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NONLINEAR VECTOR DIFFERENTIAL EQUATION
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Abstract

Our aim is essentially to establish a theorem which con-

tains sufficient conditions that guarantee the non-existence of non-

trivial periodic solutions of a certain nonlinear vector differential

equation of fourth order.

1. Introduction

With respect to our observations in the literature, so far, periodic be-

haviors of solutions, in particular nonexistence of nontrivial periodic solu-

tions, for various nonlinear ordinary scalar and vector differential equations

of fourth order were investigated only by a few authors. The papers were

carried out on the nonexistence of nontrivial periodic solutions of nonlinear

differential equations of fourth order can be summarized as follows: First,

in 1974, Tejumola [6] proved a result on the existence of periodic solutions

for certain fourth order scalar nonlinear differential equations of the form

x(4) + a1
...
x + g(ẋ)ẍ+ a3ẋ+ f(x, ẋ, ẍ,

...
x ) = p(t),

in which a1 and a3 are constants; g, f and p are continuous functions for

the variables displayed explicitly and p is also ω-periodic in t. Later, in 1989

and 1990, Tiryaki ([7], [8], [9]) discussed some similar problems on the same
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subject for the following scalar differential equation and its different scalar

versions

x(4) + f1(ẍ)
...
x + f2(ẋ)ẍ+ f3(ẋ) + f4(x) = p(t, x, ẋ, ẍ,

...
x ),

where f1, f2, f3, f4 and p are continuous functions for the variables dis-

played explicitly and p is also ω-periodic in t. Besides, in 1979, Ezeilo and

Tejumola [3] also established a result which includes sufficient conditions on

the existence of an ω-periodic solution of the ordinary differential equation

x(4) + a1
...
x + f(x, ẋ, ẍ,

...
x )ẍ+ g(x)ẋ+ h(x) = p(t, x, ẋ, ẍ,

...
x ),

in which a1 is a constant; f , g, h and p are continuous functions for the

variables displayed explicitly and p is also ω-periodic in t. Finally, in 2005,

E. Tunç [11] demonstrated an alike problem on the subject for the nonlinear

vector differential equations of the form

X(4) +Φ(Ẍ)
...
X +Ψ(Ẋ)Ẍ + F (Ẋ) +G(X) = 0,

by imposing certain assumptions on the functions Φ, Ψ, F and G that ap-

peared in the above equation.

In this paper, we discuss a similar problem, that is, the existence of

periodic solutions for the fourth order nonlinear vector differential equation

X(4) +Ψ(Ẍ)X +G(X, Ẋ, Ẍ,
...
X)Ẍ +Θ(Ẋ) + F (X) = 0, (1)

in which X ∈ Rn; Ψ and G are continuous n × n-symmetric matrix func-

tions for the variables displayed explicitly; Θ : Rn → Rn, F : Rn → Rn and

Θ(0) = F (0) = 0. It is also supposed that the functions Θ and F are con-

tinuous for all X, Ẋ ∈ Rn, respectively. The equation (1) can be rewritten

as
{

Ẋ = Y, Ẏ = Z, Ż =W,

Ẇ = − Ψ(Z)W −G(X,Y,Z,W )Z −Θ(Y )− F (X),
(2)

which was obtained by taking Ẋ = Y , Ẍ = Z, X = W in the equation (1).

Let JF (X), JΦ(Y ) and JΨ(Z), respectively, denote the linear operators from
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the vectors F (X), Θ(Y ) and the matrix Ψ(Z) to the matrices

JF (X)=

(

∂fi

∂xj

)

, JΘ(Y )=

(

∂θi

∂yj

)

, JΨ(Z)=

(

∂ψik

∂zj

)

, (i, j, k=1, 2, . . . , n),

where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn), (f1, f2, . . . , fn), (θ1,

θ2, . . . , θn) and (ψik) are components of X, Y , Z, F , Θ and Ψ, respectively.

Furthermore, it is also assumed that F (X) and Θ(Y ) are gradient vector

fields, that is, there are scalar functions f and θ such that F = ∇f and Θ =

∇θ, and the matrices JF (X), JΘ(Y ) and JΨ(Z) exist and are continuous.

