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Abstract

We consider the Boltzmann equation for a gas in a horizon-

tal slab, subject to a gravitational force. The boundary conditions

are of diffusive type, specifying the wall temperatures, so that the

top temperature is lower than the bottom one (Benard setup).

We consider a 1-dimensional stationary solution, which is close

for small Knudsen number to the laminar purely conductive sta-

tionary solution of the Oberbeck-Boussinesq equations, and prove

its stability under small 1-dimensional perturbations and for small

Knudsen number.

1. Introduction

The bifurcation theory allows to study phenomena of spontaneous for-

mation of patterns from a homogeneous state. The Rayleigh-Benard problem

is a prototype of pattern formation: when a layer of viscous fluid under the

action of a gravitational force is heated from below, convective instabilities

set in when the vertical temperature gradient exceeds a certain critical value.

Below this value the motionless state is stable, while beyond the critical value

it becomes unstable and various pattern flows appear, for example roll pat-

terns. This phenomenon is called Rayleigh-Benard convection and has been

studied within the scheme of the Oberbeck-Boussinesq approximation. In

recent years Y. Sone and the team in Kyoto have made extensive numerical
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studies of the kinetic aspects of the problem using an asymptotic approach,

see e.g. [12] and the monographs [11]. In this paper we start a study of

stability properties for this system on the level of the Boltzmann equation.

Our starting point is the stationary Boltzmann equation in a slab of width

2d with diffusive boundary conditions.

A stationary solution Fs of the Boltzmann equation in the laminar

regime has been constructed in [7] for small Knudsen number ε. It is given in

terms of a truncated expansion in ε whose leading term in the bulk is a global

Maxwellian. The term of order ε determines the hydrodynamic quantities

which are close, up to order ε2, to the density, velocity and temperature of

the hydrodynamic laminar flow, stationary solution of the OBE. This purely

conducting solution of the Boltzmann equation was constructed only for

small difference of temperatures, corresponding to having a small Rayleigh

number. Here, (Sections 2 and 3), we construct this solution for any value of

the Rayleigh number, provided that the force is small enough. This solution

can be proved to be positive, by using the approach in [2]. Moreover, we

prove the stability of Fs for the Boltzmann dynamics under suitable small

1-dimensional initial perturbations and for small Knudsen number.

At the hydrodynamical level the 1-dimensional perturbations, i.e. per-

turbations depending only on the z coordinate, in the direction orthogonal

to the walls are easy to study. The component of the velocity field uz or-

thogonal to the walls has to be zero by the incompressibility condition and

the impermeability condition, while the other components ux, uy and the

temperature are solutions of a set of decoupled parabolic equations so that

general results on parabolic equations provide their decay in time for any

Rayleigh number. On the contrary, more general perturbations (depending

on x, y) decay to zero, proving the stability of the laminar flow, only up

to a critical value of the Rayleigh number [9]. Above this value the purely

conductive solution becomes unstable and the roll solutions appear and are

stable, at least for values of the Rayleigh number close to the critical one [8].

At the kinetic level even the 1-dimensional perturbations require some

effort to be studied. We study the Boltzmann equation for the perturbation

Φ = F − Fs and write the solution again in terms of a truncated expansion

in ε.

Φ(t, z, v) =

5
∑

n=1

εnΦ(n)(t, z, v) + εR(t, z, v), z ∈ (−d, d) . (1.1)
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The expansion start with a term of first order

Φ(1) =M
(

ρ1 + u1 · v + T 1 |v|2 − 3

2

)

,

where M is the standard Maxwellian and the fields ρ1(t, z), u1(t, z), T 1(t, z)

are solutions of the hydrodynamic equations for the perturbation.

The next orders involve boundary layer corrections as well as kinetic

corrections in the bulk. We give in Section 4 a procedure to compute these

terms and show that they decay to zero exponentially in time. The main

difficulty is the control of the remainder R asymptotically in time. Starting

from the technical frame of [10], new techniques were introduced and de-

veloped in [1]−[4] to prove also the bifurcation for the Taylor-Couette flow

[1]. The extension of this method to the present setting is not trivial. The

added difficulties in comparison with the Taylor-Couette problem are the

force term and the diffuse reflection boundary conditions which require a

number of additional ideas in the proofs. The result is summarized in the

following main theorem.

Theorem 1.1. Assume that the gravitational force is small enough.

Assume that the perturbation at time zero depends only on z. More, assume

that the initial perturbation matches the expansion up to order ε4 (as detailed

in Section 4 below). Then there exists a steady solution Fs in L2
M−1 for the

Boltzmann equation in the slab with exterior gravitational force field. Here

M is the standard Maxwellian. This solution is stable. The stability is

uniform in ε for ε ≤ ε0 small enough.

Here, stable means that the perturbation vanishes asymptotically in

time. In the context, it follows from

∫ +∞

0

∫

[−d,d]

∫

R3

|Φ(t, z, v)|2M−1dtdzdv <∞ ,

which is proved in Section 5. We remark that the method presented here

strongly relies on the fact that the problem we are dealing with has suitable

stability properties at the fluid dynamic level, which we show to be preserved

in the kinetic setup by means of a perturbative analysis starting from an

Hilbert-type asymptotic expansion plus boundary layer corrections. The

preservation of the fluid dynamic stability at kinetic level also occurs in the

Taylor-Couette case discussed in [1], where the bifurcation phenomenon also

arises. Our approach can, in particular, be extended to prove the stability
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of the purely conductive solution for 3d initial perturbations as well as the

stability of the roll solution beyond and close to the critical Rayleigh number.

2. Asymptotic Expansion for the Stationary Solution

In this section we recall the basic elements of the expansion for the sta-

tionary purely conductive solution presented in [7] for sake of completeness

and introduce the setup and the relevant notations.

The starting point is the stationary Boltzmann equation in a slab of

width 2d with diffusive boundary conditions

vz
∂f

∂z
− g

∂f

∂vz
= Q(f, f),

f(−d, v) = M̄−(v)
∫

wz<0
| wz | f(−d,w)dw, vz > 0,

f(d, v) = M̄+(v)

∫

wz>0
wzf(d,w)dw, vz < 0,

where M̄±(v) =
ρ̄

2πT 2
±

e
− v2

2T± , with T+ < T−.

Q(f, g)(z, v, t) =
1

2

∫

R3

dv∗

∫

S2

dωB(ω, |v − v∗|)
{

f ′∗g
′ + f ′g′∗ − f∗g − g∗f

}

where h′, h′∗, h, h∗ stand for h(z, v′, t), h(z, v′∗, t), h(z, v, t), h(z, v∗ , t) respec-

tively, S2 = {ω ∈ R
3 |ω2 = 1}, B is the differential cross section and v′,v′∗

are the incoming velocities of a collision with outgoing velocities v, v∗ and

impact parameter ω. We confine ourselves to the collision cross section

B(ω, V ) = |V · ω| corresponding to hard spheres.

We put the equation in dimensionless form by using d, T−, and ρ̄ as

reference length, reference temperature and reference density respectively.

We use
√
T− as reference velocity. We also redefine the collision cross section

to make explicit its dependence on ℓ0, the mean free path of the gas in

equilibrium at temperature T− and density ρ̄. We get

vz
∂f

∂z
− 1

Fr

∂f

∂vz
=

1

ε
Q(f, f),

f(−1, v) =M−(v)
∫

wz<0
| wz | f(−1, w)dw, vz > 0,
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f(1, v) =M+(v)

∫

wz>0
wzf(1, w)dw, vz < 0,

where Fr = 2T−

dg , ε = ℓ0
d and δT̂ = T+−T−

2T−
are the dimensionless parameters

called Froude number, Knudsen number, and rescaled temperature difference

respectively. Moreover,

M−(v) =
1

2π
e−

v2

2 , M+(v) =
1

2π(1 + 2δT̂ )2
e
− v2

2(1+2δT̂ ) (2.1)

The Rayleigh number, which is relevant at the hydrodynamical level, is

defined as (see [11])

Ra =
16δT̂

πFrε2

Since we will be interested in the behavior of the system in the vanishing ε

limit, we rescale the Froude number and the difference temperature in such

a way that the Rayleigh number is independent of ε. Define G = 1
εFr and

λ = δT̂
ε . Then Ra = G16λ

π .

The rescaled Boltzmann equation is

vz
∂f ε

∂z
− εG

∂f ε

∂vz
=

1

ε
Q(f ε, f ε),

f ε(−1, v) =M−(v)
∫

wz<0
| wz | f ε(−1, w)dw, vz > 0, (2.2)

f ε(1, v) =M+(v)

∫

wz>0
wzf(1, w)dw, vz < 0 ,

with M− given in (2.1) and M+(v) =
1

2π(1+2λε)2
e
− v2

2(1+2λε) .

A solution to this equation was constructed in [7] by means of an ǫ

expansion. We refer to that paper for the detailed construction of the terms

in the expansions. Here, we report only the main results. We write the

solution of (2.2) in the form

f ε =M + εf1 +

5
∑

n=2

εnfn + εR (2.3)

where M is the standard Maxwellian (M = (2π)−1/2M−) and

f1 =M
(

r + u · v + θ
|v|2 − 3

2

)

,
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with r, u, θ solutions of the Boussinesq equations. In the present setup the

stationary solution reduces to

u = 0, θ = λ(1 + z), r = −(G+ λ)z. (2.4)

The higher terms of the expansion fn, n = 2, . . . , 5, are decomposed into two

parts Bn and b±n , representing the bulk and boundary layer corrections. The

Bn have to satisfy for n = 2, . . . , 5

vz∂zBn−1 −G∂vzBn−2 = 2Q(M,Bn) +
∑

i+j=n

Q(Bi, Bj) (2.5)

where B0 ≡M and B1 ≡ f1.

The boundary layer corrections relative to the wall z = ±1, b±n , are

chosen to satisfy, for n = 2, . . . , 5, the equations

vz
∂b±n
∂z±

∓ ε2G± ∂

∂vz
b±n

= L±b±n + 2Q(∆M, b−n−1)χ
±

∓(−G0+G∓)
∂

∂vz
b±n−2+

∑

i,j≥1
i+j=n

[

2Q(Bi, b
±
j )+Q(b±i , b

±
j )+Q(b∓i , b

∓
j )

]

, (2.6)

where we have put

z± = ε−1(1∓ z), z± ∈ [0, 2ε−1] (2.7)

and

b±0 = b±1 = 0, χ+ = 1, χ− = 0, L± = 2Q(M±, ·), M− =M,

∆M = ε−1[M −M+], M+ = (1 + εr(1))M [(1 + 2λε)]−1/2 .

The constant gravity force G has been decomposed into three parts: a

bulk part G0 and two boundary parts G± which are different from zero in

the bulk and near the walls respectively. Their definition is

G = G+ +G0 +G− (2.8)

with G0 and G± smooth functions such that for some δ > 0

G+(z) =

{

G, 1− δ ε ≤ z ≤ 1

0, −1 ≤ z ≤ 1− 2δ ε
, (2.9)
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G−(z) =

{

G, −1 ≤ z ≤ −1 + δ ε

0, −1 + 2δ ε ≤ z ≤ 1

G0(z) =

{

G, −1 + 2δ ε ≤ z ≤ 1− 2δ ε

0, |z| ≥ 1− δ ε
. (2.10)

Note that G±(z±) is zero for z± ∈ [2δ, 2ε−1].

We remark that, as discussed in [7], we need to include the gravity

in the Milne problems (2.6), although it is of order ε2, to fix the following

difficulty: the solution to the Milne problem cannot have bounded derivative

with respect to vz near the boundary, because it is discontinuous in vz at

vz = 0 on the boundary. If the gravity were not included in (2.6), one should

keep in the expansion the vz-derivative of the boundary layer corrections,

which then would be singular at the boundaries. Therefore we are forced to

look at the Milne problem with a force term along the direction orthogonal

to the boundary. On the other hand the results on [5] only apply to suitably

decaying forces and this motivates the splitting of G into G++G−+G0, with

G0 supported far away from the boundary, so that the vz-derivative of the

boundary layer corrections need to be computed only far from the boundary

where they are bounded. We also note that most of our treatment works

also for hard potentials. The only point where we need the hard spheres

assumption is to use the decay results in [5], which were obtained only in

the hard sphere case.

