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Abstract

For each positive number a slightly more general function

space than that in [6] is introduced and a corresponding version of

Lusin theorem is established with a view to cover an application

to a Rademacher type theorem for classes of functions introduced

by Calderón and Zygmund.

1. Introduction

The Rademacher phenomenon is coined to refer to a general phenomenon

which came to light through a well-known theorem of Rademacher [10] which

affirms that a Lipschitz function is differentiable almost everywhere. This

theorem has been generalized by Stepanoff [12] to the following result:

Theorem 1.1. Let u be a measurable function defined on an open set

D ⊂ Rn, then u is differentiable almost everywhere on D if and only if

lim sup
y→x

|u(y)− u(x)|

|y − x|
< +∞

for almost all x ∈ D.

A certain property of functions, the so-called Lusin property, is later

found to be closely related to the Rademacher phenomenon. Unless explicitly

stated otherwise a function defined on a measurable subset D of Rn will

be assumed to be real measurable and finite almost everywhere on D. A

function u defined onD is said to have the Lusin property of order k if for any
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ǫ > 0 there is a Ck-function g on Rn such that |{x ∈ D : u(x) 6= g(x)}| < ǫ,

where we use |A| to denote the Lebesgue measure of a set A in Rn. A

classical theorem of Lusin states that measurable functions which are finite

almost everywhere has the Lusin property of order zero. It is observed first

by Federer that a Lipschitz function u defined on a domain D in Rn has the

Lusin property of order 1. This is then strengthened by Whitney [14] in the

following theorem:

Theorem 1.2. A measurable function u defined on a measurable set D

has the Lusin property of order 1 if and only if it is approximately differen-

tiable almost everywhere on D.

We recall that a measurable function u defined on a measurable set

D ⊂ Rn is approximately differenriable at x ∈ D if there is d ∈ Rn such that

ap lim
y→x

|u(y)− u(x)− d · (y − x)|

|y − x|
= 0,

where by ap lim
y→x

v(y) = l it is meant that the set {y ∈ D : |v(y) − l| ≤ ǫ}

has density 1 at x for all ǫ > 0. Eventually Federer closes this sequence of

results in [4, 3.1.16] with the theorem below:

Theorem 1.3. A measurable function u defined on a measurable set

D ⊂ Rn has the Lusin property of order 1 if and only if

ap lim sup
y→x

|u(y)− u(x)|

|y − x|
< +∞

for almost all x ∈ D.

In the theorem above ap lim sup
y→x

v(y) is the infimum of all those λ ∈ R

such that the set {y ∈ D : v(y) > λ} has density zero at x.

While the content of Theorem 1.1 is usually refered to as the Rademacher

phenomenon, Theorem 1.3 expresses also the Rademacher phenomenon with

“limit” replaced by “approximate limit”. These two types of the Rademacher

phenomenon are later generalized to situations of differentiability and ap-

proximate differentiability of higher order in [9] as we shall now describe. A
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function u defined on D is said to admit a (k − 1)-Taylor polynomial at x if

there is a polynomial Px(·) of degree at most k − 1 such that

lim sup
y→x

|u(y)− Px(y)|

|y − x|k
< +∞; (1.1)

while u will be said to be Taylor-differentiable of order k at x if there is a

polynomial Qx(·) of degree at most k such that

lim
y→x

|u(y)−Qx(y)|

|y − x|k
= 0. (1.2)

Weakening “limit” to “approximate limit”, we introduce also the following

definitions. A function u defined on D is said to admit approximately a

(k − 1)-Taylor polynomial at x if there is a polynomial Px(·) of degree at

most k − 1 such that

ap lim sup
y→x

|u(y)− Px(y)|

|y − x|k
< +∞; (1.3)

while u will be said to be approximately Taylor-differentiable of order k at

x if there is a polynomial Qx(·) of degree at most k such that

ap lim
y→x

|u(y)−Qx(y)|

|y − x|k
= 0. (1.4)

It is easily verified that the polynomials Px(·) and Qx(·) in (1.3) and (1.4)

respectively are uniquely determined if x is a point of density of D and so

are those in (1.1) and (1.2).

We note that Taylor-differentiability and approximate Taylor-differenti-

ability of order k at a point are simply called in [9] differentiability and

approximate differentiability of order k which might lead to confusion with

differentiability and approximate differentiability in ordinary sense when k ≥

2. It is also to be noted that Taylor-differentiability of order k at a point is

first introduced by de la Vallé-Poussin in [13] for functions of a real variable

and that Taylor-differentiability is different from differentiability in ordinary

sense when k ≥ 2 has been observed by Denjoy [4] for functions of a real

variable.
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It is shown in [9] that the following three statements are equivalent:

(1) u admits approximately a (k − 1)-Taylor polynomial at almost every

point of D;

(2) u is approximately Taylor-differentiable of order k at almost every point

of D;

(3) u has the Lusin property of order k.

