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COHOMOGENEITY TWO ACTIONS ON R
m
,m ≥ 3

BY

R. MIRZAIE

Abstract

We suppose that a connected and closed Lie group G of

isometries of Rm, m ≥ 3, acts by cohomogeneity two on R
m. Then

we show that under some conditions, the orbit space is homeomor-

phic to R
2 or [0,+∞)× R.

1. Introduction

Let G be a connected and closed Lie group of isometries of a Riemannian

manifold M . For each point x ∈M , we denote the orbit containing x by:

G(x) = {gx : g ∈ G}.

We say that G acts by “Cohomogeneity K” on M , if

dimM = K +max{dimG(x) : x ∈M}.

If K = 0, then for each point x ∈M , we have M = G(x) andM is called ho-

mogeneous G-manifold. Homogeneous and cohomogeneity one manifolds are

studied by several authors (see [1], [2], [7], [10], [11]). Study of cohomogene-

ity two Riemannian manifolds is still wide open. In [3] the authors studied

cohomogenity two Riemannian manifolds from a algebraic view point. In [8]

it is considered that M is flat and G has fixed point in M . Then the orbits

and orbit space are characterized. In this paper we consider cohomogeneity

two actions on R
m,m ≥ 3. In Theorem 3.6 we suppose that G is a compact
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connected subgroup of Isom(Rm), which acts by cohomogeneity two on Rm.

Then we show that the orbit space is homeomorphic to [0,+∞) × R. In

Theorem 3.8 we suppose that G(compact or noncompact) has an irreducible

orbit. Then we show that the orbit space is homeomorphic to [0,+∞) × R

or R2.

2. Preliminaries

In this paper, when two spaces X and Y are homeomorphic we denote

this by X ∼ Y . Now, we mention some facts which we will use in the

sequel. Let G be a connected and closed Lie subgroup of isometries of M .

We denote by M
G

the set of orbits of this action and we equip M
G

with the

quotient topology relative to the canonical projection M → M
G
, x→ G(x).

Defnition 2.1. Let G and H be closed and connected subgroups of

Isom(M). We say that G and H are orbit-equivalent on M , if the set of

orbits of G-action on M is equal to the set of orbits of H-action on M .

{G(x) : x ∈M} = {H(x) : x ∈M}

The following fact is clear.

Fact 2.2. If G and H are orbit-equivalent on M , then M
G

= M
H
.

Fact 2.3. Let M̃ and G̃ be the universal covering manifolds of M and

G, with covering maps π : M̃ → M and κ : G̃ → G. It is well known (see

[4] pages 62-63) that G̃ acts on M̃ , such that for each x̃ ∈ M̃ and g̃ ∈ G̃ we

have:

π(g̃x̃) = κ(g̃)π(x̃)

If M is simply connected then G and G̃ both act on M orbit equivalently and

the map κ : G̃→ G is a representation of G̃ as isometries of M (the action

of G̃ on M may be not effective).

Definition 2.4. Let G be a connected and closed subgroup of isometries

of Rm. In Fact 2.3 if we let M = Rm then we have M̃ = Rm and π is the
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identity map. So for each x̃ ∈ Rm and g̃ ∈ G̃ we have

g̃x̃ = κ(g̃)x̃

The covering map κ : G̃ → G is a representation of G̃ on G ⊂ Isom(Rm).

This representation of G̃ is called ”induced representation”.

By Fact 2.3 we have the following fact.

Fact 2.5. If G is a closed and connected Lie subgroup of isometries

of Rm, then the group G̃ the universal covering group of G acts on Rm by

induced representation, orbit-equivalently to G, and we have:

Rm

G
=
Rm

G̃
.

Fact 2.6. (See [2], [7] and [10]) Let G act by cohomogeneity one on M ,

then

(a) The orbit space M
G

is homeomorphic to one of the following spaces

R; [0,+∞); S1; [−1, 1].

(b) If M is simply connected, then M
G

≁ S1.

(c) If M is compact, then M
G

∼ S1 or M
G

∼ [−1, 1].

The isometry group of Rn is in the form O(n) × Rn, where the action

of (A, b) ∈ O(n)×Rn on Rn is as follows:

(A, b)(x) = A(x) + b.

The isometry (I, b) is called an ordinary translation.

(I, b)(x) = x+ b.

Fact 2.7. If Rn is of cohomogeneity one under the action of a closed

and connected Lie subgroup G of isometries of Rn, then

(a) Rn

G
∼ R or Rn

G
∼ [0,+∞).

(b) If G contains ordinary translations only, then Rn

G
∼ R.
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Proof. (a). By Theorem 2.8 in [7], Rn

G
≁ [−1, 1] and by Fact 2.6(b), we

have Rn

G
≁ S1. Therefore Rn

G
∼ R or Rn

G
∼ [0,+∞).

