫ2∂tG̃
ǫ
o+ǫ2v·∇xG̃

ǫ
e+LG̃ǫ

o = 2ǫ2Q(G̃ǫ
o, G̃

ǫ
e)+ǫ2T (G̃ǫ

o, G̃
ǫ
o, G̃

ǫ
o)+O(ǫ3) , (3.10)

and

ǫ2∂tG̃
ǫ
e + v ·∇xG̃

ǫ
o + LG̃ǫ

e = Q(G̃ǫ
o, G̃

ǫ
o) +O(ǫ2) . (3.11)

From (3.10), one deduces that

G̃o = lim
ǫ→0

G̃ǫ
o

is an odd solution of the equation LG̃o = 0. Hence, one has

G̃o = ũ(x, t)·v , (3.12)
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which with (3.9a) also implies the relation

0 = ∇x ·(v|G̃o)M = ∇x ·ũ , (3.13)

and proves the incompressibility. Equation (3.11) leads, for ǫ → 0, to the

relation:

G̃e = lim
ǫ→0

G̃ǫ
e

LG̃e = −v ·∇x(v ·ũ) +Q(ũ·v, ũ·v) . (3.14)

With the (2.21) and (2.23b) one has

Q(ũ·v, ũ·v) = 1
2L(A(v) : (ũ ∨ ũ)) .

Moreover with the incompressibility condition, the first term of the right

side of (3.14) can also be written as

v ·∇x(v ·ũ) = v∨v :∇xũ = (v∨v − 1
d |v|

2I) :∇xũ = A(v) :∇xũ , (3.15)

which proves that G̃e is a solution of the equation:

LG̃e = −∇x(A(v) : ũ) +
1
2L(A(v) : (ũ ∨ ũ)) . (3.16)

The Fredholm property is used to uniquely determine, from the above equa-

tion, G̃e up to an even term ze ∈ E = N(L
M
), which, in accordance with the

expansion (2.20)−(2.21) of the Maxwellian

1 + ǫ2ρ̃

(2π(1 + ǫ2θ̃))
d
2

exp

(
− |v − ǫ ũ|2

2(1 + ǫ2θ̃)

)
,

is written as

ze = ρ̃+ (12 |ũ|
2 + d

2 θ̃)
2
d (

|v|2 − d

2
) . (3.17)

Therefore, the macroscopic variables ρ̃ and θ̃ are introduced, and also mi

denoting the (x, v, t) dependent scalar functions given by (cf. (2.21)):

m(1) = ũ·v ,
m(2) = ρ̃+ (12 |ũ|

2 + d
2 θ̃)

2
d (

1
2 |v|

2 − d
2 ) +

1
2A(v)·(ũ ∨ ũ) = ze +

1
2A(v)·(ũ ∨ ũ)

m(3) = ρ̃ũ·v + θ̃ũ·B(v) + 1
3C(v)·(ũ ∨ ũ ∨ ũ) .
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Eventually, one has:

G̃e =ze +
1
2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ

=m(2) − L−1(A(v)) : ∇xũ .
(3.18)

With ǫ → 0+ the equation (3.9b) (conservation of macroscopic momentum)

gives the Navier Stokes equation. More precisely:

∂t(v|G̃o)M = −∇x ·(v ∨ v|G̃e)M = −∇x ·(A(v)|G̃e)M −∇x(
|v|2
d

|G̃e)M , (3.19)

inserting in (3.19) the expression of G̃o given by (3.12) and the expression

of G̃e given by (3.18) leads to the equation:

∂tũ = −∇x(A(v)|
(
ze +

1
2(A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ

)
)
M

−∇x(
|v|2
d

|
(
ze +

1
2(A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ

)
)
M

= ∇x

(
(A(v) : (L−1(A(v))))

M
: ∇xũ

)

−∇x

(
1
2(A(v) : A(v)))M : (ũ ∨ ũ

)
+ (

|v|2
d

|G̃e)M , (3.20)

where the notation (g(v))
M

= (g(v)|1)
M

is used. Explicit computations of

moments give:

(1d |v|
2|G̃e))M = (

|v|2
d

(
ρ̃+(12 |ũ|

2+
d

2
θ̃)

2

d
(
|v|2 − d

2
)
)
)
M

=
|ũ|2
d

+(θ̃+ ρ̃) (3.21)

and

1
2(A(v) : (ũ ∨ ũ)))

M
= ũ ∨ ũ− 1

d |ũ|
2I . (3.22)

Therefore, the equation (3.20) becomes:

∂tũ−∇x

(
(A(v) : L−1A(v))

M
: ∇xũ

)
+∇x(ũ⊗ ũ) +∇x(θ̃ + ρ̃) = 0 . (3.23)

On the other hand, with (2.33a) one has:

∇x((A(v) : L−1A(v))
M

: ∇xũ) = µ∗∇x

(
(∇xũ) + (∇xũ)

T − 2

d
∇x ·ũ

)
;

(with the incompressibility)

= µ∗∆xũ . (3.24)

Therefore the Boussinesq relation (3.6b) and the Navier-Stokes equation

(3.7) are proven.
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To obtain the energy balance equation (3.8), we use (3.9c) in the follow-

ing form:

∂t((
|v|2 − (d+ 2)

2
)|G̃ǫ

e)M +∇x · (G̃ǫ
o|
B(v)

ǫ2
)
M

= 0 . (3.25)

The first term on the left side of (3.25) converges to

(
|v|2 − (d+ 2)

2
|G̃e)M = (

|v|2 − (d+ 2)

2
|ze)M , (3.26)

which is easily computed to give:

lim
ǫ→0

(
|v|2 − (d+ 2)

2
|G̃ǫ

e)M = 1
2 |ũ|

2 + d
2 θ̃ − ρ̃ (3.27)

and corresponding to the time derivative in (3.8). For the derivation of the

limit of the second term, write:

lim
ǫ→0

(G̃ǫ
o|
B

ǫ2
)
M

= lim
ǫ→0

(
1

ǫ2
LG̃ǫ

o|B̃)
M

(3.28)

and use the equation (3.10) to obtain:

lim
ǫ→0

(G̃ǫ
o|
B(v)

ǫ2
)
M

= −(∂tG̃o|B̃)
M

− (v ·∇xG̃e|B̃)
M

+2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M
. (3.29)

With B̃ ∈ E
⊥ one has

(∂tG̃o, B̃)
M

= 0 .

Therefore,

lim
ǫ→0

(G̃ǫ
o|
B

ǫ2
)
M

= 2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M

−∇x ·(v G̃e|B̃)
M
.