The equivalence of (1) and (2) is the Rademacher phenomenon of general

order in terms of approximate differentiability, generalizing Theorem 1.3. As

a consequence of the equivalence of (1), (2), and (3), we also show in [9] the

following generalization of Theorem 1.1:

Theorem 1.4. A function u defined on a measurable set D is Taylor-

differentiable of order k at almost all points of D if and only if it admits a

(k-1)-Taylor polynomial at almost all points of D.

It is worthwhile at this point to mention the following interesting variant

of Theorem 4 in [9]:

Theorem 1.5. Suppose that u is a measurable function defined on a

neighborhood of a measurable set D in Rn and assume that both

ap lim sup
y→x

|u(y)− u(x)|

|y − x|
< +∞

and

lim sup
|y|→0

|u(x+ y) + u(x− y)− 2u(x)|

|y|
< ∞

hold almost everywhere on D. Then u is differentiable almost everywhere on

D.

This theorem could be considered as a Rademacher theorem of mixed

type.

On the other hand, we may also consider the Rademacher phenomenon

in terms of point-wise differentiability in p-mean as introduced by Calderón

and Zygmund in [1]. For this purpose, relevant classes of functions are

defined as follows. Let Ω be an open set in Rn. For a positive integer k,



2008] A RADEMACHER TYPE THEOREM 247

1 ≤ p < ∞, and x ∈ Ω, let T p
k (x) be the class of all those functions u ∈ L

p
b(Ω)

with the property that there exists a polynomial Px of degree < k such that

sup
0<ρ≤1

ρ−k{
1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)− Px(y)|

pdy}1/p < +∞;

while t
p
k(x) will denote the class of those functions u ∈ T

p
k (x) with the

property that there exists a polynomial Qx of degree ≤ k such that

lim
ρ→0

ρ−k{
1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)−Qx(y)|

pdy}1/p = 0.

In the definitions above, Lp
b(Ω) is the space of all such measurable function

u on Ω which is in Lp(B) for all bounded measurable subset B ⊂ Ω and

Ω(x, ρ) = Bρ(x)∩Ω with Bρ(x) being the ball centered at x and with radius

ρ. These definitions are slight variations of those in [1] where Ω is taken to

be Rn and the supremum is taken over all ρ > 0.

We shall establish the following Rademacher type theorem:

Theorem 1.6. Suppose that S ⊂ Ω is measurable. Then u ∈ t
p
k(x) for

almost all x ∈ S if and only if u ∈ T
p
k (x) for almost all x ∈ S.

When p > 1, this theorem has been proved by Ziemer in [15]. The proof

in [15] for the case p > 1 as well as our proof of the general case p ≥ 1

depend essentially on the fact that if u ∈ T
p
k (x) for almost all x ∈ S, then

u has Lusin property of order k. This fact is established in [15] with quite

delicate tools when p > 1. We shall demonstrate this fact in the next section

through a localized version of a Lusin type theorem proved in [7]. Theorem

1.6 will then be proved in the last section.

2. A Lusin Type Theorem

Suggested by the classes of functions introduced in [1] by Calderón and

Zygmund and those in [2] and [3] by Campanato, we introduce in [7] a class

of functions for each γ > 0 on which a basic operation in [1] for the case

p = 1 can be applied to define a maximal mean estimate of Taylor remainder

for functions in the class, and for which a form of Lusin property similar to

that in [8] is established. A slightly more general situation will be considered

here.
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Let Ω be an open set in Rn and a constant A > 0 be given. Ω is said

to satisfy A-condition at x ∈ Rn if |Ω(x, ρ)| ≥ Aρn for all 0 < ρ ≤ 1, where

Ω(x, ρ) = Bρ(x) ∩ Ω. Ω is said to satisfy A-condition on a set S ⊂ Rn if

it satisfies A-condition at every point x ∈ S. If Ω satisfies A-condition on

a measurable set S ⊂ Ω, then the pair {S,Ω} is called an A-pair. When Ω

satisfies A-condition on itself, Ω is simply said to satisfy A-condition. When

Ω is bounded, A-condition is introduced by Campanato in [3] for the case

S = Ω and with 0 < ρ ≤ diamΩ. For convenience of some of our later

statements, for a measurable set S in Rn, Mp(S), p ≥ 0, will be used to

denote the class of all measurable functions u such that

lim
λ→∞

λp|{x ∈ S : |u(x)| ≥ λ}| = 0.