Finally the equation for the remainder is

vz
∂

∂z
R− εG

∂

∂vz
R =

1

ε
LR+

5
∑

i=1

εjJ(f j, R) + εQ(R,R) +A (2.11)

where

LR = Q(M,R) +Q(R,M), J(h, g) = 2Q(h, g)

and A is given by

ε−4A = −vz ∂
∂zB5 +G ∂

∂vz
(B4 + εB5) + (G0 +G−) ∂

∂vz
[(b+4 + εb+5 )]

+(G0 +G+) ∂
∂vz

[(b−4 + εb−5 )] +
∑

k,m≥1
k+m≥6

εk+m−6Q(fk, fm). (2.12)
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We impose on the f j the following boundary conditions:

f j(z, v) = M−(v)
∫

wz<0
|wz|f j(z, w)dw + γ−j,ε(v), z = −1, vz > 0,

(2.13)

f j(z, v) = M+(v)

∫

wz>0
|wz|f j(z, w)dw + γ+j,ε(v), z = 1, vz < 0,

with the functions γ±n,ε(v) exponentially small in ε−1 and such that

〈γ±n,εvz〉 =
∫

R3

dvγ±n,ε(v)vz = 0,

specified by the expansion. Here and below we use the short notation 〈f〉 to
denote the integration on the velocities of a function f . Finally, we impose

the following conditions on R:

R(z, v) = M−(v)
∫

wz<0
|wz|R(z, w)dw −

5
∑

n=2

εn−3γ−n,ε, z=−1, vz>0,

(2.14)

R(z, v) = M+(v)

∫

wz>0
|wz|R(z, w)dw −

5
∑

n=2

εn−3γ+n,ε, z= 1, vz<0.

Set

L̃q :=
{

f : [−1, 1] × R
3 → R; |f |q :=

(

∫

M(v)
(

∫

|f(z, v)|qdz
)

2
q
dv

)
1
2
<+∞

}

.

Theorem 2.1. It is possible to uniquely determine functions fn, n =

1, . . . , 5 satisfying the conditions (2.13). Moreover, for q = 2,∞

|M−1fn|q < +∞.

3. Linear Estimates in the Stationary Case

In this section we give the main relevant a priori estimates for the lin-

earized equation for the remainder R with a given source term D:

vz
∂R

∂z
− εG

∂R

∂vz
=

1

ε

(

LR+ 2

j1
∑

j=1

εjJ(R, f j)) +D

)

(3.1)

satisfying the boundary conditions (2.14).
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We put R =Me−εG(z+1)R̃ := M̃R̃. Then, since
(

vz
∂

∂z
− εG

∂

∂vz

)

[Me−εG(z+1)] = 0, (3.2)

R̃ has to solve the following boundary value problem:

vz
∂R̃

∂z
− εG

∂R̃

∂vz
=

1

ε

(

L̃R̃+ 2

j1
∑

j=1

εj J̃(R̃, M̃−1f j)) + D̃

)

, (3.3)

R̃(−1, v) =

∫

wz<0
|wz |M−(w)R̃(−1, w)dw − M̃−1

5
∑

n=2

εn−3γ−n,ε, vz > 0,

R̃(1, v) =
M+

M
(v)

∫

wz>0
|wz|M(w)R̃(1, w)dw−M̃−1

5
∑

n=2

εn−3γ+n,ε, vz<0,

where

L̃h =
1

M̃
L(M̃h), J̃(h, g) =

1

M̃
J(M̃h, M̃g), D̃ =

1

M̃
D.

Note that, since the factor e−εG(z+1) does not depend on v, L̃h = 1
M̃
L(M̃h) =

1
ML(Mh) = Lh. Remind that L = K − ν with K a compact operator and ν

a positive function of v which, in the case of the hard spheres cross section,

satisfies the estimate

ν0(1 + |v|) ≤ ν(v) ≤ ν1(1 + |v|) (3.4)

with 0 < ν0 < ν1.

Recall that ψ0 = 1, ψ1 = vx, ψ2 = vy, ψ3 = vz, ψ4 = 1√
6
(v2 − 3) form an

orthonormal basis for the kernel of L in L2
M (R3) = L2(R3,Mdv). Introduce

an orthogonal splitting of functions f ∈ L2
M([−1, 1]×R

3) into f = f‖+f⊥ =

Pf + (I − P )f , where f⊥ is the non hydrodynamic part

∫

M(v)(1, v, v2)f⊥(z, v)dv = 0

and the fluid dynamic part is given explicitly by

f‖(z, v) = f0(z) + f1(z)vx + f2(z)vy + f3(z)vz + f4(z)
1√
6
(v2 − 3),
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with
∫

Mψ0f(z, v)dv = f0(z),

∫

Mψ4f(z, v)dv = f4(z),
∫

Mψ1f(z, v)dv = f1(z),

∫

Mψ2f(z, v)dv = f2(z),
∫

Mψ3f(z, v)dv = f3(z).

The relevant ingoing boundary space is

L+ :=

{

f ; | f |∼:=
(

∫

vz>0
vzM(v) | f(−1, v) |2 dv

)
1
2

+
(

∫

vz<0
| vz |M(v) | f(1, v) |2 dv

)
1
2
< +∞

}

.

We have already introduced the space

L̃q :=

{

f ; |f |q :=
(
∫

M(v)
(

∫

|f(z, v)|qdz
)

2
q
dv

)
1
2

< +∞
}

.

We also need the space

Wq−([−1, 1] ×R
3) = Wq− := {f ; ν 1

2 f ∈ L̃q, ν−
1
2Df ∈ L̃q, γ−f ∈ L+},

where Df = vz
∂F
∂z − εG ∂F

∂vz
and the operator γ− denotes the ingoing trace

operator on the set

Γ− = {−1} × {vz > 0} ∩ {1} × {vz < 0}.

The first result of this section is an existence and uniqueness theorem

for eq. (3.3) with given indata for j1 = 5 and with f j ∈ L̃∞ for j = 1, . . . , 5.

Lemma 3.1. Let ν−
1
2 g ∈ L̃q, Fb ∈ L+, 2 ≤ q < ∞, be given. There

exists a unique solution F ∈ Wq− to

vz
∂F

∂z
− εG

∂F

∂vz
=

1

ε

(

L̃F + 2

5
∑

j=1

εj J̃(F, M̃−1f j) + g
)

, (3.5)

F (−1, v) = Fb(−1, v), vz > 0, F (1, v) = Fb(1, v), vz < 0.

Proof of Lemma 3.1. The proof of Lemma 3.1 follows the lines of [10], pp

68-70, where G = 0. Notice first that the a priori estimates (3.9) and (3.10)

below imply uniqueness in L2. Then use the solution formula from the proof
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of Lemma 3.3 below, and consider the case when the asymptotic expansion

M̃ϕ =
∑5

1 ε
jf j with ε-orders up to 5, equals zero. Now UK is compact

in L̃2 (e.g by first proving the compactness of UE for EF :=
∫

MFdv and

then using the splitting K = K ′ + K ′′ from Lemma 3.3 below), so the L2

case follows from Fredholm’s alternative. The L̃∞ case then follows from

(3.8), and the intermediate cases hold similarly. Finally the addition of the

perturbation J̃(F,ϕ) does not change the result. �

A similar result holds in the case of diffuse reflection boundary condi-

tions. The following proof uses the method in [10] to extend results from

given indata to more general boundary data.

Let ε0 be such that
∫

vz>0

(M+

M−
(v)− 1

)2
vzM(v)dv <

1

16
, ε < ε0.

Lemma 3.2. Let ε < ε0 and ν−
1
2 g ∈ L̃q, 2 ≤ q < ∞, be given. There

exists a solution F ∈ Wq− to

vz
∂F

∂z
− εG

∂F

∂vz
=

1

ε
(L̃F + 2

5
∑

j=1

εj J̃(F, M̃−1f j)) + g, (3.6)

F (−1, v) =

∫

wz<0
| wz | F (−1, w)M−(w)dw, vz > 0,

F (1, v) =
M+

M
(v)

∫

wz>0
wzF (1, w)M(w)dw, vz < 0.

Proof of Lemma 3.2. A proof of Lemma 3.2 in the case without J̃ and

force term can be found in [10]. First, there is uniqueness of the solution of

(3.6) in the case without J̃ term under the condition that the total mass is

fixed. Indeed, if there were two solutions, multiplying the equation satisfied

by their difference F by M̃F , integrating on (−1, 1) × IR3 and using the

spectral inequality would imply, for ε small enough, that (I − P )F = 0.

Hence the fluid dynamic part of the difference PF and F satisfy

vz
∂F

∂z
− εG

∂F

∂vz
= 0.
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The solution h of the previous equation can be represented as

h(z, v) = h(−1, vx, vy,
√

v2z+2εG(z+1)), vz<0, v2z+2εG(z + 1)<4εG,

h(z, v) = h(1, vx, vy,−
√

v2z+2εG(z+1)−4εG, vz<0, v2z+2εG(z+1)>4εG,

h(z, v) = h(−1, vx, vy,
√

v2z+2εG(z+1), vz > 0.

Then,

F (−1, v) = F (−1, vx, vy,−vz), −2
√
εG < vz < 0,

F (−1, v) = F (1, vx, vy,−
√

v2z − 4εG), vz < −2
√
εG,

F (1, v) = F (−1, vx, vy,
√

v2z + 4εG), vz > 0.

But F is a fluid polynomial, so the preceeding three relations for the bound-

ary values together with the normalization
∫

FM̃dxdv = 0 condition give

that

F (−1, v) = 0, vz > 0,

so that F is identically equal to zero.

An existence proof in the case without the J̃ term is as follows. Denote

by V the solution operator for

vz
∂F

∂z
− εG

∂F

∂vz
=

1

ε
L̃F + g, (3.7)

F (−1, v) = Fb(−1, v), vz > 0, F (1, v) = Fb(1, v), vz < 0.

V can be split into

V = V0g + V1Fb,

where V0 (resp. V1) is the solution operator for (3.7) with Fb = 0 (resp.

g = 0). The function F = V0g + V1γ
−F solves (3.6) if and only if it solves

the equation

γ−F = Rγ+(V0g + V1γ
−F ).

Here, γ−F (resp. γ+F ) denotes the trace of F on the ingoing (resp. outgo-

ing) boundary

Γ− = {(−1, v); vz > 0} ∪ {(1, v); vz < 0},
(resp. Γ+ = {(−1, v); vz < 0} ∪ {(1, v); vz > 0}),
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and R = R0 +R1, where R0 (resp. R1) is defined by

R0F (−1, v) =

∫

wz<0
F (−1, w) | wz |M−(w)dw, vz > 0,

R0F (1, v) =

∫

wz>0
F (1, w)wzM−(w)dw, vz < 0,

R1(−1, v) = 0, vz < 0,

R1F (1, v) = (
M+

M−
(v)− 1)

∫

wz>0
F (1, w)wzM−(w)dw, vz < 0.

Write the operator V1 as V1 = UK̃V1 +W , where L̃ = K̃ − ν and U is the

solution operator of

vz
∂

∂z
(Ug)− εG

∂(Ug)

∂vz
+
ν

ε
Ug =

g

ε
,

Ug(−1, v) = 0, vz > 0, Ug(1, v) = 0, vz < 0,

while W is the solution operator of

vz
∂

∂z
(WFb)− εG

∂(WFb)

∂vz
+
ν

ε
WFb = 0,

WFb(−1, v) = Fb(−1, v), vz > 0, WFb(1, v) = Fb(1, v), vz < 0.

Let S (resp. P+) be the specular reflexion (resp. averaging) operator

SF (±1, vx, vy, vz) = F (±1, vx, vy,−vz),

P+F (−1, v) =

∫

wz<0
F (−1, w) | wz |M−(w)dw, vz < 0, P+F (−1, v) = 0,

vz > 0

P+F (1, v) =

∫

wz>0
F (1, w) | wz |M−(w)dw, vz>0, P+F (1, v)=0, vz<0.

Setting F+ = Sγ−F , the problem to be solved is equivalent to F+ = BF++

Z+, where B is the sum of three terms B = B0 +B1 +B2, defined as

B0 = SR0γ
+WSP+,

B1 = SR0γ
+WS(I − P+) + SR1γ

+WS,

B2 = S(R0 +R1)γ
+UKV1S,

and Z+ = S(R0 + R1)γ
+V0g. First, B0 is compact in L2+ = SL+ since

B0F
+(−1, v) (resp. B0F

+(1, v)) are linear combinations (with v-dependent
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given coefficients) of

∫

wz<0
F+(−1, w) | wz |M−(w)dw and

∫

wz>0
F+(1, w) | wz |M−(w)dw.

Then the operator B2 is compact in L2+ since γ+UK̃ is compact from L2 into

L2+ by its averaging construction. Finally, the operator I−B1 is invertible.

Indeed ‖ B1 ‖L2+≤ 1, so that for any Z+ ∈ L2+ and any β ∈ [0, 1[, there is

a unique f+β solution to (I − βB1)f
+
β = Z+. Then,

‖ B1f
+
β ‖L2+≤‖ (I − P+)f+β ‖L2+ + ‖ SR1 ‖L2+‖ f+β ‖L2+ .