(3.30)

For the computation of the first two terms on the right side of (3.30), write,

using (3.12) and (3.18):

2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M

= 2(Q(m(1),m(2))|B̃)
M

+ (T (m(1),m(1),m(1))|B̃)
M

−2(Q(u·v,L−1(A(v)) : ∇xu)|B̃)
M
. (3.31)
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For the first two terms of (3.31) the relation (2.18c) can be used to give:

2(Q(m(1),m(2))|B̃)
M

+ (T (m(1),m(1),m(1))|B̃)
M

= (L(m(3))|(L†)−1(B))
M

= (
(
ρ̃ũ·v + θ̃B(v)·ũ+ 1

3C(v) · (ũ ∨ ũ ∨ ũ)
)
|B(v))

M

= ũ(d+2
2 θ̃ + 1

2 |ũ|
2) . (3.32)

Inserted in (3.28) and then in (3.25), the right hand side of (3.32) gives the

advection term in (3.8).

Eventually, to conclude the proof of the formula (3.8) one has to show

that:

∇x ·∇x ·(v G̃e|B̃)
M

+∇x ·
(
2(Q(u·v,L−1(A(v)) : ∇xu)|B̃)

M

=κ∗∆xθ̃ + µ∗∇x ·
(
ũ((∇xũ) + (∇xũ)

T )
)
.

(3.33)

Inserting the expression of G̃e given by (3.14) in the first term of the

right hand side of (3.33) gives:

∇x · (vG̃e|B̃)
M

= ∇x ·(v
[
ρ̃+ (12 |ũ|2 +

d

2
θ̃)

2

d
(
|v|2 − d

2
)

+1
2(A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ

]
|B̃)

M

= ∇x ·(θ̃B|B̃)
M
+∇x ·(

|ũ|2
d

B|B̃)
M
+∇x ·(12 (vA(v) : (ũ ∨ ũ))|B̃)

M

−∇x ·(vL−1(A(v)) : ∇xũ|B̃)
M
. (3.34)

Therefore, the proof of (3.33) is reduced to the proof of the two following

relations:

∇x ·∇x ·(vL−1(A(v)) : ∇xũ
)
|B̃)

M
= 0 (3.35)

and

2(Q(ũ·v,L−1(A(v)) : ∇xũ)|B̃)
M

+∇x ·(12 (vA(v) : (ũ ∨ ũ))|B̃)
M

+∇x(κ
∗ |ũ|2

d
)

= µ∗ũ
(
(∇xũ) + (∇xũ)

T
)
. (3.36)

For the relation (3.35), we can use

(L−1(viA(v))kl|B̃j)M = c
(
δikδjl + δilδjk −

2

d
δijδkl

)
,

(cf. (2.36)) and the incompressibility (∇x ·ũ = 0).



26 C. BARDOS, C. DAVID LEVERMORE, S. UKAI AND T. YANG [March

The proof of (3.36) is done component-wise: The left hand side being a

summation in i, k, l of terms in the form:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (vlAki|B̃j)M ũi
∂ũk
∂xl

+ 2κ∗

d ũi
∂ũi
∂xj

With the formula (2.35) and the incompressibility, one has:

∑

i,k,l

(
(vlAki|B̃j)M − (viAkl|B̃j)M

)
ũi
∂ũk
∂xl

= 2κ∗

d

(∑

i,k,l

(δijδkl − δkiδlj)ũi
∂ũk
∂xl

)

= 2κ∗

d ũj
∑

k

∂ũk
∂xk

− 2κ∗

d

∑

i

ũi
∂ũi
∂xj

= −2κ∗

d

∑

i

ũi
∂ũi
∂xj

. (3.37)

With (3.37) the right hand side of (3.36) coincides with:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (viAkl|B̃j)M ũi
∂ũk
∂xl

.

Eventually, the “new identity” (2.37) can be used to give:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (vlAki|B̃j)M ũi
∂ũk
∂xl

+ 2
dκ

∗ũi
∂ũi
∂xi

= 2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (viũiAkl|B̃j)M
∂ũk
∂xl

= ũi(Aij |L−1(A(v))kl)M
∂ũk
∂xl

,

which, with (2.33a), coincides with

µ∗ũ
(
(∇xũ) + (∇xũ)

T
)
,

and the proof of (3.36) is completed. �

4. Formal Derivation of the Non-classical System

As stated in Introduction, the limits of the scaled Boltzmann equation

(1.3) are not exhausted by the incompressible limits (1.8), (1.9), and (1.13).

The aim of this section is to show that a mere change from the uniform

Maxwellian to a local Maxwellian in the decomposition (1.4) of F ǫ gives

rise to a different system of fluid dynamical equations in the limit ǫ → 0+.

More precisely, we will take the decomposition (1.17) and derive a system of

fluid dynamical equations which is different not only from (1.8),(1.9), and
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(1.13), but also from any other classical systems including the Euler and

Navier-Stokes equations, compressible or incompressible.

This system of fluid dynamical equations exhibits the “ghost effect”

mentioned in Section 1. Unlike the incompressible limits, however, it does

not contain the viscous heating. Furthermore, the even-odd decomposition

in velocity variables v like in (1.16) is a consequence of the setting but not the

assumption, and the counterparts of the hypothesis (1.6) and (1.12) on the

asymptotic behavior of ρǫ and θǫ do not result in any essential distinction.

This means that the viscous heating appears only in a higher correction.

In contrast to Theorem 3.1, the formal convergence theorem will be

established for the “genuine” Boltzmann equation for three space dimension

and the convergence hypothesis will be stated in terms of the asymptotic

expansions of both macroscopic and microscopic quantities. The main result

of this section is as follows.

Theorem 4.1. Write the solution F ǫ(t, x, v) of the scaled Boltzmann

equation

ǫ∂tF
ǫ + v · ∇xF

ǫ =
1

ǫ
C(F ǫ, F ǫ), (4.1)

in the form of the micro-macro decomposition:

F ǫ = Mǫ + ǫGǫ, (4.2)

where

Mǫ = M(ρǫ, uǫ, θǫ) (4.3)

is a local Maxwellian determined by the solutions F ǫ themselves while

Gǫ ⊥ E
ǫ (4.4)

is the microscopic component where E
ǫ stands for the collision invariant

subspace associated with the local Maxwellian Mǫ. See [15, 14] for details.

And, C is the usual collision operator, which is given by (5.4) in Section 5.

We assume that the following asymptotic expansions for small ǫ > 0 hold

in sufficiently strong Banach spaces which vary depending on the relevant

quantities.

ρǫ = ρ+ ǫ2ρ̃+O(ǫ3),
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uǫ = ǫũǫ, ũǫ = ũ+ ǫǔ+O(ǫ2),
(4.5)

θǫ = θ + ǫ2θ̃ +O(ǫ3),

Gǫ = Go + ǫGe +O(ǫ2).