(b) If G contains ordinary translations only, then for each two points

x, y ∈ Rn we have

G(x) = {x+ b : b ∈ G}, G(y) = {y + b : b ∈ G}.

So all orbits are diffeomorphic to each other and there is not any singular

orbit(see[7] proof of Theorem 3.1). Thus by part (a), we have Rn

G
∼ R. �

Definition 2.8. Let M be a submanifold of Rm, we say that M is

reducible, if M is isometric to M1 ×M2, where M1,M2 are submanifolds of

Rm and dimMi ≥ 1.

3. Results

Before stating our results we give a definition and lemma in general

topology.

Definition 3.1. Let I = [0,+∞), X =
⋃

t∈I Xt, where X is a topolog-

ical space and for each t,Xt is a subspace of X and the union is disjoint.

We say that X is a continuous motion of X1on I, if there exist a continuous

map ψ : X1 × I −→ X such that

(1) ψ(x, t) ∈ Xt.

(2) ψ(x, 1) = x.

(3) The collection B containing all of the sets in the form ψ(U × (a, b)) and

ψ(X1 × [0, b)) is a basis for the topology of X, (where (a, b) ⊂ I and U

is open in X1).

The map ψ is called motion map.

Example 3.2. Let X = R2, Xt = S1(t) = {(x1, x2) ∈ R2 : x21+x
2
2 = t2}

and let ψ : S1(1) × I −→ R2, ψ(x, t) = tx. It is easy to see that X is a

continuous motion of X1.

Lemma 3.3. Let X =
⋃

tXt, Y =
⋃

t Yt be two spaces which are

continuous motions of X1, Y1 under the motions ψ : X1 × I −→ X and
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φ : Y1 × I −→ Y . Also let for each t in I, there is a homeomorphism

Ft : Xt −→ Yt, such that

Ftoψt = φtoF1(∗)

where ψt(x) = ψ(x, t), φt(x) = φ(x, t). Then X is homeomorphic to Y .

Proof. Consider the map F as :

F : X −→ Y, F (x) = Ft(x), x ∈ Xt.

By definition, the collection B = {φ(V × (a, b)), φ(Y1× [0, b)) : V open in Y1,

(a, b) ⊂ I} is a basis for topology of Y . F1 is a homeomorphism. So if V is

open in Y1 then U = F−1
1 (V ) is open in X1. By using (*), we have:

F−1{φ(V × (a, b))} =
⋃

t∈(a,b)

F−1
t {φ(x, t) : x ∈ V } =

⋃

t

F−1
t {φt(x) : x ∈ V }

=
⋃

t

{ψtoF
−1
1 (x) : x ∈ V } =

⋃

t

{ψt(y) : y ∈ U}

= ψ(U × (a, b)).

In similar way we can show that:

F−1(φ(Y1 × [0, b)) = ψ(X1 × [0, b)).

So for each open set W in Y , F−1(W ) is open in X. This means that

F is continuous. In the similar way we can show that F−1 is continuous.

Therefore F is a homeomorphism between X and Y . �

Theorem 3.4.([5, p.56]) Let M = G(x) be a homogeneous irreducible

submanifold of Rn, where G is a connected Lie subgroup of isometries of Rn.

Then the universal covering group G̃ of G is isomorphic to the direct product

K × Rd, where K is a simply connected Lie group. Moreover, the induced

representation of G̃ is equivalent to P1
⊕
P2 where P1 is a representation of

G̃ in to SO(d) and P2 is linear map from Rd to Re, n = d+ e regarding Re

as ordinary translations.

From Theorem 3.4 and its proof (in [5] pages 56, 57) we get the following

corollary.
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Corollary 3.5. If M = G(x) is a homogeneous irreducible submanifold

of Rn, then G̃, the universal covering group of G, is orbit equivalent to a

subgroup H of the group {(A, b) : A ∈ SO(d), b ∈ Re}, where H acts on Rn,

as follows

(A, b)(x, y) = (Ax, y + b); (x, y) ∈ Rd ×Re = Rn.

Theorem 3.6. If G ⊂ ISo(Rm) is compact and connected and acts by

cohomogeneity two on Rm,m ≥ 3, then

Rm

G
∼ [0,+∞) ×R.

Proof. Since G is compact,by Cartan’s theorem(see [6] vol II page 111)

it has at least one fixed point in Rm. Without loss of generality, we assume

that the origin is a fixed point of G. Let Sm−1(r) be the standard sphere of

radius r in Rm.

Sm−1(r) = {(x1, · · · , xm) ∈ Rm :

m∑

i=1

x2i = r2}.