It is worth mentioning that, to the best of our knowledge in the litera-

ture, no paper was found on the existence of periodic solutions of nonlinear

vector differential equations of the form (1). Meanwhile, two problems on

the instability of solutions of the differential equation (1) and its scalar case,

that is,

x(4) + ψ(ẍ)
...
x + g(x, ẋ, ẍ,

...
x )ẍ+ θ(ẋ) + f(x) = 0

were studied by Ezeilo [2] and Tunç [10], respectively. One can also refer to

the book of Reissig et al. [5] as a survey for some related papers published

on the subject. It should also be clarified that through all of the papers

mentioned above, the Lyapunov’s [4] second (or direct) method has been

used as a basic tool to prove the results established there. However, the

Leray-Schauder principle can also be used to prove the existence of nontrivial

periodic solutions of the above mentioned equations. Next, in the literature,

there also exist some results on the subject that were verified by using the

Leray-Schauder principle. But, here, we will only take into consideration

the Lyapunov’s [4] second (or direct) method to verify our forthcoming main

result.

Throughout this paper, the symbol 〈X,Y 〉 is used to denote the usual

scalar product in Rn for given any X, Y in Rn, that is, 〈X,Y 〉 =
∑n

i=1 xiyi,

thus ‖X‖2 = 〈X,X〉, and λi(A), (i = 1, 2, . . . , n), will represent the eigen-

values of the n × n-matrix A. It is also well-known that a real symmetric

matrix A = (aij), (i, j = 1, 2, . . . , n) is said to be positive definite if and

only if the quadratic form XTAX is positive definite, where X ∈ Rn and

XT denotes the transpose of X.



318 CEMIL TUNÇ [June

2. Main Result

We indeed prove the following theorem:

Theorem. We assume that the function G and the functions Ψ, Θ and

F that appeared in the system (2), respectively, are continuous and contin-

uously differentiable, and there exists a constant a2 such that the following

conditions are satisfied: There are scalar functions f and θ such that F = ∇f

and Θ = ∇θ;

Ψ, JF and G are symmetric such that

∂ψij

∂zk
=
∂ψik

∂zj
, (i, j, k = 1, 2, . . . , n);

F (X) 6= 0 if X 6= 0, λi(G(X,Y,Z,W )) ≤ a2

and

λi(JF (X)) >
1

4
a22 , (i = 1, 2, . . . , n),

for all X, Y, Z, W ∈ Rn, where λi(JF (X)) and λi(G(X,Y,Z,W )), (i =

1, 2, . . . , n), are the eigenvalues of G(X,Y,Z,W ) and JF (X). Then the equa-

tion (1) has no periodic solution other than X = 0 for arbitrary θ.

Remark. It should be clarified that there is no restriction on the eigen-

values of the matrices Ψ(Z) and JΘ(Y ), which is obtained from Θ(Y ).

Now, we will state a lemma, which will be needed in the proof of the

main result.

Lemma. Let A be a real symmetric n× n-matrix and

a′ ≥ λi(A) ≥ a > 0, (i = 1, 2, . . . , n),

where a′, a are constants. Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See (Bellman [1]). �
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Proof of the theorem. Now, let (X,Y,Z,W ) = (X(t), Y (t), Z(t),

W (t)) be an arbitrary α − (α > 0) periodic solution of the system (2),

that is, (X(t), Y (t), Z(t),W (t)) = (X(t + α), Y (t + α), Z(t + α),W (t +

α)). Corresponding to this solution, we consider the function V = V (t) =

V (X(t), Y (t), Z(t),W (t)), which is defined by:

V = 〈Y, a2IZ〉+ 〈W,Z〉+ 〈F (X), Y 〉+

∫ 1

0
〈Θ(σY ), Y 〉 dσ

+

∫ 1

0
〈σΨ(σZ)Z,Z〉 dσ. (3)

Differentiating the function (3) through the system (2), we obtain

V̇ =
d

dt
V (X,Y,Z,W )