Then, the leading parameters ρ, ũ, θ of the local Maxwellian Mǫ solve the

“ghost effect” equations (4.6) below while the microscopic first and second

order components Go and Ge are odd and even functions of v respectively.

The relevant equations are,

∇x(ρθ) = 0,

∂tρ+∇x · (ρũ) = 0,

∂t(ρũ) +∇x · (ρũ⊗ ũ) +∇xP
∗ = ∇x ·D(ũ, θ)−∇x · Σ(θ, ρ),

3
2∂t(ρθ) +

5
2∇x · (ρθũ) = 5

2∇x · (κ(θ)∇xθ),

(4.6)

where P ∗ is a unknown scalar pressure while

κ(θ) = γ2(θ)
√
θ,

D(u, θ) = γ1(θ)
√
θ

(
∇xu+ (∇xu)

T − 2

3
∇x · u I

)
,

Σ(θ, ρ) =
γ3(θ)

ρ
Σ1(θ) +

γ7(θ)

ρθ
Σ2(θ),

Σ1(θ) = ∇2
xθ −

1

3
∆xθ I,

Σ2(θ) = ∇xθ ⊗∇xθ −
1

3
|∇xθ|2 I,

where γj(θ) are positive functions of θ > 0 determined exclusively by the

linearized collision operator LM and the Burnett functions A(v) and B(v).

Their explicit formulas can be found in [18].

Remark 4.1. The system (4.6) implies that the infinitesimal (ghost)

bulk velocity ũ governs the evolution of the ”real-world” mass density ρ and

temperature θ. This is the “ghost effect” introduced in [18]. Notice that

(4.6)a means that

the pressure P0 =
3
2ρθ may be a function of t but not of x.

Clearly, P0 is to be determined by the condition on the boundary or at

infinity in the x-space but not by the initial condition. Thus, the ghost
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effect is in action only through the boundary effect or the effect from the

infinity.

Remark 4.2. Suppose that ρ and θ are constant (both in t and x).

Then, (4.6)a is a trivial equation while (4.6)b,c reduce to the classical incom-

pressible Navier-Stokes equations (1.8)a,b. Further, (4.6)d becomes trivial

but not the heat conductive equation (1.9)b. This means the latter is the

first or higher order correction to (4.6)d.

Also, the viscous heating does not appear in (4.6). Actually, it can be

shown to be the third order correction, although we do not go into it here.

Remark 4.3. The asymptotic expansions (4.5) do not contain the first

order terms for ρǫ and θǫ. However, the inclusion of them do not induce any

essential change to (4.6). We will come back to this point in Theorem 4.2,

after finishing the proof of the above theorem.

Proof of Theorem 4.1. Plugging the decomposition (4.2) into (4.1) yields

ǫ∂tMǫ + v · ∇xMǫ+ǫ2∂tG
ǫ + ǫv · ∇xG

ǫ = LMǫGǫ + ǫC(Gǫ,Gǫ), (4.7)

where

LMǫg = 2C(Mǫ, g)

is the linearized operator of C around Mǫ. Under the hypothesis (4.5), as

ǫ → 0+, (4.7) has the limit

v · ∇xM = LGo, (4.8)

with

M = M(ρ, 0, θ), L = LM. (4.9)

If (4.8) is taken as an equation for Go, it requires the solvability condition

v · ∇xM ⊥ E or

∇x· < vφj(v)M >= 0, j = 0, . . . , 4. (4.10)

The inner products for j = 0, 4 are zero because M is even in v but vφj(v)

are odd for such j, and for i, j = 1, 2, 3, we have < vivj ,M >= δijρθ whence

follows (4.6)a:

∇x(ρθ) = 0. (4.11)
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Once the solvability condition (4.10) is satisfied, the solution of (4.8) is

easily computed to give

Go =L−1
(
v · ∇xM

)
=

1√
θ
B̃
( v√

θ

)
· ∇xθ, B̃(v) = L−1B(v), (4.12)

which is odd in v because so is the Burnett function B(v), and L together

with its inverse preserves the parity.

Now, subtraction (4.7) from (4.8) yields

ǫ∂tMǫ + ǫv · ∇x(Mǫ −M) + ǫ2∂tG
ǫ + ǫv · ∇xG

ǫ

= LǫGǫ − LGo + ǫC(Gǫ,Gǫ). (4.13)

Since (4.5) implies

Mǫ −M = ǫmo +O(ǫ2), mo =
1

θ
v · ũM, (4.14)

we have

LǫGǫ − LGo = 2C(Mǫ −M,Gǫ) + 2C(M,Gǫ −Go)

= ǫ
{
2C(mo,G

ǫ) + LGe

}
+O(ǫ2).

Thus (4.13), when divided by ǫ, is

∂tMǫ+v · ∇xmo + ǫ∂tG
ǫ + v · ∇xG

ǫ

= 2C(mo, G
ǫ) + LGe + C(Gǫ,Gǫ) +O(ǫ),

which yields in the limit

∂tM+v · ∇xmo + v · ∇xGo = 2C(mo,Go) + LGe + C(Go,Go). (4.15)

Put

H = ∂tM+ v · ∇xmo + v · ∇xGo,

and take (4.15) as an equation for Ge. Then, the solvability condition is

H ⊥ E, that is,

< φj,H >= 0, j = 0, . . . , 4. (4.16)

Consider the case j = 0. Since Go ⊥ E as well as G by definition (4.2),
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we have

< φ0,H >= ∂t < M > +∇x· < vmo >= 0,

which gives, in particular by (4.14),

∂tρ+∇x · (ρũ) = 0, (4.17)

which is (4.6)b.

For j = 1, 2, 3, (4.16) reduces to

∇x· < (v ⊗ v)(mo +Go) >= 0, (4.18)

but this is a trivial equation because v⊗ v is even in v while mo and Go are

odd so that < (v ⊗ v)(mo +Go) >= 0.

Finally, for j = 4, we have

1

2
< |v|2M > = 3ρθ,

1

5
< v|v|2mo >= 5ρũθ

1

2
< v|v|2Go > =

1√
2θ

< v|v|2 ⊗ B̃
( v√

θ

)
> ∇xθ.

Then, (4.16) gives

3

2
∂t(ρθ) +

5

2
∇x · (ρu) =

5

2
∇x · (κ(θ)∇xθ), (4.19)

which is just (4.6)d.