It follows from f+β = βB1f
+
β + Z+ that

‖ (I − P+)f+β ‖L2+ ≤ ‖ (I − P+)B1f
+
β ‖L2+ + ‖ Z+ ‖L2+

= ‖ (I − P+)SR1γ
+WSf+β ‖L2+ + ‖ Z+ ‖L2+

≤ ‖ SR1 ‖L2+‖ f+β ‖L2+ + ‖ Z+ ‖L2+ .

And so,

‖ f+β ‖L2+

≤ ‖ B1f
+
β ‖L2+ +‖ Z+ ‖L2+≤ 2 ‖ SR1 ‖L2+‖ f+β ‖L2+ +2 ‖ Z+ ‖L2+ .

For ε < ε0, ‖ SR1 ‖L2+< 1
4 , so that ‖ f+β ‖L2+< 4 ‖ Z+ ‖L2+ .

This proves that (I − B1)
−1 exists and is continuous. The Fredholm alter-

native then proves the existence of F+. From here adding the small pertur-

bation J̃ , the problem can be solved by a standard iterative procedure, and

the result still holds. �

Remark. By using the a priori estimates (5.20) in [7] we can conclude

that, if λ is small enough, then the solution is unique also including the term

J̃ . By using Corollary 3.6 instead we have uniqueness for G small.

We shall use the rest of this section to obtain the already mentioned a

priori estimates for the linear problem (3.5) with force term. For the non-

fluid-dynamic part F⊥ of the solution and for the comparison of the solution

in different L̃q-spaces, we may use explicit computations.

Lemma 3.3. For q = 2, ∞, let F be a solution in Wq− to (3.5). The
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following estimate holds for small enough ε > 0;

| ν 1
2F |∞≤ c(| ν− 1

2 g |∞ +ε
− 1

q | ν 1
2F |q + | Fb |∼). (3.8)

Proof of Lemma 3.3. We first turn to the estimate (3.8) in the case

where f j, j = 1, . . . , 5, equal zero. If for some function H, F is solution to

m vz
∂F

∂z
− εG

∂F

∂vz
+

1

ε
ν(v)F =

1

ε
H,

F (−1, v) = 0, vz > 0, F (1, v) = 0, vz < 0,

then

F (z, v) ≤ 1

ε
‖ H ‖∞

∫ 0

s1 or s̃2

exp

{

1

ε

∫ τ

0
ν(vx, vy, vz − σε)dσ

}

dτ

=
1

ǫ
‖ H ‖∞

∫ 0

s1ors̃2

exp
{

− 1

ǫ2G

∫ vz−τǫG

vz

ν(vx, vy, r)dr
}

dτ,

where

εGs1 = vz −
√

v2z + 2εG(1 + z), vz ≥ −
√

2εG(1 − z),

εGs̃2 = vz +
√

v2z − 2εG(1 − z), vz ≤ −
√

2εG(1 − z).

Then,

F (z, v) ≤ 1

ε
‖ H ‖∞

∫ 0

−∞
eu(τ)dτ,

where

u(τ) =
1

ε2G

∫ vz

vz−τεG
ν(vx, vy, r)dr.

Consequently,

F (z, v) ≤ 1

ν0
‖ H ‖∞

∫ 0

−∞
u′(τ)eu(τ)dτ ≤ 1

ν0
‖ H ‖∞ .

Denote by UεX the solution to

vz
∂

∂z
(UεX)− εG

∂

∂vz
(UεX) +

1

ε
ν(v)UεX = X,

UεX(−1, v) = 0, vz > 0, UεX(1, v) = 0, vz < 0.
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A solution F to (3.5) with f j = 0, j = 1, . . . , 5, satisfies

vz
∂F

∂z
− εG

∂F

∂vz
+

1

ε
ν(v)F =

1

ε
(KF + g).

Split the kernel k of K into kn = signkmin(|k|, n) and the remaining part

k−kn, and denote the corresponding operators by K ′ and K ′′. The operator
norm ofK−K ′ = K ′′ tends to zero, andK is compact in L2

M . It immediately

follows that F can be written as

F =
1

ε2
Uε

(

K ′Uε(K
′F )

)

+ Z1F + Z2g + Z3Fb.

The K ′′-factor makes the operator norm of Z1 in L̃
∞ tend to zero (uniformly

in ε) when the cut-off n→ ∞. Also by straight forward computations

| ν 1
2Z2g |∞≤ c | ν− 1

2 g |∞, | ν 1
2Z3Fb |∞≤ c | Fb |∼ .

It remains the term Uε

(

K ′Uε(K
′F )

)

. The first Uε is (uniformly in ε)

bounded in L̃∞, so it is enough to consider K ′UεK
′. Setting EF (x) =

∫

F (x, v)M(v)dv, we can estimate K ′UεK
′ by a cut-off dependent multi-

ple of EUεE in the operator norm. For fixed ε the operator EUεE is

bounded from Lp into Lq for p > d, q = ∞, d ≥ 1, as well as for

1 < p ≤ d, q < dp(d − p)−1, d > 1. Here d = 1. For the proof of

this estimate of EUE we follow [M Chapter 6]. First,

‖ 1

ε2
Uε

(

K ′Uε(K
′F )

)

‖∞≤ c

ε
‖ EUεH ‖∞,

where the norms are the relevant operator norms and

H(z) = (EF )(z).

Moreover,

EUεH(z)

=

∫

M(v)

∫ 0

s1or s̃2

exp

{

−1

ε

∫ 0

s
ν(vx, vy, vz−τεG)dτ

}

H(z+svz−s2
εG

2
)dsdv

≤ A(z),

where

A(z) :=

∫

(

∫ 0

s1 or s̃2

eν0
s
εH(z + svz − s2

εG

2
)ds

)

e−
1
2
v2zdvz
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= A1(z) +A2(z) +A3(z),

where

A1(z) :=

∫

vz<−
√

2εG(1−z)

(

∫ 0

s̃2

eν0
s
εH(z + svz − s2

εG

2
)ds

)

e−
1
2
v2zdvz,

A2(z) :=

∫

vz>
√

2εG(1−z)

(

∫ 0

s1

eν0
s
εH(z + svz − s2

εG

2
)ds

)

e−
1
2
v2zdvz,

A3(z) :=

∫

v2z<2εG(1−z)

(

∫ 0

s1

eν0
s
εH(z + svz − s2

εG

2
)ds

)

e−
1
2
v2zdvz.

Then,

A2(z) =

∫

vz>
√

2εG(1−z)

(
∫ z

−1
exp

{

−2ν0
ε

z − r

vz +
√

v2z + 2εG(z − r)

}

×H(r)
dr

√

v2z + 2εG(z − r)

)

e−
1
2
v2zdvz

=

∫ z

−1
H(r)ϕ2(z − r)dr,

if

ϕ2(s) =

∫

u>
√

2εG(1−z)

e−
1
2
u2

√
u2 + 2εGs

e
− 2sν0

ε(u+
√

u2+2εGs)du .

For any α > 0,

e−
1
2
u2

√
u2 + 2εGs

e
− 2ν0s

ε(u+
√

u2+2εGs)

≤ c
(ε

s

)α
e−u (u+

√
u2 + 2εGs)α√
u2 + 2εGs

e
−
(

u+
sν0

ε(u+
√

u2+2εGs)

)

≤ c
(ε

s

)α
uα−1e−ue−

√
s
ε .

Hence,

ϕ2(s) ≤ c
(ε

s

)α
e−

√
s
ε , ‖ ϕ2 ‖q′≤ cε

1
q′ , q′ ≥ 1.

And so,

‖ A2 ‖∞≤‖ H ‖q‖ ϕ2 ‖q′≤ cε
1
q′ ‖ H ‖q .

The terms A1(z) and A3(z) can be treated analogously. With this estimate
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of EUεE and choosing the cut-off n large enough, (3.8) follows when f j = 0,

j = 1, . . . , 5. But Mϕ :=
∑5

1 ǫ
jf j is of order ε, and taking ε small enough,

it follows that the addition of J̃(F,ϕ) to g does not change the result in this

part of the proof, neither does the addition of a fluid component to g. �

Next lemma provides a priori L2 estimates of the hydrodynamic com-

ponent of F , F‖, as well as the non fluidodynamic part, F⊥. Analogous

estimates are proved in [7] for diffusive boundary conditions. We give here

the proof in the case of given indata for sake of completeness.

Lemma 3.4. Let g = g‖ + g⊥, and let F be a solution in W2− to (3.5).

For ε > 0 and small enough,

| ν 1
2F⊥ |2≤ c(| ν− 1

2 g⊥ |2 +
√
ε | Fb |∼ +

1

ε
| g‖ |2 +ελ | F‖ |2 . (3.9)

Moreover, for λ small enough,

| F‖ |2≤ c(
1

ε
| ν− 1

2 g⊥ |2 +
1

ε
√
ε
| g‖ |2 + | Fb |∼). (3.10)

Proof of Lemma 3.4. We first prove the estimate (3.9) when ϕ = 0.

Consider the mapping from ν−
1
2 L̃q × L+ into Wq− given by (g, Fb) → F ,

with F a solution to (3.5) for ϕ = 0 and g = g⊥. We multiply (3.5) by M̃

and integrate over space and velocity. Then, identity (3.2), Green’s formula

and the spectral inequality for the linearized collision operator L, i.e.

−
∫

MfLfdv ≥ c

∫

Mνf2⊥dv,

give

ε | SF |2∼ + | ν 1
2F⊥ |22≤ c | ν− 1

2 g⊥ |22 +ε | Fb |2∼ .

The inclusion of J̃(F,ϕ) as well a fluid component to g, adds cε|ν 1
2F⊥|22,

which is incorporated in the left hand side together with a term 1
ε2
|g‖|22, and

a term cλ2ε2 | F‖ |22. This concludes the proof of (3.9). As a by-product, we

have also the following estimate for | SF |∼

| SF |∼≤ c

[

1√
ε
| ν− 1

2 g⊥ |2 +
c

ε
√
ε
| g‖ |2 +λ

√
ε | F‖ |2

]

+ | Fb |∼ (3.11)



2008] STABILITY OF THE LAMINAR SOLUTION 69

We start the proof of (3.10) by estimating Fz . Multiplying the equation

(3.5) by M and integrating over R3
v, leads to

∂Fz

∂z − ǫGFz = g0
ǫ , i.e.

Fz(z) = Fz(−1)eǫG(z+1) +

∫ z

−1

g0

ǫ
eǫG(z−s)ds. (3.12)

By definition of Fz(−1),

| Fz(−1) | = |
∫

vzF (−1, v)Mdv |

≤ c
(

∫

| vz | F 2(−1, v)Mdv
)

1
2 ≤ c(| SF |∼ + | Fb |∼).

And so by (3.12) with ‖ . ‖2 denoting the L2-norm in space

‖ Fz ‖2≤ c(
1

ε
‖ g0 ‖2 + | SF |∼ + | Fb |∼). (3.13)

To bound the hydrodynamical part of F , we multiply (3.5) by M̃vzψi,

i 6= 2 and integrate over [−1, z]× R
3.

Denoting pi(z) =< v2zψiM̃F >, i = 0, . . . , 4, we get

pi(z) = pi(−1)+

∫ z

−1
dz′

∫

dvM̃vzψi
1

ε

[

L̃F+

5
∑

j=1

εj J̃(F, M̃−1f j)+ε2G
∂

∂vz
F+g

]

.

As before, we have

|pi(−1)| ≤ c(| SF |∼ + | Fb |∼).

The relation between pi and the components Fi, i 6= 3, of the fluid dynamic

part of F is

pi =
∑

j 6=3

AijFj+ < Mv2zψ
2
3 > F3δi3+ < Mv2zψiF⊥ >

with A =< Mv2zψiψj > a non-singular bounded matrix. By inverting the

previous relation we get

Fi(z) =
∑

j 6=3

A−1
ij

[

pj− < Mv2zψ
2
3 > F3δj3+ < Mv2zψjF⊥ >

]

.
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This allows to estimate Fi and hence F‖ as

| F‖ |2≤ C
[1

ε
|
√
νF⊥ |2 +

1

ε
| g |2 +λ | F‖ |2

]

+ c | SF |∼ + | Fb |∼, (3.14)

so that for λ small enough we get

| F‖ |2≤ C
[1

ε
|
√
νF⊥ |2 +

1

ε
| g |2

]

+ c | SF |∼ + | Fb |∼ . (3.15)

Finally, by using (3.11) we get

| F‖ |2≤ C
[1

ε
| ν 1

2F⊥ |2 +
1

ε
√
ε
| g‖ |2

]

+ | Fb |∼ .

Note that the only point where we need λ small is to pass from (3.14) to

(3.15). �

We give now a new stronger estimate for the hydrodynamic part of the

solution which is true under the assumption of small G, instead of small λ.

The proof requires a careful analysis of suitable moments of higher orders.

Lemma 3.5. Let g = g‖ + g⊥, and let F be a solution in W2− to (3.5).