Since each g ∈ G fixes the origin of Rm invariant, for any x ∈ Sm−1(r) we

have g(x) ∈ Sm−1(r). So we can consider G as a subgroup of isometries of

Sm−1(r) (i.e G ⊂ O(m)). Let r2 > r1 > 0 and consider the following map

{
φr1r2 : Sm−1(r1) → Sm−1(r2),

φr1r2(x) =
r2
r1
x.

Each g ∈ G is a linear map on Rm. So we have:

φr1r2(gx) =
r2

r1
(gx) = g(

r2

r1
x) = gφr1r2(x).

Therefore φr1r2 maps each orbit of the G-action on Sm−1(r1) diffeomorphi-

cally on to an orbit of G-action on Sm−1(r2). So topologically, the orbit

foliation of Sm−1(r1) is alike the orbit foliation of Sm−1(r2). Since R
m is of

cohomogeneity two under the action of G, then for each r > 0, Sm−1(r) is of

cohomogeneity one. Consider the sphere Sm−1(1). By Fact 2.6(b,c), Sm−1(1)
G
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is homeomorphic to [−1, 1]. Let P be this homeomorphism.

P :
Sm−1(1)

G
→ [−1, 1].

We have Rm =
⋃

t∈I S
m−1(t), where I = [0,+∞). So Rm

G
=

⋃
t
Sm−1(t)

G
. Let

Xt =
Sm−1(t)

G
, X = Rm

G
, it is easy to see that X is a continuous motion of

X1 under the motion map ψ defined by:

ψ : X1 × I −→ X;ψ(G(x), t) = G(tx), x ∈ Sm−1(1).

Let Y be the subset of R2 defined by:

Y =
⋃

t∈I

{t} × [−t, t].

and let

Yt = {t} × [−t, t], t ∈ I.

Y is a continuous motion of Y1 = {1} × [−1, 1] under the map φ defined by:

φ : Y1 × I −→ Y, φ((1, a), t) = (t, ta).

Now for each t in I define the map Ft : Xt −→ Yt as follows

{
Ft(G(x)) = (t, tP (G( x

|x| ))), |t| 6= 0,

F0(o) = (0, 0), |t| = 0.

Note that X0 = {o}, Y0 = {(0, 0)}. For each t in I, Ft is homeomorphism

and the conditions of Lemma 3.3 are valid. Thus X is homeomorphic to Y .

But easily we can show that Y is homeomorphic to [0,+∞)×R. Therefore

X is homeomorphic to [0,+∞)×R. �

Lemma 3.7. Let H be a closed and connected subgroup of SO(d)×Re

which acts by cohomogeneity two on Rd ×Re = Rm and let

S = {A : (A, b) ∈ H for some b ∈ Re},

T = {b : (A, b) ∈ H for some A ∈ SO(d)}.

Then
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(1) One of the following is true.

(a) The cohomogeneity of S-action on Rd is 1 and the cohomogeneity of

T -action on Re is 1 or 0.

(b) The cohomogeneity of S-action on Rd is 2 and the cohomogeneity of

T -action on Re is 0.

(2) For r > 0, let Mr = Sd−1(r) × Re ⊆ Rd × Re, where Sd−1(r) is the

standard sphere in Rd with radius r. Then for each r > 0,H acts by

cohomogeneity one on Mr and for each r1, r2 > 0 we have
Mr1

H
∼

Mr2

H
.

(3) In (2), if for one r > 0, Mr

H
is compact,then M0

H
is a one point space.

(4) Rm

H
is homeomorphic to [0,+∞)×R or R2.

Proof. (1) Since H ⊂ S × T , we have:

2 = cohomogeneity of H action on Rm ≥ cohomogeneity of

+S-action on Rd cohomogeneity of T -action on Re.

Since S is compact, it has fixed point in Rd. Thus the cohomogeneity of

S-action on Rd is ≥ 1. These yield to (a) or (b).

(2) Consider (x, y) ∈Mr, x ∈ Sd−1(r), y ∈ Re, we have:

H(x, y) ⊆ (S × T )(x, y) = S(x)× T (y) ⊆ Sd−1(r)×Re =Mr.

SoH mapsMr on to itself and we can consider H as a subgroup of isometries

of Mr. For r1, r2 > 0, the map ϕr1r2 : Mr1 → Mr2 ; (x, y) → ( r2x
r1
, y) induces

a homeomorphism between
Mr1

H
and

Mr2

H
. Since dimMr = m − 1 and the

action of H on Rm is of cohomogeneity two, the action of H on Mr is of

cohomogeneity one.

(3) Consider the map: φr : Mr → M0 defined by :φr(x, y) = y. φr

induces a continuous and on to map: φr : Mr

H
−→ M0

H
. So M0

H
must be

compact. But it is easy to see that M0

H
= Re

T
. By part (1) of Lemma and

Fact 2.7, we have Re

T
= {0} or R. Since M0

H
∼ Re

T
is compact, we get that

M0

H
∼ Re

T
= {0}.