It remains to derive (4.6)c. Unlike the equations (4.6)b,d, it comes from

the second order terms of (4.13). More precisely, we shall compute

ǫ−2 < v (4.13) >, (4.20)

and go to the limit ǫ → 0+ to deduce (4.6)c. Firstly, since < vM >= 0, we

get

ǫ−2∂t < vǫMǫ > = ǫ−1∂t < v(Mǫ −M)} >

= ∂t < vmo > +O(ǫ) → ∂t(ρũ) (ǫ → 0+). (4.21)

Secondly, the expansion (4.14) can be strengthened as

Mǫ −M = ǫmo + ǫ2me +O(ǫ3), (4.22)
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for an even function me. Then, since < v ⊗ vmo >= 0 due to even-odd

combination, we have

ǫ−2∇x· < v ⊗ v(Mǫ −M) >

= ǫ−1∇x· < v ⊗ v(mo + ǫme) > +O(ǫ)

→ ∇x· < v ⊗ vme > (ǫ → 0+). (4.23)

Sinceme is seen to be even in each vi and symmetric with respect to v1, v2, v3,

we have

< v ⊗ vme >= p∗1I, (4.24)

with p∗1 =< v2ime > which is independent of i.

Thirdly, notice that

< v ⊗ vGo >= 0

due to even-oddness. Consequently, we get

ǫ−1 < v ⊗ v(Gǫ −G) >=< v ⊗ vGe > +O(ǫ)

→ <A(v)Ge>−1

3
< |v|2Ge > I =< Ã,LGe > −p∗2I (ǫ → 0+), (4.25)

where A(v) is the Burnett function defined in (2.22), Ã(v) = L−1A(v), and

p∗2 =< |v|2Ge > /3.

Plugging (4.21), (4.23), and (4.25) into (4.20) yields

∂t(ρũ) +∇xP
∗ = −∇x· < Ã,LGe > . (4.26)

To compute the last term, we now use (4.15) in the form,

LGe = (I −P)H − 2C(mo,Go)− C(Go,Go). (4.27)

Since (I − P)M = 0, the left hand side is determined exclusively by mo

and Go, which includes, in turn, quantities depending only on ρ, ũ, θ as seen

by (4.14) and (4.12) respectively. After some manipulation, we then have

(4.6)c. This completes the proof of the theorem. �

We conclude this section with the point raised in Remark 4.3.
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Theorem 4.2. The reinforcement of (4.5) with the asymptotic expan-

sions

ρǫ = ρ+ ǫρ1 + ǫ2ρ̃+O(ǫ3), θǫ = θ + ǫθ1 + ǫ2θ̃ +O(ǫ3),

does not change (4.6) at all formally but supplements it with the extra relation

∇x(ρθ1 + ρ1θ) = 0. (4.28)

Proof. First, (4.11) or (4.6)a does not change. The main difference is

that mo and me in (4.14) and (4.22) now have even and odd parts respec-

tively. Elementary calculation yields

mo = moo +moe ≡
1

θ
v · ũM+

(ρ1
ρ

− (32 − 1
2

|v|2
θ

)
θ1
θ

)
M.

Notice that moo is the same as the old mo. On the other hand, < vmoe >= 0

and hence < vmo >=< vmoo >, which recovers (4.17) and hence (4.6)b.

Further, since

< vivjmoo >= 0, < vivjmoe >= (ρθ1 + ρ1θ)δij

hold, (4.18) is reduced to the extra equation (4.28). And, since

1

5
< v|v|2mo >=

1

5
< v|v|2moo >= 5ρũθ,

(4.19), i.e., (4.6)d, survives.

To deduce (4.6)c, we shall compute (4.20) with the new mo and me. We

already know that (4.21) is true with moo in place of mo. Write me of (4.22)

as a sum of the even and odd parts:

me = mee +meo.

mee is not the same as the old me. Although < v⊗ vmo > 6= 0, (4.23) is still

valid with the new me by virtue of the extra relation (4.28), and so is (4.24)

with mee, giving a different p∗1.

The equations (4.25), (4.26), and (4.27) are the same as before but with

the new mo. As a consequence, the only additional term we should compute

for the inner product < Ã,LGe > is the inner product

< Ã, C(moe, Go) > .
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And, this is zero because Ã is even and C(moe, Go) odd in v. Thus (4.6)c

follows in the exactly same way as before. This completes the proof of the

theorem. �

5. Regularity Results and Convergence Proofs

In this section a complete proof of the validity of the formal Theorem

3.1 is proposed for the “genuine ” Boltzmann equation. The analysis is

done for the three-dimensional space. For the macroscopic quantities, the

Sobolev spaces H l(R3
x) are used with norms denoted by || · ||l. Furthermore,

any solution of the equation

−∆xf = ∇x · g ;
∫

R3

f(x)dx = 0 , g ∈ H l(R3
x) (5.1)

can be represented as

f(x) = G(g)(x) = ((−∆x)
−1∇x ·g)(x) = 1

4π

∫

R

x− y

|x− y|3 g(y)dy, (5.2)

with G defining a linear continuous operator from the space H l(R3
x) with

value in the space H0
l+1:

H0
l = {f ∈ C(R3

x); ∇xf ∈ H l(R3
x)},

|f |l = ||f ||H0

l
= { sup

x∈R3
x

|f(x)|}+ ||∇xf ||l} . (5.3)

The collision operator is given by the formula

C(F ) =

∫∫
(F ′

1F
′ − F1F )q(v1 − v, ω) dω dv1dω . (5.4)

The variable ω lies on the unit sphere S2 = {ω ∈ R
3 : |ω| = 1} endowed

with its rotationally invariant unit measure. The F , F1, F
′ and F ′

1 appearing

in the integrand are understood to mean F (t, x, ·) evaluated at the velocities

v, v1, v
′ and v′1 respectively, where the primed velocities are defined by

v′ = v + ω ω ·(v1 − v) , v′1 = v1 − ω ω ·(v1 − v) , (5.5)

for any given (v, v1, ω) ∈ R
3 × R

3 × S2.
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The positive function q(v1− v, ω) is the cross section, and following [21]

one observes that the proof done below applies for the hard sphere model

q(v1 − v, ω) = σ|(v1 − v) · ω|, (5.6)

and more generally for the inverse power law with angular cuttoff

q(v1 − v, ω) = |(v1 − v)|γ
∣∣∣
(v1 − v) · ω
|(v1 − v)|

∣∣∣
−γ′

Ξ
((v1 − v) · ω

|(v1 − v)|
)
, (5.7)

with s > 4, γ = 1 − 4
s , γ′ = 1 + 2

s and Ξ a smooth positive function which

vanishes in a small neighborhood of 0.