For ǫ > 0 and G small enough

| F‖ |2≤ c(
1

ǫ
| ν− 1

2 g⊥ |2 +
1

ǫ2
| g‖ |2 +

1√
ǫ
| Fb |∼ + | F⊥ |2). (3.16)

Proof of Lemma 3.5. Define

fxiyjzk(z) :=

∫

Mvixv
j
yv

k
zf⊥(z, v)dv, i+ j + k ≥ 2,

and fxiyjzk2(z), fxiyjzkĀ(z), fxiyjzkB̄(z) correspondingly, when there is an

extra factor | v |2, Ā, resp. B̄ in the integrand.

Here Ā and B̄ are non-hydrodynamic solutions to

L̃(vzĀ) = vz(v
2 − 5T ), L̃(vxvzB̄) = vxvz.

The estimate for the Fz-moment is given by (3.13).

We next consider the Fx-moment. Here the J̃(F,ϕ)-term requires some

care. The first step is an estimate of Fxz. Multiply (3.5) by Mvx and

integrate,

∂

∂z
Fxz − ǫGFxz =

gx

ǫ
. (3.17)
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A multiplication of (3.5) with vxvzB̄M and integration over IR3
v leads for

some real γ to

∂(αFx + Fxz2B̄)

∂z
+ ǫGγ(αFx + Fxz2B̄)

=
1

ǫ

(

Fxz + gxzB̄ + 2

∫

vxvzB̄J̃(F,ϕ)Mdv

)

+ ǫGβ,

where α < 0, and β is a multiple of a non-hydrodynamic moment of F .

Notice that the definition of B̄ implies that
∫

MvxvzB̄J̃(F‖, M̃
−1f1) is zero.

This is crucial for not getting a term λ | F‖ |2 in the final estimate.

Set F̃x = αFx + Fxz2B̄ =
∫

v2zvxB̄FMdv. Then

∂F̃x

∂z
+ ǫGγF̃x =

1

ǫ

(

Fxz + gxzB̄ + 2

∫

vxvzB̄J̃(F,ϕ)Mdv

)

+ ǫGβ.

The last equation together with the equation satisfied by Fxz, (3.17), give

∂

∂z
(FxzF̃x) + ǫG(γ + 1)FxzF̃x

=
F 2
xz

ǫ
+ Fxz

[1

ǫ
(gxzB̄ + 2

∫

vxvzB̄J̃(F⊥, ϕ)Mdv) + ǫGβ
]

+
gx

ǫ
F̃x.

Integrating over z ∈ [−1, 1] the previous equation we get an estimate for the

L2 norm of Fxz√
ε
. For an arbitrary η > 0

‖ Fxz ‖22
ǫ

≤ |(FxzF̃x)(1)| + |(FxzF̃x)(−1)| + εcG‖ Fxz ‖2‖ F̃x ‖2

+
1

ε
‖ Fxz ‖2

[

‖ gxzB̄ ‖2 + cε| ν 1
2F⊥ |2 + ǫcG | F⊥ |2 +ǫ2c | F |2

]

+
1

ε
‖ gx ‖2‖ F̃x ‖2

≤ |(FxzF̃x)(1)| + |(FxzF̃x)(−1)| + εη‖ F̃x ‖2
2
+ cη

1

ε3
‖ gx ‖22

+
cη

ǫ
| ν− 1

2 g⊥ |22 +ǫcη | ν 1
2F⊥ |22 +

η

ǫ
‖ Fxz ‖22 +ǫ3cη | F‖ |22 .

And so an estimate of F̃x can be obtained,

‖ F̃x ‖2 ≤ c
(1

ǫ
(‖ ν− 1

2 g⊥ ‖2 + ‖ Fxz ‖2) + |F̃x(−1)|+ | ν 1
2F⊥ |2 +ǫ | F‖ |2

)

≤ c
(1

ǫ
‖ ν− 1

2 g⊥ ‖2 + | ν 1
2F⊥ |2

)
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+
1√
ε

[√
εη‖ F̃x ‖2 + c

1

ε
√
ε
‖ gx ‖2 + ǫ | F‖ |2

]

+c
1√
ε

[

| F̃x(±1) | + | Fxz(±1) |
]

. (3.18)

Now we have to estimate the boundary terms F̃x(±1) and F̃xz(±1). We

cannot use directly (3.11) because this estimate depends on λ
√
ε | F‖ |2. We

do instead the following: Multiply (3.5) by M̃ (1+ | v |2) and integrate,

∂

∂z
F(1+|v|2)vz + ǫGF(1+|v|2)vz =

1

ǫ
g(1+|v|2) − 2ǫGFz .

It follows that
∣

∣

∣

∫

vz<0
F (−1, v)vxvzMdv

∣

∣

∣
+

∣

∣

∣

∫

vz>0
F (1, v)vxvzMdv

∣

∣

∣

≤
∫

F out(1+ | v |2) | vz |Mdv

≤ c
(

∫

Fb(1+ | v |2) | vz |Mdv +
1

ǫ
‖ g(1+|v|2) ‖2 +ǫG ‖ Fz ‖2

)

≤ c | Fb |∼ +
1

ǫ
| g‖ |2 +εG | SF |∼

≤ c | Fb |∼ +
1

ǫ
| g‖ |2 +c

√
εG | ν− 1

2 g⊥ |2 +εG
[

c

ε
√
ε
| g‖ |2 +λ

√
ε | F‖ |2

]

.

We have used (3.13) to get the third inequality and (3.11) to get the last

one. The same estimate holds for
∣

∣

∣

∫

vz<0
F (−1, v)vxv

2
zMdv

∣

∣

∣
+

∣

∣

∣

∫

vz>0
F (1, v)vxv

2
zMdv

∣

∣

∣
.

By replacing in (3.18) we get

‖ F̃x ‖2≤ c
(

| ν 1
2F⊥ |2 +

1

ǫ
| ν− 1

2 g⊥ |2 +
1

ε2
| g‖ |2 +

1√
ε
| Fb |∼ +η | F‖ |2

)

.

(3.19)

The result and proof for Fy is analogous.

A multiplication of (3.5) with vzM and integration over R3
v leads to

∂

∂z

∫

Mv2zFdv − ǫG

∫

vzM
∂F

∂vz
dv =

1

ǫ

∫

Mvzgdv (3.20)

i.e. with F̃0 = F0 +
2F4√

6
+ Fz2 =

∫

v2zFMdv,

∂F̃0

∂z
− 1

2
ǫGF̃0 =

gz

ǫ
− ǫGF0.



2008] STABILITY OF THE LAMINAR SOLUTION 73

And so

‖ F̃0 ‖2≤ c(
1

ǫ
‖ gz ‖2 +ǫ ‖ F0 ‖2 + | SF |∼ + | Fb |∼). (3.21)

A multiplication of (3.5) with vzĀM and integration over R3
v leads to

∂
∫

v2zĀFMdv

∂z
− ǫG

∫

vzĀ
∂F

∂vz
dv =

1

ǫ

∫

vzĀ(LF + g + J̃(ϕ,F ))Mdv,

or with γ = 1√
6

∫

vzĀvz(v
2 − 3)Mdv < 0,

∂

∂z
(γF4 + Fz2Ā) =

1

ǫ
(Fvz(v2−5) + gzĀ +

∫

vzĀJ̃(ϕ,F )Mdv) + ǫGβ′,

where β′ is a moment of F . With the notation F̃4 = γF4 + Fz2Ā this can be

written as

∂F̃4

∂z
=

1

ǫ
(Fvz(v2−5) + gzĀ +

∫

vzĀJ̃(ϕ,F )Mdv) + ǫGβ′.

Here a second step is an estimate of
F
vz(v2−5)

ǫ . Multiply (3.5) with M(v2−5)

and integrate,

∂

∂z
Fvz(v2−5) =

g(v2−5)

ǫ
+ ǫGβ,

where β is a moment of F . The last two equations together give

∂

∂z
(Fvz(v2−5)F̃4) =

F 2
vz(v2−5)

ǫ
+
Fvz(v2−5)

ǫ

(

gzĀ + ǫ2Gβ′

+

∫

vzĀJ̃(ϕ,F )Mdv
)

+
g(v2−5)

ǫ
F̃4 + ǫGβF̃4. (3.22)

To evaluate the left hand side, again a boundary estimate is needed,

|
∫

vz<0
F (−1, v)(v2 − 5)vzMdv | + |

∫

vz>0
F (1, v)(v2 − 5)vzMdv |

≤ 5

∫

F out(1+ | v |2) | vz |Mdv

≤ c
(

∫

Fb(1+ | v |2) | vz |Mdv +
‖ g(1+|v|2) ‖2

ǫ
+ ǫG ‖ Fz ‖2

)

.

It is easy to realize that we have the same situation as for the estimate of

F̃x but for the term ǫGβF̃4 in (3.22), which gives a term
√
Gε | F‖ |2 in the
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bound for
‖F

vz(v2−5)‖2√
ǫ

. Hence,

‖ F̃4 ‖2≤ c
(

| ν 1
2F⊥ |2 +

1

ǫ
| ν− 1

2 g⊥ |2 +
1

ε2
| g‖ |2 +

1√
ε
| Fb |∼ +

√
G | F‖ |2

)

(3.23)

To conclude the proof of the Lemma it is enough to collect all the estimates

together, use (3.9) and take G small enough. �

We conclude this section by noticing that Lemma 3.4 and Lemma 3.5

imply

Corollary 3.6. Let g = g‖ + g⊥, and let F be a solution in W2− to

(3.5). For ǫ > 0 and G small enough,

| F‖ |2≤ c(
1

ǫ
| ν− 1

2 g⊥ |2 +
1

ǫ2
| g‖ |2 +

1√
ǫ
| Fb |∼) (3.24)

| ν 1
2F⊥ |2≤ c(| ν− 1

2 g⊥ |2 +
√
ε | Fb |∼ +

1

ε
| g‖ |2) (3.25)

As for the existence of the stationary solution Fs, its asymptotic expan-

sion was discussed in Section 2, and the rest term is obtained by using the

above estimates as in [10], pp70-72, 99-105, using Maslova’s mapping from

the diffuse reflection case to the given indata case, also adapting from the

force-free case of [10] to the present case with a force term. That analysis

is similar in spirit to the time dependent case as treated in the following

sections. Hence, we will not give the explicit proof for the control of the re-

mainder. We notice that for hard spheres the solution Fs constructed in this

way is positive. That can be proved in the same way as the corresponding

positivity in the Taylor-Couette case [2]. In conclusion, we can state

Theorem 3.7. Put

f1 =M
(

r +
v2 − 3

2
θ
)

with r and θ the thermal conduction solution of the Boussinesq equations

corresponding to the temperatures T−=1 and T+=(1+2ελ), given by (2.4).

Then there are G0 > 0 and ε0 > 0 such that, if G < G0 and ε < ε0,

there exists in L̃2 ∩ L̃∞ a positive stationary solution f ε to the boundary

value problem (2.2) such that

∣

∣

∣
M−1

(

f ε − (M + εf1)
)
∣

∣

∣

∞
≤ Cε2 .
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4. Stability: the Expansion

We study in this section the behavior in time of a small perturbation to

the stationary solution Fs constructed in the previous sections.

Consider the Boltzmann equation

∂F

∂t
+

1

ǫ
vz
∂

∂z
F −G

∂F

∂vz
=

1

ǫ2
Q(F,F ),

F (0, z, v) = Fs(z, v) + ζ0(z, v), z ∈ (−1, 1), v ∈ R
3,

F (t,−1, v) = M−(v)
∫

wz<0
|wz|F (t,−1, w)dw, t > 0, vz > 0,

F (t, 1, v) = M+(v)

∫

wz>0
wzF (t, 1, w)dw, t > 0, vz < 0,

where

M− =
1

2π
e−

v2

2 , M+(v) =
1

2π(1 + 2ελ)2
e
− v2

2(1+2ελ)

and ζ0 is the initial perturbation of Fs, discussed below.

As seen in the previous sections, the stationary solution can be written

as Fs =M +Φs. The function ζ = F − Fs is then a solution to

∂ζ

∂t
+

1

ǫ
vz
∂

∂z
ζ −G

∂ζ

∂vz
=

1

ǫ2

(

Lζ +Q(ζ, ζ) + 2J(ζ,Φs)
)

, (4.1)

ζ(0, z, v) = ζ0(z, v), z ∈ (−1, 1), v ∈ R
3,

ζ(t,−1, v) =M−

∫

wz<0
|wz |ζ(t,−1, w)dw, t > 0, vz > 0,

ζ(t, 1, v) =M+(v)

∫

wz>0
wzζ(t, 1, w)dw, t > 0 vz < 0 .