For γ ∈ R, denote by γ̄ the largest integer strictly less than γ and write

γ = γ̄+µ, then 0 < µ ≤ 1. Let u ∈ L1
b(Ω) and x ∈ Ω, if there is a polynomial

Px(·) with degree ≤ γ̄ satisfying

[u]γ(x) := sup
0<ρ≤1

ρ−γ 1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)− Px(y)|dy < +∞,

then Px is uniquely determined (see preliminary remarks below) and hence

[u]γ(x) is well-defined by u and x. If there exists no such a polynomial, let

[u]γ(x) = ∞. Now we are ready to define the classes of functions alluded. In

the following, Ω is a fixed open subset of Rn and S is a measurable subset

of Ω.

Definition 1. For γ > 0, let Lγ(S; Ω) be the class of all those functions

u ∈ L1
b(Ω) such that

(i) for almost all x ∈ S,

[u]γ(x) < +∞;

(ii) if we set

σu(x) = [u]γ(x) +

∫

Ω(x,1)
|u(y)|dy,

then σu is in M0(S).

It is worthwhile to remark at this point that if S is of finite measure,

then (ii) is a consequence of (i).
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When Ω is clearly implied, Lγ(S; Ω) will be usually abbreviated as

Lγ(S).

Some preliminary remarks are now in order. In the following, we refer

to [15] for notations involving multi-indices. First, at each point x ∈ Ω for

which [u]γ(x) takes finite value, the polynomial Px(·) is uniquely determined.

Secondly, if we write

Px(y) =
∑

|α|≤γ̄

uα(x)

α!
(y − x)α,

then each uα is a measurable function and so is [u]γ . For these facts we refer

to [7].

On p. 89 of [7] we have actually shown the following

Basic Proposition. Let (S,Ω) be an A-pair, then there is C > 0

depending only on n, r and A such that for u ∈ Lr(S; Ω) and x, y in S we

have for |α| < r

(i) |DαPx(x)| ≤ Cσu(x); and

(ii) |DαPy(y)−DαPx(y)| ≤ C|x− y|r−|α|max{[u]r(x), [u]r(y)}.

Remark. Earlier hints for the Basic Proposition appear in [6] and [8];

actually the Basic Proposition is a result of efforts to make clear and simplify

the main argument in [6].

We recall that a measurable function u defined on S is said to be in

L
p
w(S) if

|{x ∈ S : |u(x)| ≥ λ}| ≤
C

λp

for some C ≥ 0 and for all λ > 0. The smallest such a C will be denoted by

Np(u)
p. We note that if u ∈ BV (Rn), then u ∈ L1(Rn) with N1([u]γ) being

less than or equal to the total variation of u and that if u ∈ W k
p (R

n), then

u ∈ Lk(Rn) with σu ∈ L
p
w(Rn) ∩ Mp(R

n). For these facts we refer to [8].

Now let

Lγ
p(S; Ω) = {u ∈ Lγ(S; Ω) : σu ∈ Lp

w(S)}

and

Lγ
p,0(S; Ω) = {u ∈ Lγ

p(S; Ω) : σu ∈ Mp(S)}.



250 FON-CHE LIU [June

Lγ
p(S; Ω) and Lγ

p,0(S; Ω) will be abbreviated respectively as Lγ
p(S) and Lγ

p,0(S)

if Ω is clearly implied. Then BV (Ω) ⊂ L1
1(Ω) and W k

p (Ω) ⊂ Lk
p,0(Ω), if Ω is

minimally smooth in the sense as defined in [11].

If f is a measurable function defined on a measurable set S, set

µf (λ) = |{x ∈ S : |f(x)| > λ}|, λ ≥ 0.

The nonincreasing rearrangement f∗ of f is defined as

f∗(t) = sup{λ : µf (λ) > t}.

We note that in terms of nonincreasing rearrangement M0(S) consists ex-

actly of those functions f for which f∗(t) < ∞ for all t > 0. Also, it is not

hard to see that for f ∈ Mp(S) we have

lim
t→0

t[f∗(t)]p = 0. (2.1)

From the Basic Proposition, by an obvious modification of the proof for

Theorem 1.2 in [7] we can establish the following theorem:

Theorem 2.1. Let {S,Ω} be an A-pair. There exists a constant C > 0

depending only on n, A, and γ such that for u ∈ Lγ(S), and t > 0, there is

a closed set Ft ⊂ S and ut ∈ C γ̄,µ(Rn) such that

1. |S\Ft| < 2t,

2. ut = u on Ft, and ‖ut‖Cγ̄,µ(Rn) ≤ Cσ∗
u(t).