The definitions and notations introduced in the previous sections are

systematically used. In particular one has

C(F,G) =
1

2

∫∫
(F ′

1G
′ +G′

1F
′ − F1G−G1F )q(v1 − v, ω) dω dv1,

LMG = −2M−1C(M,MG),

Q(G̃, U) = M−1C(MG̃,MU). (5.8)

The linearized operator, LM , can be decomposed as follows

LMu = ν(v)u+Ku, Ku(v) =

∫

Rd

M−1(v)K(v, v′)u(v′)dv′ (5.9)

with the function ν and the operator K satisfying the following relations:

0 < ν0 ≤ ν(v) ≤ ν1|v|γ ,
K(v, v′) = K(v′, v),

∫

Rd

M−1(v)|K(v, v′)||v′|−βdv′ ≤ k0|v|−(β+1),

∫

Rd

M−1(v)|K(v, v′)|2dv′ ≤ k1,

(5.10)

with suitable constants γ, β, k etc.. As a consequence, it satisfies the basic

assumptions in Section 2. In particular, its kernel is the five dimensional

space

E = span {1, v, |v|
2 − 3

2
} (5.11)

The orthonormal projection on E is denoted by P and any function may

be decomposed into its hydrodynamic part and its non hydrodynamic part
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according to the formula and notations :

f = Pf + (I − P)f = Pf +⊥ Pf . (5.12)

It is well known that the incompressible Navier-Stokes equation (3.7)

for initial data u0 in the Sobolev space H l(R3
x) (with l > 3/2) do have

a unique classical solution for 0 ≤ t ≤ T with T = ∞ when ||u0|| is small

enough (in H l(R3
x)) with respect to the viscosity. Similar type of results have

been established both for the Boltzmann equation and for some macroscopic

limits. Such macroscopic limits include both the Euler limit (cf. [17, 22, 23])

and the incompressible limit (cf. [3].) In this setting, the natural counterpart

of the Sobolev spaces are the Grad spaces

Hl,β ≡ {f = f(·, v) | (1 + |v|β)M
1
2 (v)f ∈ L∞(R3

v;H
l),

sup
|v|>R

(1 + |v|β)||M
1
2 (v)f(·, v)||l → 0 (R → ∞)},

(5.13)

where the corresponding norms are denoted by ||f ||l,β.

The fact that a large variety of formal macroscopic limits of the Boltz-

mann equation lead both to well and ill posed problems (classical and non-

classical equations including Burnett and Prandtl equations, and “ghost ef-

fect” equations) justifies that complete proofs should be given.

On the other hand, the contribution of the present section involves

higher order corrections. Therefore there is no room for weak convergence,

say from renormalized solutions of the Boltzmann equation to weak solutions

of the Navier-Stokes equation as in [1] and [10], and the initial data will be

assumed in the space Hl,β with l and β large enough.

The relevance of the Grad spaces is mainly due to the following facts

(cf. Theorem 2.1.3 of [21]).

(i) For l > 3/2 and β > 5/2, Q is a bilinear continuous operator in Hl,β :

||ν−1Q(f, g)||l,β ≤ C||f ||l,β||g||l,β . (5.14)

(ii) The pseudo inverse L−1
M defined on E

⊥ is continuous in any Grad space:

Pf = 0, LMf = g ⇒ ||f ||l,β ≤ C||g||l,β . (5.15)
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In this context, a slightly weaker version of the following theorem was

proven in [3].

Theorem 5.1. Assume that the sequence G̃ǫ
0 converges to a hydrody-

namical fluctuation in the following sense:

G̃ǫ
0 = {ρ0 + ũ0 · v +

1

2
(|v|2 − d)θ0}+ ǫwǫ

0, (5.16)

with ρ0, ũ0 and θ0 ∈ Hl(R
d
x), and wǫ uniformly bounded in Hl,β (l > 3

2 , β >
5
2 ). Then, for the corresponding solution of the rescaled Boltzmann equation

ǫ∂tG̃
ǫ + v ·∇xG̃

ǫ +
1

ǫ
LMG̃ǫ = Q(G̃ǫ, G̃ǫ), G̃ǫ(x, v, 0) = G̃ǫ

0 , (5.17)

there exists an ǫ-independent time T such that G̃ǫ is ǫ-uniformly bounded in

L∞(0, T ;Hl,β) .

Furthermore:

(i) For any δ, η > 0 the sequence G̃ǫ converges in C([δ, T ];Hl−η,β,loc) to

an hydrodynamic fluctuation which is solution of the incompressible

Navier-Stokes, Boussinesq and the θ-linear heat diffusion equations:

lim
ǫ→0

G̃ǫ = {ρ(x, t) + ũ(x, t) · v + 1

2
(|v|2 − d)θ(x, t)}

∂tũ+ ũ·∇xũ+∇xp̃ = µ∗∆ũ ,

ρ(x, t) + θ(x, t) = 0 , ∇x · ũ = 0,

d+2
2 (∂tθ̃ + ũ·∇xθ̃) = κ∗∆θ̃ .

(5.18)

with initial data given by:

ũ(x, 0) = ũ0(x) + (∇xp0)(x), −∆xp0 = ∇x ·(ũ0 · ∇xũ0) ;

θ(x, 0) = 1
2 (θ0(x)− ρ0(x)) .

(5.19)

(ii) The convergence of G̃ǫ holds in C([0, T ];Hl−η,β,loc) if the initial data

satisfy the “compatibility conditions”:

∇x ·ũ0 = 0, and ρ0 + θ0 = 0. (5.20)

(iii) For ρ0, ũ0 and θ0 small enough in H l(R3
x), T can be taken to be +∞.
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In view of the adaptation to the present situation, the main steps of the

proof are recalled below.

The operators

Bǫ = −ǫv · ∇x + LM (5.21)

are introduced and shown to be generators of contraction semigroups in

any Grad spaces Hl,β. Then the equation (5.17) is written according to the

Duhamel principle

G̃ǫ = exp
tBǫ

ǫ2
G̃ǫ

0 +
1

ǫ

∫ t

0
exp

(t− s)Bǫ

ǫ2
Q(G̃ǫ, G̃ǫ)(s)ds. (5.22)

The spaces

Xl,β = L∞(0, T ;Hl,β), (5.23)

are introduced and their norm is denoted by |||.|||l,β .

For l > 3/2 and β > 3/2 + 1

Ψǫ(G̃, H̃) =
1

ǫ

∫ t

0
exp

(t− s)Bǫ

ǫ2
Q(G̃, H̃)(s)ds, (5.24)

defines a bilinear continuous map from Xl,β ×Xl,β to Xl,β. With a detailed

analysis of the spectral properties of the semi-group exp tBǫ, one shows the

validity of the following ǫ-uniform estimates:

|||Ψǫ(G̃, H̃)|||l,β ≤ CT |||G̃|||l,β|||H̃|||l,β, for T < ∞,

|||Ψǫ(G̃, H̃)|||l,β ≤ C|||G̃|||l,β|||H̃ |||l,β, for T = ∞.
(5.25)

From (5.22) and (5.25), one deduces that:

(a) For T small enough with respect to ||G̃0
0||l,β, the sequence G̃ǫ is uniformly

bounded in L∞(0, T ;Hl,β).