The following initial perturbations ζ(0, z, v) = ζ0(z, v) are considered,

ζ0(z, v) =
5

∑

n=1

εnΦ(n)(0, z, v) + ǫ5p5 (4.2)

where the measurable function p5(z, v) may depend on ǫ and satisfies

‖ p5 ‖∞,2:= sup
ǫ>0

(
∫

( sup
−1≤z≤1

p25(z, v))Mdv

)
1
2

< c,

for some c. The non hydrodynamical part of the functions Φ(n)(0, z, v) is
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determined by the expansion as explained below together with part of the

hydrodynamical part. We will denote by I
(n)
i (t, z) the coefficients of the func-

tions ψi in the hydrodynamic part of Φ(n)(t, z, v). The functions I
(n)
i (t, z) are

not completely arbitrary. There are constraints due to the expansion rules

that will be given later on in this section. For example, we require I
(1)
3 = 0

for compatibility with the impermeability boundary condition. Finally, we

require
∫

[−1,1]×R3

ζ0(z, v)ψi(v)dzdv = 0, i = 0, . . . , 4.

Since the Boltzmann equation conserves total mass, momentum and energy

at any positive time the solution has to satisfy
∫

[−1,1]×R3 ζ(t, z, v)ψi(v)dvdz =

0.

We write an ε-expansion for ζ in the form

ζ(t, z, v) =

5
∑

n=1

Φ(n)(t, z, v)εn + εR(t, z, v)

We proceed as in Section 2 in building up all the terms of the expansions.

For the proof of the stability we need to show that Φ(n)(t, z, v) converge to

zero when time tends to infinity in a suitable norm. To this end, we will

construct explicitly only the first terms of the expansions. The behavior of

the higher order terms will then be evident from this analysis.

If we use the expansion in (4.1) we see immediately that Φ(1) has to

satisfy

LΦ(1) = 0,

so that Φ(1) has to be in Null L, which means that it is a combination of the

collision invariants Mψi, i = 0, . . . , 4. Hence we have

Φ(1) =M
(

ρ1 + u1 · v + T 1 |v|2 − 3

2

)

,

so that ρ1 ≡ I
(1)
0 , u1i ≡ I

(1)
i , i = 1, 2, 3, T 1 ≡ 2√

6
I
(1)
4 . We notice that the

boundary conditions force u1(−1, t) = u1(1, t) = 0, T 1(−1, t) = 0 = T 1(1, t)

for any t > 0. In consequence, we do not need boundary layer correction to

the first order in ε. Indeed, in z = −1 the solution is already Maxwellian.

On the other hand, M + εΦ(1), when evaluated for z = 1 is not proportional

to the Maxwellian M+, even with the previous assumptions, but differs from
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it for terms of order ε2 which will appear in the corrections of higher order.

Hence, for n > 1 we have to decompose the higher order corrections in a

bulk term B(n) and two boundary layer terms b
(n)
± .

To determine the functions ρ1, u1 and T 1 which give Φ(1)(= B(1)), we

consider the equation that we get by equating the terms of next order. Note

that we know from the previous sections that the stationary solution can also

be expanded in ε and we denote by Φ
(n)
s the terms of this expansion. The

equation which we get at next order, by ignoring boundary layer corrections,

is

vz
∂

∂z
Φ(1) =

(

LB(2) +Q(Φ(1),Φ(1)) + 2J(Φ(1),Φ(1)
s )

)

(4.3)

It can be seen as an equation in B(2), whose solvability conditions are

〈ψivz∂zΦ
(1)〉 = 0, i = 0, . . . , 4

where 〈·〉 stands for integration over the velocities. This is equivalent to

∂zu
1
z = 0, ∂z(T

1 + ρ1) = 0. (4.4)

The first equation in (4.4) is the usual incompressibility condition in d = 1

which implies, together with the boundary conditions, u1z = 0, while the sec-

ond equation in (4.4) is the Boussinesq condition. The Boussinesq condition

fixes ρ1 = −T 1, up to a constant. To determine T 1 and the other compo-

nents of u1 we look at the solvability condition at next order in ε. Indeed,

once (4.4) are satisfied, we can deduce from (4.3) the following expression for

B(2), where L−1 denotes the inverse of the restriction of L to the orthogonal

of its null space

B(2) = L−1
[

vz∂zΦ
(1) −Q(Φ(1),Φ(1))− 2Q(Φ(1),Φ(1)

s )
]

+M

4
∑

i=0

ψi I
(2)
i (t, z) .

(4.5)

The coefficients I
(2)
i are undetermined at this point and will be partly fixed

by the solvability condition for the equation at next order in ε and the rest

of them in some later step:

∂

∂t
B(1) + vz

∂

∂z
B(2) +G

∂

∂vz
B(1)

= LB(3) + 2J(Φ(2),Φ(1)) + 2J(Φ(2),Φ(1)
s ) + 2J(Φ(1),Φ(2)

s ) (4.6)
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The solvability conditions for this equation are

〈ψi[
∂

∂t
B(1) + vz

∂

∂z
B(2) +G

∂

∂vz
B(1)]〉 = 0, i = 0, . . . , 4 (4.7)

and this produces the equations for u1 and T 1. Let us fix i = 1, 2, 3 in (4.7).

Then the first term gives the time derivative of u1. The third one reduces

to 0 for i = 1, 2 and to −Gρ1 for i = 3, after integrating by parts. Finally

we write

〈v ⊗ vB(2)〉 = 〈[v ⊗ v − v2

3
I]B(2)〉+ 〈v

2

3
IB(2)〉 .

The first term, as is well known, gives rise to the dissipative and transport

terms, while the second one can be interpreted as the second order correction

to the pressure P2. The result is

∂

∂t
u1z + u1z

∂

∂z
u1z = ν

∂2

∂z2
u1z −

∂

∂z
P2 +Gρ1,

∂

∂t
u1i = ν

∂2

∂z2
u1i , i = 1, 2,

where ν > 0 is the usual kinematic viscosity coefficient. We remark that

the term due to Q(Φ(1),Φ
(1)
s ) in (4.5), which in general produces the trans-

port along the stationary flow, does not contribute in this case because the

stationary velocity field in the z direction, 〈vzΦ(1)
s 〉, vanishes. Using the

Boussinesq condition we replace the term Gρ1 by −GT 1 + const. The con-

stant can be absorbed in the pressure term that we rename p. Since u1z = 0

we are left with
∂

∂z
p = −GT 1 .

This determines p in terms of T 1 up to a constant.

Remark. There are constants (one coming from the Boussinesq condi-

tion, another from the pressure condition) at any order which will be deter-

mined in the end by the total mass condition. Since we are asking that the

total mass of the perturbation is zero we can put to zero all the constants.

To get the equation for the temperature, one has to look at (4.7) for

i = 4. It is actually more convenient to replace ψ4 with the equivalent

ψ̃4 =
1
2 (v

2 − 5).
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An integration by parts yields

G〈ψ̃4
∂

∂vz
f1〉 = −u1zG = 0,

while

〈vψ̃4B
(2)〉 = −κ∂T

1

∂z
,

with k > 0 the thermal conductivity. In conclusion,

5

2

∂

∂t
T 1 = k

∂2

∂z2
T 1 .

This equation has to be solved with boundary conditions T 1(±1, t) = 0,

for t > 0 and initial condition T 1
0 , which is completely arbitrary. Since

∫ 1
−1 dzT

1
0 (z) = 0, standard results on the heat equation imply that the L2-

norms of the solution T 1(z, t) and of its derivatives converge to zero exponen-

tially in time. Also the components of the velocity u1i , i = 1, 2, solve similar

parabolic equations with boundary conditions u1i = 0 and initial condition

(u10)i, which are again arbitrary. Since T 1 differs from ρ1 for a constant, that

can be put to zero, and u1z is identically zero, we can conclude that also Φ(1)

converges to zero exponentially in time together with its spatial derivatives.

The second order term in the expansion, Φ(2), is not yet completely

determined. Equation (4.7) with i = 0 gives

∂

∂t
ρ1 =

∂

∂z
I
(2)
3 ,

This fixes I
(2)
3 up to a constant. Moreover, a combination of I

(2)
0 and I

(2)
4

contributes to the pressure p which is determined by the previous equations,

so that these parameters are not independent.

The non-hydrodynamic part of B(2) is a linear function of the deriva-

tives of ρ1, T 1 which are in general different from zero on the boundaries.

Therefore the non hydrodynamical part of B(2) is completely fixed (even a

time = 0) and violates the boundary conditions. We need to introduce b
(2)
±

to adjust the boundary conditions by compensating the non hydrodynamical

part of B(2) which is not Maxwellian. We explain how to find the correction

b
(2)
− . The correction b

(2)
+ is found in a similar way. The notation is the one

introduced in Section 2. We choose b
(2)
− by solving, for any t > 0, the Milne
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problem for z− > 0:

vz
∂

∂z−
h− ε2G− ∂

∂vz
h = L−h, 〈vzh〉 = 0, (4.8)

with z− defined in (2.7) as the rescaled z variable near the bottom plate

and G− defined by (2.9). We impose the boundary condition in z− = 0

in such a way that the incoming flux of h in z = −1, vz > 0 is given by

(I −P )B(2)(−1, v; t). The results in [5] tell us that the solution approaches,

as z− → +∞ a function q
(2)
− (v, t) in Null L−. Note that in q

(2)
− there is

no term proportional to ψ3 because of the vanishing mass flux condition in

the direction of the z axis 〈vzh〉 = 0. Thus we set b
(2)
− (z, v, t) = h(z, v, t) −

q
(2)
− (v, t), which will go to zero at infinity exponentially in z−. This produces

a term b
(2)
− (2ε−1, v, t) = γ−2,ε(v, t), exponentially small in ε−1 on the opposite

boundary. The resulting term in the expansion is thus Φ(2) = B(2)+b
(2)
+ +b

(2)
−

and is such that in z = −1, for example, it has zero non hydrodynamic part,

while the hydrodynamic part is

Φ(2)(−1, v; t)=
4

∑

i=0

I
(2)
i (−1; t)M(v)ψi(v)+b

(2)
+ (2ε−1, v, t) − q

(2)
− , vz>0, t>0

We are not yet done since Φ(2)(−1, v) is not Maxwellian for vz > 0, (as it

should, in order to satisfy the boundary conditions) because of the presence

of terms proportional to ψi, i = 1, 2, 4 in q
(2)
− and b

(2)
+ (2ε−1; t). The latter

is not important and will be put in the remainder. The former will be

compensated by the coefficients I
(2)
i , i 6= 0, 3, that can be chosen arbitrarily

on the boundaries. To satisfy the impermeability conditions we have to

choose I
(2)
3 = 0 on the boundaries. Finally we get

Φ(2)(±1, vz ≷ 0; t) = α±
2 M± + γ±2,ε, α±

2 = I
(2)
0 (±1)− 〈q(2)± (0)〉,

where γ±2,ε are terms exponentially small in ε

The coefficients I
(2)
i , i = 1, 2, 4 of the hydrodynamical part of B(2) are

determined by the compatibility condition for the equation at next order in

ε:
〈

ψi

[ ∂

∂t
B(2) + vz

∂

∂z
B(3) +G

∂

∂vz
B(2)

]

〉

= 0
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where

B(3) = L−1
[ ∂

∂t
Φ(1) + vz

∂

∂z
B(2) +G

∂

∂vz
Φ(1) − 2J(Φ(1), B(2))

−2J(Φ(1)
s , B(2))− 2J(Φ(1), B(2)

s )
]

+M

4
∑

i=0

ψi I
(3)
i

together with the b. c. I
(2)
i = (q

(2)
− )i, i = 1, 2, 4. Then I

(2)
0 is found

up to a constant that is chosen so that the total mass associated to Φ(2)

vanishes. Proceeding as in the determination of the Boussinesq equation,

we find now a set of three linear time-dependent non-homogeneous Stokes

equations for I
(2)
i . The non-homogeneous terms depend on the third order

spatial derivatives of Φ(1). General theorems for the Stokes equation assures

the existence of a solution for the chosen boundary vanishing exponentially

in time.

Once B(2) is completely determined, the last equation gives the non-

hydrodynamical part of B(3). As before, we introduce the terms b
(3)
± to

compensate (I − P )B(3) on the boundaries z = ±1. The term b
(3)
± is found

as a solution of a Milne problem with a source term, which depends on the

previous boundary corrections b
(2)
± and Φ(1). The procedure can be continued

to any order.

We notice that (I − P )Φ(n) at time zero are not arbitrary, since they

depend on Φ(n−1) and its derivatives. We can instead assign at time zero

I
(n)
i , i = 1, 2, 4. Notice that the rest term R at time zero is of order ε4. By

using the results in [5] and the exponential decay in time of Φ(n) we can

state the following theorem.

Theorem 4.1. Assume that at time zero, for some s suitable large

‖M ∂s

∂zs
I
(n)
i (0, z) ‖L2<∞, i = 1, 2, 4, n = 1, . . . 4 .