The merit of this theorem is that it implies many forms of Lusin prop-

erties for functions depending on σ∗
u, for example, one may refer to [7] for

situations u ∈ Lγ
p(Ω) and u ∈ Lγ

p,0(Ω). Our proof of Theorem 1.6 depends

on the following consequence of Theorem 2.1 under the weakest possible

conditions:

Theorem 2.2. Suppose that S ⊂ Ω is measurable and γ > 0. Let

u ∈ L1
b(Ω) be such that for almost all x ∈ S,

[u]γ(x) < +∞.
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Then for almost all x ∈ S we have

ap lim sup
y→0

|u(y)− Px(y)|

|y − x|γ
< +∞.

Proof. We may assume that S has positive measure. LetK be a compact

subset of S with positive measure, {K,Ω} is an A-pair for some A, then,

from the remark following Definition 1, u ∈ Lγ(K,Ω). From Theorem 2.1,

for any given t > 0, there is a closed set Ft ⊂ K and ut ∈ C γ̄,µ(Rn) such

that |K\Ft| < t and ut = u on Ft. Since Dαut(x) = uα(x) for almost all

x ∈ Ft,

lim sup
y→0

|ut(y)− Px(y)|

|y − x|γ
< +∞,

for almost all x ∈ Ft. For such an x which is also a point of density of Ft we

have

ap lim sup
y→0

|u(y)− Px(y)|

|y − x|γ
< +∞.

Since t > 0 is arbitrary, the previous inequality holds for almost all x ∈ K.

As K is any compact subset of S with positive measure, this proves our

theorem. �

3. Proof of Theorem 1.6

We precede the proof of Theorem 1.6 by stating a theorem of Calderón

and Zygmund in [1]:

Theorem 3.1. Let u ∈ Lp(Rn), 1 ≤ p < ∞, and let a > 0. If

{

1

|Bρ(x)|

∫

Bρ(x)
|u(y)|pdy

}1/p

= O(ρa)

as ρ → 0 for almost all x in a measurable set S ⊂ Rn, then

{

1

|Bρ(x)|

∫

Bρ(x)
|u(y)|pdy

}1/p

= o(ρa)

as ρ → 0.
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Proof of Theorem 1.6. We only have to prove that u ∈ t
p
k(x) for almost

all x ∈ S if u ∈ T
p
k (x) for almost all x ∈ S. From Hölder inequality we have

[u]k(x) ≤ sup
0<ρ≤1

ρ−k

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)− Px(y)|

pdy

}1/p

,

hence, if u ∈ T
p
k (x) for almost all x ∈ S, then by Theorem 2.2 with γ = k, u

admits approximately a (k − 1)-Taylor polynomial at almost every point of

S. As we have stated in the first section, u has the Lusin property of order

k on S. Therefore for any ǫ > 0 there is a Ck-function g on Rn such that

if we let D = {x ∈ S : u(x) = g(x),DαPx(x) = Dαg(x), |α| ≤ k − 1}, then

|S\D| < ǫ. Then for x ∈ D, we have

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)− g(y)|pdy

}1/p

≤

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)−Px(y)|

pdy

}1/p

+

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|g(y)−Px(y)|

pdy

}1/p

=O(ρk),

because Px is also the Taylor polynomial of degree k− 1 of g at x. Hence by

Theorem 3.1, it follows that

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)− g(y)|pdy

}1/p

= o(ρk) as ρ → 0

for almost all x ∈ D. For such an x, if we let Qx be the Taylor polynomial

of degree k of g at x, then

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)−Qx(y)|

pdy

}1/p

≤

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|u(y)−g(y)|pdy

}1/p

+

{

1

|Ω(x, ρ)|

∫

Ω(x,ρ)
|g(y)−Qx(y)|

pdy

}1/p

= o(ρk) as ρ → 0.

Thus u ∈ t
p
k(x), i.e. u ∈ t

p
k(x) for almost all x ∈ D. As |S\D| < ǫ and ǫ is

arbitrary, this proves the theorem.
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3. S. Campanato, Proprietá di una famiglia di spazi funczionali, Ann. Scuola Norm.

Sup. Pisa, 18(1964), 137-160.

4. A. Denjoy, Sur l’integration des coefficients différentiels d’ordre supérieur, Fund.
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