(b) For ||G̃0
0||l,β small enough the sequence G̃ǫ is uniformly bounded in L∞(0,

∞;Hl,β).

The statement (ii) of Theorem 5.1 concerns the initial layer which may ap-

pear in the term

exp
tBǫ

ǫ2
G̃ǫ

0
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of the Duhamel formula (5.22). Following classical spectral analysis of the

linearized Boltzmann operator, one writes (with Fx denoting the x Fourier

transform):

exp
tBǫ

ǫ2
f = F−1

x e−tλǫ
o(ξ)FxPof + F−1

x e−tλǫ
e(ξ)FxPef

+exp
tBǫ

ǫ2
(Pf − (Po + Pe)f) + exp

tBǫ

ǫ2
(f − Pf)

(5.26)

In (5.26) Po is the projection on the space of odd hydrodynamical fluctu-

ations ũ(x) · v which satisfy the divergence free condition, while Pe is the

projection on the even hydrodynamical fluctuations ρ + 1
2(|v|2 − d)θ which

satisfy the Boussinesq equation ρ+ θ = 0. Further, λǫ
o(ξ) and λǫ

e(ξ) are the

eigenvalues of the Fourier transform of the linearized Boltzmann operator

associated with the projections Po and Pe respectively. Eventually, they

satisfy

Re(λǫ
o(ξ)) ≤ −βo|ξ|2, Re(λǫ

e(ξ)) ≤ −βe|ξ|2,

for some positive constants βo and βe respectively.

For any f in Hl,β the function exp tBǫ

ǫ2
(f − Pf) converges to zero in

C([0, T ];Hl,β). On the other hand using the stationary phase method in

Fourier space, one shows that the function exp tBǫ

ǫ2
(Pf−(Po+Pe)f) converges

to zero in C([δ, T ];Hl−η,β,loc) for any δ > 0. Therefore, G̃ǫ converges in

C([δ, T ],Hl−η,β,loc) for any δ > 0 to a hydrodynamical fluctuation with initial

value given by:

G̃(x, 0) = (P0 + Pe){ρ0(x) + ũ0(0, x) · v +
1

2
(|v|2 − 3)θ0(0, x)}

= ũ(x, 0) · v + θ(x, 0)
(1
2
(|v|2 − 3)− 1

)
(5.27)

with ũ(x, 0) and θ(x, 0) given by (5.19).

Eventually, one observes that

exp
tBǫ

ǫ2
(Pf − (Po + Pe)f)

converges to zero in C([0, T ];Hl−η,β,loc) if and only if

Pf − (Po + Pe)f = 0 (5.28)
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which is equivalent to

∇x ·ũ0 = 0 and ρ0 + θ0 = 0 . (5.29)

For the present derivation which involves higher order correction, the follow-

ing class of “well prepared” initial data is considered:

G̃ǫ
0 = ũ0 · v + ǫ{1

2 (A(v) : (ũ0 ∨ ũ0))− L−1
M (A(v)) : ∇xũ0}

+ǫ{ρ̃0 + (12 |ũ0|
2 + d

2 θ̃0)
2
d (

|v|2 − d

2
)}+ ǫ2wǫ

0 (5.30)

In (5.30) the hydrodynamic functions ũ0, ρ̃0 and θ̃0 are assumed to satisfy

the following regularity hypothesis:

ũ0 ∈ Hl+2, ρ̃0 ∈ Hl+1 and θ̃0 ∈ Hl+1,

||wǫ
0||l+1,β+1 ≤ C, ǫ independently,

(5.31)

in the Sobolev space Hl+1 and wǫ ∈ E
⊥ is assumed ǫ uniformly bounded in

Hl+1,β+1. Extension of [3] leads to the following

Proposition 5.1.

(i) With well prepared initial data as given by (5.30), the solution G̃ǫ con-

verges in C([δ, T ];Hl+1−η,β+1,loc), η > 0, with δ = 0 if and only if the

initial data satisfies the relation

∇x ·ũ0 = 0. (5.32)

Furthermore, for ũ0 and 0 < ǫ ≤ ǫ0 small enough, T can be taken equal

to +∞.

(ii) With the relation (5.32), the sequence ∂tG̃ǫ is uniformly bounded in

L∞(0, T ;Hl,β) ,

and converges in

C([δ, T ];Hl−η,β,loc),

with δ = 0 if and only if the following supplementary compatibility

condition is satisfied.

−∆x(θ̃0 + ρ̃0) =
∑

ij

∂ũ0j
∂xi

∂ũ0i
∂xj

. (5.33)
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Proof. The point (i) is a direct application of the results of [3]. Further-

more, it is already clear that ∂tG̃ǫ converges in a weak sense to v · ∂tu which

is a continuous function with initial data at t = 0 given by

v · ∂tu|t=0 = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇xp0}, (5.34)

with p0 given by

−∆xp0 =
∑

ij

∂xi
ũ0∂xj

ũ0, (5.35)

or

p0 =
1

4π

∫

R3

1

|x− y|
∑

ij

∂xi
ũ0∂xj

ũ0(y)dy . (5.36)

Therefore, the present issue is the uniform bound in L∞(0, T ;Hl,β) and

the strong convergence in C([δ, T ];Hl−η,β,loc), η > 0 of ∂tG̃ǫ.

Differentiation of (5.17) gives for
˙̃
Gǫ = ∂tG̃ǫ the following equation:

˙̃
G

ǫ

= exp
tBǫ

ǫ2
˙̃
G

ǫ

0 + 2Ψǫ(G̃ǫ,
˙̃
G

ǫ

)(t), (5.37)

and, in the same way as in [3], the estimate:

||| ˙̃G
ǫ

|||l,β ≤ ||| exp tBǫ

ǫ2
˙̃
G

ǫ

0|||l,β + C

∫ t

0
(t− s)−1/2|||G̃ǫ(s)|||l,β||| ˙̃G

ǫ

(s)|||l,βds, (5.38)

which is a linear Gronwall-type estimate with respect to the function
˙̃
G

ǫ

(s).