Then, it is possible to determine the functions Φ(n), n = 2, . . . , 5 in the

asymptotic expansion (4.2) including the boundary conditions

Φ(n)(t,−1, v) = M−(v)
∫

wz<0
|wz|Φ(n)(t,−1, w)dw + γ−n,ε, t > 0, vz > 0,

Φ(n)(t, 1, v) = M+(v)

∫

wz>0
|wz| Φ(n)(t, 1, w)dw + γ+n,ε, t > 0, vz < 0,
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the normalization condition
∫

R3×[−1,1]
dvdzΦ(n) = 0

and

‖ Φ(n) ‖2,2,2<∞, ‖ Φ(n) ‖∞,∞,2<∞ .

Here,

‖ f ‖2,2,2 =
(

∫ ∞

0

∫ 1

−1

∫

R3

|f(s, z, v)|2M(v)dsdzdv
)

1
2
,

‖ f ‖∞,∞,2 = sup
t>0

(

∫

R3

sup
z∈[−1,1]

|f(t, z, v)|2M(v)dv
)

1
2
.

5. Stability: the remainder

We shall now construct the rest term R = M̃R̄ for M̃ ζ̃ = ζ and prove

that
∫ +∞

0

∫

[−1,1]

∫

R3

|R̄(t, z, v)|2M(v)dtdzdv < c.

This in turn implies the L2-convergence to zero of R̄(., ., t) when time tends

to infinity.

The rest term R̄ satisfies the following problem,

∂R̄

∂t
+

1

ǫ
vz
∂R̄

∂z
−G

∂R̄

∂vz
=

1

ǫ2
L̃R̄+

1

ǫ
Q̃(R̄, R̄) +

2

ǫ
H(R̄) + α, (5.1)

R̄(0, z, v) = R̄0(z, v) = ǫ4p5(z, v),

R̄(t,−1, v) =

∫

wz<0

(

R̄(t,−1, w) +
ψ̄(t,−1, w)

ǫ

)

|wz|M−dw (5.2)

−1

ǫ
ψ̄(t,−1, v), t > 0, vz > 0,

R̄(t, 1, v) = M−1(v)M+(v)

∫

wz>0

(

R̄(t, 1, w) +
ψ̄(t, 1, w)

ǫ

)

wzMdw

−1

ǫ
ψ̄(t, 1, v), t > 0, vz < 0 .

where Q̃(R̄, R̄) = 1
M̃
Q(M̃R̄, M̃R̄). Here ψ̄(t,±1, v) are the terms exponen-
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tially small in ε coming from the expansions and

H(R̄) =
1

ǫ
J̃(R̄, Φ̄ + Φ̄s) ,

with M̃ Φ̄ =
∑5

n=1 Φ
(n)εn. Below from H, we shall in particular consider the

influence of the first order terms of Φ̄ + Φ̄s which will be denoted ǫψ11. The

function α contains all terms fully coming from the asymptotic expansion.

It is of fourth order in ǫ non-hydrodynamically and fifth order hydrody-

namically. Uniformly in ǫ its terms converge to zero when time tends to

infinity.

The following norms will be used

‖ f ‖2t,2,2 =
(

∫ t

0

∫ 1

−1

∫

R3

|f(s, z, v)|2M(v)dsdzdv
)

1
2
,

‖ f ‖∞,2,2 = sup
t>0

(

∫ 1

−1

∫

R3

|f(t, z, v)|2M(v)dzdv
)

1
2
,

‖ f ‖∞,∞,2 = sup
t>0

(

∫

R3

sup
z∈[−1,1]

|f(t, z, v)|2M(v)dv
)

1
2
,

‖ f ‖2t,2,∼ =
(

∫ t

0

∫

vz>0
vzM(v) | f(s,−1, v) |2 dvds

)
1
2

+
(

∫ t

0

∫

vz<0
| vz |M(v) | f(s, 1, v) |2 dvds

)
1
2
< +∞,

‖ f ‖∞,2,∼ =
(

sup
t>0

∫

vz>0
vzM(v) | f(t,−1, v) |2 dv

)
1
2

+
(

sup
t>0

∫

vz<0
| vz |M(v) | f(t, 1, v) |2 dv

)
1
2
< +∞.

Some of the a priori bounds for R̄ will follow from dual solutions to

a linear problem (in the rescaled time variable τ̄ = ε−1t) discussed in the

following lemma.

Lemma 5.1. Let ϕ(τ̄ , z, v) be solution to

∂ϕ

∂τ̄
+ vz

∂ϕ

∂z
− ǫG

∂ϕ

∂vz
=

1

ǫ
L̃ϕ+ g − J̃∗(ψ11, ϕ), (5.3)

denoting the adjointed, with initial value and boundary indata equal zero.

Then for G small enough,

‖ ν 1
2 (I − P )ϕ ‖2,2,2 ≤ c

(

ǫ ‖ ν− 1
2 (I − P )g ‖2,2,2 + ‖ Pg ‖2,2,2

)

, (5.4)
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‖ Pϕ ‖2,2,2 ≤ c
(

‖ ν− 1
2 (I − P )g ‖2,2,2 +

1

ǫ
‖ Pg ‖2,2,2

)

, (5.5)

‖ ϕ ‖∞,2,2 ≤ c
(√

ǫ ‖ ν− 1
2 (I − P )g ‖2,2,2 +

1√
ǫ
‖ Pg ‖2,2,2

)

, (5.6)

‖ ϕout ‖2,2∼ ≤ c
(√

ǫ ‖ ν− 1
2 (I − P )g ‖2,2,2 +

1√
ǫ
‖ Pg ‖2,2,2

)

. (5.7)

Proof of Lemma 5.1. The methods from [10] (a variant of [10] Scn 7.5

) may be adapted to the present setting with a force term, to obtain the

existence of a solution to (5.3).

For a first a priori estimate, multiply (5.3) by ϕ and integrate the resulting

equation on [0, T̄ ]× [−1, 1] × R
3. That leads to

‖ ϕ ‖2∞T̄ ,2,2 + ‖ Sϕ ‖22T̄ ,2∼ +
1

ǫ
‖ ν 1

2 (I − P )ϕ ‖22T̄ ,2,2

≤ c(ǫ ‖ ν− 1
2 (I − P )g ‖22T̄ ,2,2 +η1 ‖ Pϕ ‖22T̄ ,2,2 +

1

η1
‖ Pg ‖22T̄ ,2,2). (5.8)

Let β be a truncation function belonging to C1(R) with support (0,+∞),

and such that β(τ̄ ) = 1 for τ̄ > δ1 for some δ1 > 0. Let ϕ̃ = ϕβ. Then

∂ϕ̃

∂τ̄
= (

1

ǫ
L̃− vz

∂

∂z
+ ǫG

∂

∂vz
)ϕ̃+ ϕ

∂β

∂τ̄
+ gβ − J̃∗(ψ11, ϕ)β. (5.9)

We shall now consider the equation for the Fourier transform in time of ϕ̃,

which looks like the stationary problem of Section 3. Let F be the Fourier

transform in τ̄ with Fourier variable σ, and write Φ = Fϕ̃. In Fourier space

(5.9) becomes

−iσΦ = (
1

ǫ
L̃− vz

∂

∂z
+ ǫG

∂

∂vz
)Φ+F(ϕ

∂β

∂τ̄
) +F((g− J̃∗(ψ11, ϕ))β). (5.10)

We now estimate the fluid moments of Φ one by one, using their particular

couplings to other moments. Our approach will be an elaboration of the one

in Lemma 3.5. Define

ϕxiyjzk :=

∫

Mvixv
j
yv

k
zϕ⊥(v)dv, i+ j + k ≥ 2,

and ϕxiyjzk2 (ϕxiyjzkĀ, ϕxiyjzkB̄) correspondingly when there is an extra

factor | v |2 (Ā resp. B̄) in the integrand.

For | σ |≤ σ0, σ0 > 0 sufficiently small, and using the z-derivative

to express the moments, the steps of Lemma 3.5 can be followed without
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change, at the end including an integration in time. The two terms −iσΦ
and Fϕ∂β

∂τ̄ do not cause additional complications. With χσ0(σ) denoting the

characteristic function for the interval [−σ0, σ0], this leads to

‖ χσ0Φ‖ ‖22,2,2≤ c(‖ ν− 1
2 g⊥ ‖22,2,2 +

1

ǫ2
‖ g‖ ‖22,2,2 +σ0 ‖ χσ0Φ‖ ‖22,2,2). (5.11)

We illustrate on the vz-moment. Multiplying the equation with M and

integrating over R3
v, leads to

∂Φz

∂z − ǫGΦz = F(g0β) + F(ϕ0
∂β
∂τ̄ ) + iσΦ0, i.e.

Φz(z) = Φz(−1)eǫG(z+1) +

∫ z

−1
(F(g0β) + F(ϕ0

∂β

∂τ̄
) + iσΦ0)e

ǫG(z−s)ds.

By definition of Φz(−1),

| Φz(−1) | = |
∫

vzΦ(−1, v)Mdv |

≤ c
(

∫

| vz | Φ2(−1, v)Mdv
)

1
2 ≤ c | SΦ |2∼ .

And so

‖ χσ0Φz ‖22≤ c(‖ F(g0β) ‖22 + | SΦ |22∼ +σ0 ‖ Φ0 ‖22)

+

∫ 1

−1
dz[

∫ z

−1
F(ϕ0

∂β

∂τ̄
)Φze

ǫG(z−s)ds],

thus in the limit δ1 → +0, T̄ → ∞,

‖ χσ0Φz ‖22,2≤ c(‖ g0β ‖22,2 + | SΦ |22,2∼ +σ0 ‖ χσ0Φ0 ‖22,2).

The term which is new with respect to the proof of Lemma 3.4 is the

last one and has a small factor σ in front. In the other estimates we have

always the same structure and in the end we get (5.11). Remember that in

the proof of Lemma 3.4 one of the terms required the condition G small.

Hence, in the end we get for σ0 and G small enough

‖ χσ0Φ‖ ‖22,2,2≤ c(‖ ν− 1
2 g⊥ ‖22,2,2 +

1

ǫ2
‖ g‖ ‖22,2,2 . (5.12)

For σ ≥ σ0 we use a different approach. We multiply by suitable func-

tions and integrate over v in such a way that the σΦ-term gives moments of

Φ and then we estimate these moments by means of the other terms in the

equation. We start with the Φ0 +
2√
6
Φ4 and Φz moments. Multiply (5.10)
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with M(ψ0 +
2√
6
ψ4) and integrate,

−iσ(Φ0 +
2√
6
Φ4 +Φz2) +

∂

∂z
(
5

3
Φz +

1

3
Φvz(v2−5))

= −iσΦz2 + ǫGβ′ +F(β(g0 +
2√
6
g4)) +

∫

F(ϕ
∂β

∂τ̄
)(1 +

2√
6
ψ4)Mdv.

Here β′ is a moment of Φ. The projection along vz of (5.10) gives

−iσ(5
3
Φz +

1

3
Φvz(v2−5)) +

5

3

∂

∂z
(Φ0 +

2√
6
Φ4 +Φz2)

=
−iσ
3

Φvz(v2−5) + ǫGβ′′ +
5

3
F(gzβ) +

5

3
F(ϕz

∂

∂τ̄
β),

where β′′ is a moment of Φ. These two equations together give

−iσ(5
3
(Φa)2 + (Φb)2) +

5

3

∂

∂z
(Φa Φb)

= −iσ(5
3
Φz2(Φ

a) +
1

3
Φvz(v2−5)(Φ

b)) + ǫG(
5

3
β′(Φa) + β′′(Φb))

+
5

3

(

F(gzβ) + F(ϕz
∂

∂τ̄
β)

)

(Φb)

+
(

F(β(g0 +
2√
6
g4)) +

∫

F(ϕ
∂β

∂τ̄
)(1 +

2√
6
ψ4)Mdv

)5

3
(Φa)

where Φa := Φ0 +
2√
6
Φ4 + Φz2 and Φb := 5

3Φz +
1
3Φvz(v2−5). We conclude

that

‖ Φa ‖22 + ‖ Φb ‖22

≤ c(| SΦ |22∼ + ‖ ν 1
2 (I − P )Φ ‖22 +ǫ2G2 ‖ Φ ‖22 + ‖ Fg‖ ‖22)

− 1

iσ
((

∫

F(ϕ
∂β

∂τ̄
)(1 +

2√
6
ψ4)Mdv)

5

3
(Φa) +

5

3
F(ϕz

∂

∂τ̄
β)(Φb)) .

Now we consider (1 − χσ0)(Φ
a + Φb), so that we work in a region 1

σ ≤ 1
σ0
.