(4) We have Rm =
⋃

t∈I Mt, where I = [0,+∞). So

Rm

H
=

⋃

t

Mt

H
.
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Let

X =
Rm

H
,Xt =

Mt

H
.

X is a continuous motion of X1 under the motion map ψ defined by

ψ : X1 × I −→ X,ψ(H(x, y), t) = H(tx, y); (x, y) ∈M1 = Sd−1(1)×Re

By Fact 2.6(a) and part (2) of Lemma, for all r > 0, Mr

H
is homomorphic to

one of the following spaces.

(I) S1(r) (II) [−r, r] (III) [0,+∞) (IV) R.

We study each case separately

(I) Mr

H
∼ S1(r), r > 0.

Let

Y = R2, Yt = S1(t), t ∈ [0,+∞)

Y is a continuous motion of Y1,under the map:

φ : Y1 × I −→ Y, φ(a, t) = ta.

Let P be the homeomorphism between X1 = M1

H
and Y1 = S1(1). For

each t in I,define the map Ft : Xt −→ Yt as follows:

{
Ft(H(x, y)) = tP (H( x

|x| , y)), t 6= 0,

F0(o) = (0, 0), t = 0.

Note that Y0 = (0, 0) and by part (3) of Lemma, we have X0 = {o}.

For each t ∈ I, Ft is homeomorphism and the conditions of Lemma 3.3

are valid. So X is homeomorphic to Y = R2.

(II) Mr

H
= [−r, r], r > 0.

In this case we let

Y =
⋃

t

Yt

where

Yt = t× [−t, t],
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φ : Y1 × I −→ Y, φ((1, a), t) = (t, ta).

As like as the proof of Theorem 3.6, we can show that X is homeomor-

phic to Y . Since Y is homeomorphic to [0,∞) × R, we get that X is

homeomorphic to [0,∞) ×R.

(III) Mr

H
∼ [0,+∞), r > 0.

We show that this case can not occur .Consider the continuous and

onto map
{
φr :Mr → Re

φr(x, y) = y

φr induces continuous and onto map φr between orbit spaces

φr :
Mr

H
∼ [0,+∞) →

Re

T
.

By part (1) of Lemma and Fact 2.7, Re

T
is homeomorphic to {0} or R.

If Re

T
∼ R then φ is a continuous and onto map as follows:

φr : [0,+∞) → R.

So the following map is continuous and onto

φr : (0,+∞) → R− {φr(0)},

which is a contradiction (because R− {φr(0)} is not connected.)

If Re

T
= 0, then T acts transitively on Re. So for each (x, y) ∈Mr there

exists (A, b) ∈ H such that (A, b)(x, y) = (x1, 0) for some x1 ∈ Sd−1(r).

Thus each H-orbit of Mr intersects the set Sd−1(r)× {0} ⊂ Sd−1(r)×

Re = Mr. Let κ : Mr → Mr

H
be the projection on the orbit space and

consider the map η :Mr → Sd−1(r)×{0}, η(x, y) = (x, 0) and let κ1 be

the restriction of κ on Sd−1(r)× {0}. Easily we see that the following

diagram is commutative





η :Mr → Sd−1 × {0}

κց ւ κ1
Mr

H
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Since Sd−1(r)× {0} is compact, Mr

H
must be compact, which is a con-

tradiction. Therefore the case III can not occur.

(IV) Mr

H
∼ R, r > 0.

If Re

T
= 0. As like as the case III we get a contradiction. Let Re

T
= R,

we have:Rm = ({0} ×Re) ∪ (∪r>0Mr) and
{0}×Re

H
= Re

T
= R. Let

Y = [0,+∞) ×R,Yt = {t} ×R

Y is a continuous motion of Y1, by the map φ : Y1 × I −→ Y defined

by

φ((1, a), t) = (t, a).

As like as before by suitable choice of the maps Ft : Xt −→ Yt, we can

show that X is homeomorphic to Y = [0,+∞)×R. �

Theorem 3.8. Let Rm,m > 3, be of cohomogeneity two, under the

action of a connected and closed Lie subgroup G of Isom(Rm), and suppose

that there exists an irreducible orbit G(x) for some x in Rm, then Rm

G
is

homeomorphic to one of the following spaces:

[0,+∞)×R; R2

Proof. Let G(x) be an irreducible orbit of this action. By Corollary

3.5, G̃ the universal covering Lie group of G acts on Rm, orbit-equivalent

to a subgroup of the group {(A, b) : A ∈ SO(d), b ∈ Re} = SO(d) × Re,

d+ e = m, which we denote it by H. By Fact 2.5 and Corollary 3.5, we get

that:
Rm

G
∼
Rm

H

So we get the result by Lemma 3.7(4). �
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