Therefore, ||| ˙̃G
ǫ

|||l,β is uniformly bounded in L∞(0, T ;Hl,β) if the first term

of the right hand side of (5.38) remains bounded. The initial value of
˙̃
G

ǫ

0

is deduced from the equation (5.17) and the relation (5.30) (well prepared

initial data) :

˙̃
G

ǫ

0 = −1
ǫ v ·∇xG̃

ǫ
0 − 1

ǫ2
LM G̃ǫ

0 +
1
ǫQ(G̃ǫ

0, G̃
ǫ
0)

= W ǫ
1 +W ǫ

2 +W ǫ
3 , (5.39)

where

W ǫ
1 = −1

ǫ
{v ·∇xũ0 · v + LM(12 (A(v) : (ũ0 ∨ ũ0))

− L−1
M

(
A(v)) : ∇xũ0) +Q(ũ0 · v, ũ0 · v)

)
},
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W ǫ
2 = −v ·∇x{(ρ̃0 + (12 |ũ0|2 + 3

2 θ̃0)(
|v|2 − 3

2
))

+ 1
2(A(v) : (ũ0 ∨ ũ0))− L−1

M

(
(A(v)) : ∇xũ0

)
},

W ǫ
3 = 2Q(ũ0 · v, ρ̃0 + (12 |ũ0|

2 + 3
2 θ̃0)(

|v|2 − 3

2
))− LMwǫ

0 + ǫhǫ,

with ǫhǫ uniformly bounded in Hl,β. Since the initial data ũ0 is divergence

free, one has

v ·∇xũ0 · v = A(v) : ∇xũ0, (5.40)

which implies that there is no term of order −1 in (5.39). The assump-

tion made on the regularity of the initial data implies that the rest of the

expansion is bounded in Hl,β. This proves the first point of (ii).

A direct computation shows that :

P(
˙̃
G

ǫ

0) = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)} + ǫhǫ . (5.41)

From (5.41) one deduces that

(P0 + Pe)
˙̃
G

ǫ

0 = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)−∇xp0}, (5.42)

with p0 given by the relation

−∆xp0 =
∑

ij

∂xi
ũ0∂xj

ũ0 +∆x(θ̃0 + ρ̃0) . (5.43)

Eventually, one obtains

exp
tBǫ

ǫ2
˙̃
G

ǫ

0 = exp
tBǫ

ǫ2

(
v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)−∇xp0}

)

+exp
tBǫ

ǫ2
(P − (Po + Pe))

˙̃
G

ǫ

0 + ǫhǫ, (5.44)

with

exp
tBǫ

ǫ2
(P − (Po + Pe))

˙̃
G

ǫ

0 = exp
tBǫ

ǫ2
(v · ∇xp0). (5.45)

The convergence in C([δ, T ];Hl−η,β,loc) of
˙̃
G follows from (5.44), and with

(5.44) one shows that δ can be taken to be zero if and only if ∇xp0 = 0,

i.e., if and only if the relation (5.32) holds, which concludes the proof of the

Proposition 5.1. �
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At present, as in the formal derivations, the solution of the rescaled

Boltzmann equation is decomposed into odd and even parts according to

scaling and projection on E and E
⊥ :

G̃ǫ = G̃ǫ
o + ǫG̃ǫ

e,

G̃ǫ
o = ũǫ · v +⊥ G̃ǫ

o,

G̃ǫ
e = ρ̃ǫ +

1

6
(|v|2 − 3)(|ũ|2 + 3θ̃ǫ) +⊥ G̃ǫ

e,

(5.46)

and one has the following:

Theorem 5.2. Let G̃ǫ be the solution of the rescaled Boltzmann equation

(5.17) with well prepared initial data given by (5.30). Then:

(i) G̃ǫ
0 converges to the odd function ũ·v in C([δ, T ];Hl−η,β,loc), η > 0, with

δ = 0 if and only if the initial data satisfy the compatibility conditions

(5.20).

(ii) G̃ǫ
e converges in C([δ, T ];Hl−1−η,β,loc) with δ = 0 if and only if (5.20)

and the following supplementary compatibility condition is satisfied.

−∆x(θ̃0 + ρ̃0) =
∑

ij

∂ũ0j
∂xi

∂ũ0i
∂xj

. (5.47)

Furthermore, for ũ0 and 0 < ǫ ≤ ǫ0 small enough, T can be taken to be

+∞.

This theorem substantiates the convergence hypotheses in Theorem 3.1.

Notice the “derivative loss” by order 1 in the convergence of the even part

G̃ǫ compared with the odd part G̃ǫ
o.

Proof of Theorem 5.2. As stated in Theorem 5.1 and Proposition 5.1,

it is already known that G̃ǫ converges in C([δ, T ];Hl+1−η,β+1,loc) to the odd

fluctuation ũ · v and that
˙̃
G

ǫ

is uniformly bounded in L∞(0, T ;Hl,β) with

strong convergence in C([δ, T ];Hl−η,β,loc), with δ = 0 allowed under the

assumption specified there. This implies the same bound and convergence

for G̃ǫ
o, ǫG̃

ǫ
e, ∂tG̃

ǫ
o and ǫ∂tG̃

ǫ
e. Therefore, the points (i) and (ii) of Theorem

5.2 follow once the convergence of G̃ǫ
e is established.

Firstly, we will check ⊥G̃ǫ
e. With the equations,

ǫ2∂tG̃
ǫ
o + ǫ2v ·∇xG̃

ǫ
e + LG̃ǫ

o = 2ǫ2Q(G̃o, G̃e), (5.48)
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and

ǫ2∂tG̃
ǫ
e + v ·∇xG̃

ǫ
o + LG̃ǫ

e = Q(G̃ǫ
o, G̃

ǫ
o) + ǫ2Q(G̃e, G̃e), (5.49)

one has

LM(⊥G̃ǫ
o) = 2ǫQ(G̃ǫ

o, ǫG̃
ǫ
e)− ǫ2∂tG̃

ǫ
o − ǫv ·∇xǫG̃

ǫ
e,

LM (⊥G̃ǫ
e) = Q(G̃ǫ

o, G̃
ǫ
o) + ǫ2Q(G̃e, G̃e)− ǫ2∂tG̃

ǫ
e − v ·∇xG̃

ǫ
o,

(5.50)

and the continuity of the pseudo inverse implies that

||⊥G̃ǫ
o||L∞(0,T,Hl,β) ≤ Cǫ. (5.51)

Therefore ⊥G̃ǫ
o converges to zero in C([0, T ];Hl−η,β,loc) while

⊥G̃ǫ
e converges

in C([δ, T ];Hl−η,β,loc) to the solution of the equation

L(⊥G̃e) = Q(ũ · v, ũ · v)− v ·∇xũ · v, (5.52)

which is given (with the divergence free condition) by

⊥G̃e =
1
2(A(v) : (ũ ∨ ũ))− L−1

M (A(v)) : ∇xũ . (5.53)

To complete the proof, it remains to analyze the convergence of the

hydrodynamic part of G̃ǫ
e:

P(G̃ǫ
e) = ρ̃ǫ + 1

6(|ũ
ǫ|2 + 3θ̃ǫ)(|v|2 − 3). (5.54)

The behavior of ρ̃ǫ and θ̃ǫ is given by the behavior of the functions:

σǫ ≡ 1

3
(|v|2 |PG̃ǫ

e)M = ρ̃ǫ + θ̃ǫ + 1
3 |ũ

ǫ|2

ωǫ ≡ 1

5
(|v|2 − 5 |PeG̃

ǫ
e)M = 3

2 θ̃
ǫ − ρ̃ǫ + 1

2 |ũ
ǫ|2 ,

(5.55)

keeping in mind the strong convergence of ũǫ in C([δ, T ];H l−η
loc ), η > 0, and

the obvious formulas:

ρ̃ǫ = 1
5(3σ

ǫ − 2ωǫ),

θ̃ǫ = 2
5

(
σǫ + ωǫ)− 1

3 |ũ
ǫ|2.