Thus in the limit δ1 → +0, T̄ → ∞, the terms containing ∂β
∂τ̄ go to zero for

any finite σ0 and we get, uniformly in σ0,

‖ (1−χσ0)(
5

3
(Φ0+

2√
6
Φ4+Φz2) ‖22,2+‖ (1−χσ0)(

5

3
Φz+

1

3
Φvz(v2−5)) ‖22,2

≤ c(| SΦ |22,2∼+‖ ν 1
2 (I − P )Φ ‖22,2,2 +ǫ2G2 ‖ Φ ‖22,2,2+‖ Fg‖ ‖22,2,2).(5.13)
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The projection along vxvzB̄ gives,

−iσΦxzB̄ +
∂

∂z
(αΦx +Φxz2B̄) + ǫGα′(αΦx +Φxz2B̄)

=
Φxz

ǫ
+F(gxzB̄β) + ǫGβ′ + F

(
∫

−vxvzB̄J̃∗(ψ11, ϕ)Mdvβ + ϕ
∂

∂τ̄
β

)

,

where α < 0 and β′ is a non-hydrodynamic moment of Φ. A projection along

vx gives

−iσ(αΦx+Φxz2B̄)+α
∂

∂z
Φxz+

αǫG

2
Φxz = −iσΦxz2B̄+αF(gxβ+ϕx

∂

∂τ̄
β).

The last two equations together give

−iσ(αΦxzB̄Φxz + (αΦx +Φxz2B̄)
2) + α

∂

∂z
(Φxz(αΦx +Φxz2B̄))

+αǫG(α′ +
1

2
)Φxz(αΦx +Φxz2B̄)

= α
Φ2
xz

ǫ
+ αΦxz(F(gxzB̄β) + ǫGβ′)

+F(αgxβ + ϕx
∂

∂τ̄
β)(αΦx +Φxz2B̄)− iσΦxz2B̄(αΦx +Φxz2B̄)

+αΦxzF
(
∫

−vxvzB̄J̃∗(ψ11, ϕ)Mdvβ + ϕ
∂

∂τ̄
β

)

.

This equation has almost the same structure as the equation for F̃x in

the proof of Lemma 3.5. By repeating the steps in that proof we conclude

that, for arbitrary η,

‖ (1−χσ0)(αΦx+Φxz2B̄) ‖2,2 ≤ c(‖ ν 1
2 (I−P )Φ ‖2,2,2+η ‖ PΦ ‖2,2,2

+ ‖ ν− 1
2Fg⊥ ‖2,2,2 +

1

ǫ
‖ Fg‖ ‖2,2,2).(5.14)

Notice that Lemma 3.5 is stated for equation (3.5) where the known term is

g
ǫ . Instead in (5.3) the known term is g. This explain the difference in the

factors ǫ.

The result and proof are analogous for Φy.

There remains an estimate for Φ0. The projection along vz − vzĀ
2√
6γ
,
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where γ = 1√
6

∫

v2zĀ(v
2 − 3)Mdv < 0, gives

−iσΦz +
∂

∂z
(Φ0 + β′)

= −iσ 2√
6
ΦzĀ − 2√

6γǫ
Φvz(v2−5) + ǫGβ′′ + F(gzβ − 2√

6γ
gzĀβ)

+F
(

ϕz
∂

∂τ̄
β − 2√

6γ
ϕzĀ

∂

∂τ̄
β
)

− 2√
6γ

F
(

∫

vzĀJ̃
∗(ψ11, ϕ)Mdvβ

)

.

Here β′ is a non-hydrodynamic and β′′ a general moment of Φ. The projec-

tion along ψ0 gives

−iσ(Φ0 + β′) +
∂

∂z
Φz −

ǫG

2
Φz = −iσβ′ + F(ϕ0

∂β

∂τ̄
) + F(g0β).

Again these two equations give

−iσ((Φ0 + β′)2 +Φ2
z) +

∂

∂z
((Φ0 + β′)Φz)

= ǫG(β′′ +
1

2
(Φ0 + β′))Φz + (Φ0 + β′)

(

− iσβ′ +F(ϕ0
∂β

∂τ̄
) + F(g0β)

)

+Φz

(

− iσ
2√
6
ΦzĀ − 2√

6γǫ
Φvz(v2−5) + F

(

gzβ − 2√
6γ
gzĀβ

)

+F
(

ϕz
∂

∂τ̄
β − 2√

6γ
ϕzĀ

∂

∂τ̄
β
)

− 2√
6γ

F
(

∫

vzĀJ̃
∗(ψ11, ϕ)Mdvβ

)

)

.

Using also (5.13) and (5.14) we conclude that

‖ (1− χσ0)(Φ0 + β′) ‖22,2,2
≤ c(‖ Φz ‖22,2,2 + ‖ ν 1

2 (I − P )Φ ‖22,2,2 +η ‖ Φ‖ ‖22,2,2 + ‖ ν− 1
2Fg⊥ ‖22,2,2

+
1

ǫ2
‖ Fg‖ ‖22,2,2)

≤ c(‖ ν 1
2 (I − P )Φ ‖22,2,2 +η ‖ Φ‖ ‖22,2,2 + ‖ ν− 1

2Fg⊥ ‖22,2,2
+

1

ǫ2
‖ Fg‖ ‖22,2,2). (5.15)

In particular (1− χσ0)PΦ is bounded by the right hand side of (5.15). This

together with (5.12) gives the estimate (5.5) for Pϕ of the lemma. Finally,

by choosing η1 =
√
ǫ in (5.8) and using (5.5), we get the last two estimates

(5.6) and (5.7). This ends the proof of the lemma. �

For the iteration procedure in the construction of the rest term below,
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we shall be using a sum of two systems, the first one being

∂R1

∂t
+

1

ǫ
vz
∂R1

∂z
−G

∂R1

∂vz
=

1

ǫ2
LR1 +

1

ǫ
g +

1

ǫ
J̃(ψ11, R1), (5.16)

R1(0, z, v) = R0(z, v),

R1(t,−1, v) = −1

ǫ
ψ̄(t,−1, v), t > 0, vz > 0,

R1(t, 1, v) = −1

ǫ
ψ̄(t, 1, v), t > 0, vz < 0.

A proof of existence for (5.16) can be adapted from [10] to the present case

with an additional force term.

To estimate the non-hydrodynamic part of R1, multiply (5.16) with

2R1M , integrate over [0, t]× [−1, 1]×R
3, and use the spectral inequality, to

obtain

1

ǫ
‖ Rout

1 ‖22t,2,∼ + ‖ R1(t) ‖22,2 +
1

ǫ2
‖ ν 1

2 (I − P )R1 ‖22t,2,2

≤ c
(

‖ R0 ‖22,2 + ‖ ν− 1
2 (I − P )g ‖22t,2,2 +(1 +

η1

2ǫ
) ‖ PR1 ‖22t,2,2

+
1

2η1ǫ
‖ Pg ‖22t,2,2 +

1

ǫ3
‖ ψ̄ ‖22t,2,∼

)

, (5.17)

for every η1 > 0.

The a priori bounds on PR1 are discussed in the following lemma. They

are more involved and based on dual techniques using the problem (5.3).

Denote by

h(t, z, v) := PR1.

Lemma 5.2. There is ǫ0 such that for 0 < ǫ < ǫ0 and G small

‖h‖22,2,2≤
c

ǫ
(‖ R0 ‖22,2+‖ν− 1

2 (I−P )g‖22,2,2+
1

ǫ3
‖ Pg ‖22,2,2+

1

ǫ3
‖ ψ̄ ‖22,2,∼).

Proof of Lemma 5.2. In the variables (τ̄ , z, v), the function R1 is a solu-

tion to

∂R1

∂τ̄
+ vz ·

∂R1

∂z
− ǫG

∂R1

∂vz
=

1

ǫ
L̃R1 + g + J̃(ψ11, R1),

R1(0, z, v) = R0(z, v),

R1(τ̄ ,−1, v) = −1

ǫ
ψ̄(τ̄ ,−1, v), τ̄ > 0, vz > 0,
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R1(τ̄ , 1, v) = −1

ǫ
ψ̄(τ̄ , 1, v), τ̄ > 0, vz < 0.

Let ϕ be the solution to

∂ϕ

∂τ̄
+ vz ·

∂ϕ

∂z
− ǫG

∂ϕ

∂vz
=

1

ǫ
L̃ϕ+ h− J̃∗(ψ11, ϕ)

with initial and ingoing boundary values zero. Denote by

(f, g)H =

∫

f(v)g(v)M̃ (v)dv, M̃ :=M(v)e−εG(z+1).

Multiply the equation for R1 by M̃ϕ and the equation for ϕ by R1M̃ and

integrate over v. We have

∂

∂τ̄
(R1, ϕ)H+

∫

vzM̃ [ϕ
∂

∂z
R1+R1

∂

∂z
ϕ]dv−ǫG

∫

M̃ [ϕ
∂

∂vz
R1+R1

∂

∂vz
ϕ]dv

=
2

ǫ
(L̃R1, (I − P )ϕ)H + (g, ϕ)H + (h, PR1)H .

After integrating on z, by integration by part, the second and third integral

give

−
∫

(R1ϕ)[vz
∂

∂z
M̃ − ǫG

∂

∂vz
M̃ ]dvdz + (vzϕ,R1)H(1)− (vzϕ,R1)H(−1)

= (vzϕ,R1)H(1)− (vzϕ,R1)H(−1) .

We integrate also with respect to τ̄ . This gives

‖ h ‖22τ̄ ,2,2 ≤
K1

2
‖ R1(τ̄ , ·, ·) ‖22,2 +

1

2K1
‖ ϕ(τ̄ , ·, ·) ‖22,2 +

K2

2
‖ Rout

1 ‖22τ̄ ,2∼

+
1

2K2
‖ ϕout ‖22τ̄ ,2∼ +

K3

2ǫ
‖ ν 1

2 (I − P )R1 ‖22τ̄ ,2,2

+
1

2K3ǫ
‖ ν 1

2 (I − P )ϕ ‖22τ̄ ,2,2 +
K4

2
‖ ν− 1

2 (I − P )g ‖22τ̄ ,2,2

+
1

2K4
‖ ν 1

2 (I − P )ϕ ‖22τ̄ ,2,2+
K2

2
‖ Pg ‖22τ̄ ,2,2+

1

2K2
‖ Pϕ ‖22τ̄ ,2,2,

for any positive constants Kj , j = 1, . . . , 4.

It then follows from Lemma 5.1 and (5.17) that

‖ h ‖22,2,2 ≤ c[(K1 +K2 +K3) ‖ R0 ‖22,2 +(
K1

ǫ2
+
K2

ǫ2
+
K3

ǫ2
) ‖ ψ̄ ‖22,2,∼

+(ǫK1 +K3 +K4 + ǫK2) ‖ ν−
1
2 (I − P )g ‖22,2,2)



2008] STABILITY OF THE LAMINAR SOLUTION 91

+(
1

ǫK1
+

1

ǫK3
+

1

K4
+

η1

ǫ2K1
+

1

K2ǫ2
) ‖ h ‖22,2,2

+(
K1

η2
+
K3

η1
+
K2

η2
+K2) ‖ Pg ‖22,2,2

+ ‖ PR1 ‖22,2,2 (η2K1 + η1K3 + η2K2)].

Choosing ǫ < 1, then K1 and K3 (resp.K2) of order ǫ
−1 (resp. ǫ−2) and η1

(resp. η2) of order ǫ (resp. ǫ
2), leads to

‖ h ‖22,2,2
≤ c

( 1

ǫ2
‖ R0 ‖22,2 +

1

ǫ
‖ ν− 1

2 (I−P )g ‖22,2,2+
1

ǫ4
‖ Pg ‖22,2,2 +

1

ǫ4
‖ ψ̄ ‖22,2,∼

)

.

This ends the proof of Lemma 5.2 when coming back to the t-variable. �

Lemma 5.3. Any solution R1 to the system

∂R1

∂t
+

1

ǫ
vz ·

∂R1

∂z
−G

∂R1

∂vz
=

1

ǫ2
L̃R1 +

2

ǫ
H(R1) +

1

ǫ
g, (5.18)

R1(0, z, v) = R0(z, v),

R1(t,−1, v) = −1

ǫ
ψ̄(t,−1, v), t > 0, vz > 0,

R1(t, 1, v) = −1

ǫ
ψ̄(t, 1, v), t > 0, vz < 0,

satisfies

‖ ν 1
2R1 ‖2,2,2 ≤ c

( 1√
ǫ
‖ R0 ‖2,2 +

1√
ǫ
‖ ν− 1

2 (I−P )g ‖2,2,2+
1

ǫ2
‖ Pg ‖2,2,2

+
1

ǫ2
‖ ψ̄ ‖2,2∼

)

,

‖ R1 ‖∞,2,2 ≤ c√
ǫ

(

‖ R0 ‖2,2 + ‖ ν− 1
2 (I − P )g ‖2,2,2 +

1

ǫ
√
ǫ
‖ Pg ‖2,2,2

+
1

ǫ
√
ǫ
‖ ψ̄ ‖2,2∼

)

,

‖ ν 1
2R1 ‖∞,∞,2 ≤ c

(1

ǫ
‖ R0 ‖2,2 +

1

ǫ
‖ ν− 1

2 (I − P )g ‖2,2,2 +
1

ǫ
5
2

‖ Pg ‖2,2,2

+
1

ǫ
5
2

‖ ψ̄ ‖2,2,∼ +ǫ ‖ ν− 1
2 g ‖∞,∞,2 + ‖ R0 ‖∞,2 +

1

ǫ
‖ ψ̄ ‖∞,2∼

)

.

Proof of Lemma 5.3. Consider the solution R1 to

∂R1

∂t
+

1

ǫ
vz ·

∂R1

∂z
−G

∂R1

∂vz
=

1

ǫ2
L̃R1 +

1

ǫ
g +

2

ǫ
H(R1),

R1(0, z, v) = R0(z, v),
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R1(t,−1, v) = −1

ǫ
ψ̄(t,−1, v), t > 0, vz > 0,

R1(t, 1, v) = −1

ǫ
ψ̄(t, 1, v), t > 0, vz < 0.

By Green’s formula and the spectral inequality

1√
ǫ
‖ Rout

1 ‖2,2∼ +sup
t≥0

‖ R1(t) ‖2,2 +
1

ǫ
‖ ν 1

2 (I − P )R1 ‖2,2,2

≤ c
(

‖ R0 ‖2,2 +
1

ǫ
3
2

‖ ψ̄ ‖2,2,∼ + ‖ ν− 1
2 (I − P )g ‖2,2,2

+(1 +
η√
ǫ
) ‖ PR1 ‖2,2,2 +

1

η
√
ǫ
‖ Pg ‖2,2,2

)

,

for any η > 0. Moreover, it follows from Lemma 5.2 that

‖ PR1 ‖2,2,2
≤ c

( 1√
ǫ
‖ R0 ‖2,2 +

1√
ǫ
‖ (I − P )g ‖2,2,2 +

1

ǫ2
‖ Pg ‖2,2,2 +

1

ǫ2
‖ ψ̄ ‖2,2∼

)

,

since the higher order terms in H compared to J̃(ψ11, .) do not change that

estimate. Choosing η =
√
ǫ leads to the first and second inequalities. Then,

some additional computations using the solution formula, imply

‖ ν 1
2R1 ‖∞,∞,2

≤ c
( 1

ǫ
1
2

‖ R1 ‖∞,2,2 + ‖ R0 ‖∞,2 +ǫ ‖ ν−
1
2 g ‖∞,∞,2 + ‖ Rin

1 ‖∞,2∼
)

,

which leads to the last inequality of Lemma 5.3. �

There remains a second part to obtain the full equation for R̄,

ǫ
∂R2

∂t
+ vz

∂R2

∂z
− ǫG

∂R2

∂vz
=

1

ǫ
L̃R2 + 2H(R2), (5.19)

R2(0, z, v) = 0

R2(t,−1, v) =

∫

wz<0

(

R1(t,−1, w)+R2(t,−1, w)+
ψ̄(t,−1, w)

ǫ

)

|wz|M−dw,

t > 0, vz > 0,

R2(t, 1, v) = M−1(v)M+(v)

×
∫

wz>0

(

R1(t, 1, w) +R2(t, 1, w) +
ψ̄(t, 1, w)

ǫ

)

wzMdw,

t > 0, vz < 0.
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The existence theory for the solution R2 is presented in [10], (p. 150).

There the case of no exterior force is discussed, but an extension includ-

ing the present exterior force term is easily carried out, if one includes the

corresponding characteristics into the proofs in [10].

The following a priori estimates hold for R2. By Green’s formula

ǫ | R2(t) |22,2 + ‖ Rout
2 ‖22t,2,∼ +

c1

ǫ
‖ ν 1

2 (I − P )R2 ‖22t,2,2
≤ ‖ Rin

2 ‖22t,2∼ +c2ǫ ‖ PR2 ‖22t,2,2 .

Also, by using the bounds in the proof of Lemma 5.3,

‖Rout
1 ‖22,2,∼≤c(‖R0 ‖22,2+‖ν− 1

2 (I−P )g‖22,2,2+
1

ǫ3
‖Pg‖22,2,2+

1

ǫ3
‖ ψ̄ ‖22,2∼).

Similarly to the earlier R1-case, PR2 satisfies

‖ PR2 ‖2t,2,2≤
c

ǫ
‖ Rin

2 ‖2t,2∼ .

For Rin
2 we get, by [10], (p101-102,150-151), the special properties of the

operator L + 2ǫH, which will be presented in a forth caming paper and a

control of the ǫ-dependence,

‖ Rin
2 ‖2t,2∼≤ c(‖ Rout

1 ‖2t,2∼ + ‖ ψ̄
ǫ
‖2t,2∼ .

Using the solution formula similarly to Lemma 5.3,

‖ ν 1
2R2 ‖∞,∞,2≤ c(

1√
ǫ
‖ R2 ‖∞,2,2 + ‖ Rin

2 ‖∞,2∼).

From [10] and the above discussion, we also obtain

‖ Rin
2 ‖∞,2∼≤ c(‖ Rout

1 ‖∞,2∼ +
1

ǫ
‖ ψ̄ ‖∞,2∼).

These estimates together give

Lemma 5.4. A solution to the R2-problem (5.19) satisfies

‖ ν 1
2 (I − P )R2 ‖22,2,2
≤ c

(

‖ R0 ‖22,2 + ‖ ν− 1
2 (I − P )g ‖22,2,2 +

1

ǫ3
‖ Pg ‖22,2,2 +

1

ǫ3
‖ ψ̄ ‖22,2∼

)

,

‖ PR2 ‖22,2,2
≤ c

ǫ2

(

‖ R0 ‖22,2 + ‖ ν− 1
2 (I − P )g ‖22,2,2 +

1

ǫ3
‖ Pg ‖22,2,2 +

1

ǫ3
‖ ψ̄ ‖22,2∼

)

,
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‖ ν 1
2R2 ‖2∞,∞,2

≤ c(
1

ǫ
‖ R2 ‖2∞,2,2 + ‖ Rout

1 ‖2∞,2∼ +
1

ǫ2
‖ ψ̄ ‖2∞,2∼)

≤ c(
1

ǫ3
‖ R0 ‖22,2 +

1

ǫ3
‖ ν− 1

2 (I − P )g ‖22,2,2 +
1

ǫ6
‖ Pg ‖22,2,2

+
1

ǫ6
‖ ψ̄ ‖22,2∼ +

1

ǫ2
‖ ψ̄ ‖2∞,2∼ + ‖ R0 ‖2∞,2 +ǫ

2 ‖ ν− 1
2 g ‖2∞,∞,2).

We are now ready to discuss the iteration procedure for the existence of

the rest term R and its convergence to zero, when t→ +∞. We shall prove

that R can be obtained as the limit of an approximating sequence, and that

∫ +∞

0

∫

[−1,1]

∫

R3

R2(t, x, v)M(v)dtdxdv <∞. (5.20)

This in turn implies the L2-convergence to zero of R(., ., t), when time tends

to infinity.

Theorem 5.5. There exists a solution R = M̃R̄ to the rest term

problem (5.1), and it holds that

∫ +∞

0

∫

[−1,1]

∫

R3

R2(t, z, v)M(v)dtdzdv <∞. (5.21)

Moreover,

lim
t→∞

R̄(t, z, v) = 0 .

Proof of Theorem 5.5. Let the approximating sequence (Rn)∞0 be defined

by R0 = 0, and

∂Rn+1

∂t
+

1

ǫ
vz ·

∂Rn+1

∂z
−G

∂Rn+1

∂vz

=
1

ǫ2
L̃Rn+1 +

2

ǫ
H(Rn+1) +

1

ǫ
Q̃(Rn, Rn) + α,

Rn+1(0, z, v) = R0(z, v),

Rn+1(t,−1, v) =

∫

wz<0

(

Rn+1(t,−1, w) + ψ̄(t,−1, w)
)

|wz|M−dw

−1

ǫ
ψ̄(t,−1, v), t > 0, vz > 0,

Rn+1(t, 1, v) =M−1M+(v)

∫

wz>0

(

Rn+1(t, 1, w) + ψ̄(t, 1, w)
)

wzMdw

−1

ǫ
ψ̄(t, 1, v), t > 0, vz < 0.



2008] STABILITY OF THE LAMINAR SOLUTION 95

We use that R0 is of ǫ-order four, ǫα⊥ of order four, and ǫα‖ of order five.

In particular, the function R1 is solution to

∂R1

∂t
+

1

ǫ
vz ·

∂R1

∂z
−G

∂R1

∂vz
=

1

ǫ2
L̃R1 +

2

ǫ
H(R1) + α,

R1(0, z, v) = R0(z, v),

R1(t,−1, v) =

∫

wz<0

(

R1(t,−1, w) + ψ̄(t,−1, w)
)

|wz|M−dw − 1

ǫ
ψ̄(t,−1, v),

t > 0, vz > 0,

R1(t, 1, v) =M−1M+(v)

∫

wz>0

(

R1(t, 1, w)+ψ̄(t, 1, w)
)

wzMdw− 1

ǫ
ψ̄(t, 1, v),

t > 0, vz < 0.

Now we split R1 into two parts R1 and R2 solutions of (5.18) and (5.19)

above, with g = εα. Then, by using the corresponding a priori estimates

Lemma 5.3 resp. Lemma 5.4, together with the subexponential decrease of

ψ̄, and the conditions on R0 and α we obtain

‖ ν 1
2R1 ‖∞,∞,2≤ c1ǫ

2, ‖ ν 1
2R1 ‖2,2,2≤ c1ǫ

5
2 ,

for some constant c1.

By induction, suppose that up to a given n

‖ ν 1
2Rj ‖∞,∞,2 ≤ 2c1ǫ

2, j ≤ n+ 1,

‖ ν 1
2 (Rn+1 −Rn) ‖2,2,2 ≤ c2ǫ ‖ ν

1
2 (Rn −Rn−1) ‖2,2,2, n ≥ 0,

for some constant c2. To complete the induction,

∂

∂t
(Rn+2 −Rn+1) +

1

ǫ
vz
∂

∂z
(Rn+2 −Rn+1)−G

∂

∂vz
(Rn+2 −Rn+1)

=
1

ǫ2
L̃(Rn+2 −Rn+1) +

2

ǫ
H(Rn+2 −Rn+1) +

1

ǫ
Gn+1,

(Rn+2 −Rn+1)(0, z, v) = 0,

(Rn+2 −Rn+1)(t,−1, v) =

∫

wz<0
(Rn+2 −Rn+1)(t,−1, w)|wz |Mdw,

t > 0, vz > 0,

(Rn+2 −Rn+1)(t, 1, v) =
M+

M

∫

wz>0
(Rn+2 −Rn+1)(t, 1, w)|wz |Mdw,

t > 0, vz < 0.
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Here

Gn+1 = (I − P )Gn+1 = J̃(Rn+1 +Rn, Rn+1 −Rn).

It follows that

‖ ν 1
2 (Rn+2 −Rn+1) ‖2,2,2≤

c

ǫ
‖ ν− 1

2Gn+1 ‖2,2,2

≤ c

ǫ

(

‖ ν 1
2Rn+1 ‖∞,∞,2 + ‖ ν 1

2Rn ‖∞,∞,2

)

‖ ν 1
2 (Rn+1 −Rn) ‖2,2,2

≤ c2ǫ ‖ ν
1
2 (Rn+1 −Rn) ‖2,2,2 .

Consequently,

‖ ν 1
2Rn+2 ‖2,2,2
≤ ‖ ν 1

2 (Rn+2 −Rn+1) ‖2,2,2 +...+ ‖ ν 1
2 (R2 −R1) ‖2,2,2 + ‖ ν 1

2R1 ‖2,2,2
≤ 2c1ǫ

5
2 ,

for ǫ small enough. Similarly ‖ ν 1
2Rn+2 ‖∞,∞,2≤ 2c1ǫ

2. In particular (Rn)

is a Cauchy sequence in L2
M ([0,+∞[×Ω × R

3). The existence of R̄ fol-

lows, and the estimate (5.21) holds. This means that there is a sequence of

Lebesgue points in time, (tj)
∞
j=1 with tj tending to infinity with j, where the

L2
M ([−1, 1] × R

3)- norm of the solution R̄ tends to zero. But the L2
M -norm

of R̄ for fixed t ≥ tj is uniformly bounded by the norm at tj plus some tail

integrals from tj to ∞, hence tends to zero when time tends to infinity. This

completes the study of the R-term and Theorem 5.5. follows. �

Finally, the stability follows from Theorem 5.5, hence Theorem 4.1 and

Theorem 5.5 imply Theorem 1.1.
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