(5.56)

Multiplication of the equation (5.48) by v gives (cf. (3.9))

∂t(v|G̃ǫ
o)M +∇x ·

(
(v∨v − |v|2

3
) G̃ǫ

e)
)
M

+∇x(
|v|2
3

G̃ǫ
e)M = 0 , (5.57)
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or

∇xσ
ǫ = ∇x(

|v|2
3

PG̃ǫ
e)M = ∇x(

|v|2
3

G̃ǫ
e)M

= −∇x ·(A(v)⊥G̃ǫ
e))M − ∂t(vG̃

ǫ
o)M , (5.58)

and eventually,

−∆xσ
ǫ = ∇x ·(∇x ·(A(v)|⊥G̃ǫ

e))M )−∇x ·(∂t(v|G̃ǫ
o)M ). (5.59)

With (5.53) one observes that

∇x ·(∇x ·(A(v)|⊥G̃ǫ
e))M )

converges in C([δ, T ];Hl) to

∇x ·(∇x ·(A(v) : (12(A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ))

=
∑

ij

∂xi
ũ∂xj

ũ−∆x
|ũ|2
3

. (5.60)

On the other hand, as a direct consequence of Proposition 5.1, ∇x ·

(∂t(v|G̃ǫ
o)M ) converges to 0 in C([δ, T ];H l−1δ

loc ) with δ = 0 if and only if

−∆x(ρ̃0 + θ̃0) =
∑

ij

∂xi
ũ0∂xj

ũ0 (5.61)

Same convergence properties hold for −∆x(σ
ǫ), and with the continuity

property of the operator G given by (5.2), one has

lim
ǫ→0, in C([δ,T ];H0

l−η,loc
)
σǫ = −G

(∑

ij

∂xi
ũ∂xj

ũ
)
+

|ũ|2
3

, (5.62)

which proves the convergence of σǫ.

In order to prove the convergence of ωǫ, starting from the moment equa-

tion (3.9),

∂t((
|v|2 − 5)

2
)|G̃ǫ

e)M +∇x · (G̃ǫ
o|
B(v)

ǫ2
)
M

= 0, (5.63)
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one deduces that

∂tω
ǫ = ∂t((

|v|2 − 5)

2
)|PeG̃

ǫ
e)M

= ∂t((
|v|2 − 5

2
)|G̃ǫ

e)M = −∇x · (G̃ǫ
o|
B(v)

ǫ2
)
M
,

(5.64)

As in the formal proof, the equation

ǫ2∂tG̃
ǫ
o + ǫ2v ·∇xG̃

ǫ
e + LG̃ǫ

o = 2ǫ2Q(G̃ǫ
o, G̃

ǫ
e), (5.65)

is used for the term

∇x · (G̃ǫ
o|
B(v)

ǫ2
)
M
,

giving

(G̃ǫ
o|
B(v)

ǫ2
)
M

= (LM G̃ǫ
o|
B̃(v)

ǫ2
)
M

= ({2Q(G̃ǫ
o, G̃

ǫ
e)− v ·∇xG̃

ǫ
e − ∂tG̃

ǫ
o}|B̃(v))

M
. (5.66)

With the already proven convergence results (in particular the limit given

by (5.53)), one can represent the right hand side of (5.66) in the following

form:

(LM G̃ǫ
o|
B̃(v)

ǫ2
)
M

= (2Q(ũǫ · v, (12 |ũ
ǫ|2 + 3

2
θ̃ǫ)

1

3
(|v|2 − 3)

+1
2(A(v) : (ũ

ǫ ∨ ũǫ)))|B̃)
M

−v ·∇x(θ̃
ǫ)(

|v|2 − 3

2
)|B̃)

M
+ Zǫ

1(x, t), (5.67)

where Zǫ
1(x, t) denotes a function uniformly bounded in L∞(0, T,H l), strongly

converging in C([δ, T ];H l−η
loc ) and produces a linear parabolic equation for

ωǫ:

∂tω
ǫ +∇x ·

(
ũǫ(52 θ̃

ǫ + 1
2 |ũ

ǫ|2)
)
− κ∗∆xθ̃

ǫ = Zǫ
2 (5.68)

with some Zǫ
2 having the same property as Zǫ

1. In (5.68), θ̃ǫ is expressed in

term of ωǫ and σǫ, giving

∂tω
ǫ +∇x ·

(
ũǫ(ωǫ + σǫ)

)
− 2

5κ
∗∆x(ω

ǫ + σǫ) = Zǫ
3, (5.69)

or

∂tω
ǫ +∇x ·(ũǫωǫ)− 2

5κ
∗∆xω

ǫ = 2
5κ

∗∆xσ
ǫ −∇x ·σǫ + Zǫ

3, (5.70)
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Zǫ
3 being similar to Zǫ

1. Since σ
ǫ is bounded in L∞(0, T ;H0

l ) and converging

on C([δ, T ];H0
l−η,loc) (for any δ > 0 ), eventually one has

∂tω
ǫ +∇x ·(ũǫωǫ)− 2

5κ
∗∆xω

ǫ = Zǫ
4, (5.71)

where Zǫ
4 bounded in L∞(0, T ;H0

l−2) and converging in C([δ, T ];H0
l−2−η,loc).

With the initial data given by

ωǫ(x, 0) = 3
2 θ̃0 − ρ̃0 +

1
2 |ũ0|

2,

and by virtue of the well-known parabolic estimates applied to (5.71), we

conclude the convergence of ωǫ in C([0, T ];H l−η
loc ).

Now, the convergence of ρ̃ǫ and θǫ follows from the formula (5.56), and

as a consequence, the convergence of PG̃ǫ
e. This completes the proof of

Theorem 5.2. �

Remark 5.1. The parabolic equation (5.71) may be contrasted with the

elliptic equation which is established by Y. Guo based on the micro-macro

decomposition of the Boltzmann equation near the uniform Maxwellian. Re-

cently, it was shown in [7] that the Boltzmann equation can be written as

a perturbation of the linear compressible Navier-Stokes equations with the

source term depending only on the space derivatives of the microscopic com-

ponent of the solution. The equation (5.71) can be taken to be a higher

order correction of it.
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