= 〈Z, a2IZ〉+ 〈W,W 〉+ 〈Y, a2IW 〉 − 〈G(X,Y,Z,W )Z,Z〉

+ 〈JF (X)Y, Y 〉 − 〈Ψ(Z)W,Z〉 − 〈Θ(Y ), Z〉

+
d

dt

∫ 1

0
〈Θ(σY ), Y 〉 dσ +

d

dt

∫ 1

0
〈σΨ(σZ)Z,Z〉 dσ. (4)

Recall that

d

dt

∫ 1

0
〈Θ(σY ), Y 〉 dσ =

∫ 1

0
σ 〈JΘ(σY )Z, Y 〉dσ +

∫ 1

0
〈Θ(σY ), Z〉 dσ

=

∫ 1

0
σ
∂

∂σ
〈Θ(σY ), Z〉 dσ +

∫ 1

0
〈Θ(σY ), Z〉 dσ

= σ 〈Θ(σY ), Z〉
∣

∣

1
0 = 〈Θ(Y ), Z〉 (5)

and

d

dt

∫ 1

0
〈σΨ(σZ)Z,Z〉 dσ

=

∫ 1

0
〈σΨ(σZ)W,Z〉 dσ+

∫ 1

0
σ2 〈JΨ(σZ)ZW,Z〉 dσ+

∫ 1

0
σ 〈Ψ(σZ)Z,W 〉 dσ

=

∫ 1

0
〈σΨ(σZ)W,Z〉 dσ +

∫ 1

0
σ
∂

∂σ
〈σΨ(σZ)W,Z〉 dσ

=σ2 〈Ψ(σZ)W,Z〉
∣

∣

1
0 = 〈Ψ(Z)W,Z〉 (6)
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Substituting the estimates (5) and (6) in (4), we get

V̇ = 〈Z, a2IZ〉+ 〈W,W 〉+ 〈Y, a2IW 〉− 〈G(X,Y,Z,W )Z,Z〉+ 〈JF (X)Y, Y 〉 .

(7)

Now, consider the expression

〈Z, a2IZ〉 − 〈G(X,Y,Z,W )Z,Z〉 ,

which is contained in (7). Taking into account the assumption

λi(G(X,Y,Z,W ) ≤ a2

of the theorem and the lemma , we get

〈Z, a2IZ〉 − 〈G(X,Y,Z,W )Z,Z〉 ≥ a2 〈Z,Z〉 − a2 〈Z,Z〉 = 0. (8)

Next, making the use of the inequality (8), it follows from (7) that

V̇ ≥ 〈W,W 〉+ 〈Y, a2IW 〉+ 〈JF (X)Y, Y 〉

≥ 〈W,W 〉 − |a2| ‖Y ‖ ‖W‖+ 〈JF (X)Y, Y 〉 . (9)

Hence

V̇ ≥
∥

∥

∥
W ±

1

2
a2Y

∥

∥

∥

2
+ 〈JF (X)Y, Y 〉 −

1

4
a22 〈Y, Y 〉

≥ 〈JF (X)Y, Y 〉 −
1

4
a22 〈Y, Y 〉 . (10)

If we assume the assumption λi(JF (X)) > 1
4a

2
2 holds, then, V̇ (t) ≥ 0 for all t.

This case implies that V (t) is monotone in t. Further, since V is continuous

and (X, Y, Z, W ) is a periodic solution in t, V (t) is bounded. Thus we

have that

lim
t→∞

V (t) = V0(constant). (11)

Using (11) and the fact that V (t) = V (t + mα) for any fixed t and for

arbitrary integer m, it can be shown that

V (t) ≡ V0 for all t. (12)
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Hence, clearly, we have from (12) that

V̇ (t) = 0 for all t. (13)

Now, in view of (10) and (13) together, it follows that Y = 0 for all t ≥ 0,

and hence also that X = ξ (a constant vector). By turns, it follows that

X = ξ, Y = Ẋ, Z = Ẏ = 0, W = Ż = 0, for all t ≥ 0. (14)

Replacing the estimate (14) in the system (2) pioneering to the result F (ξ) =

0, which necessarily implies (only) that ξ = 0 because of the assumption of

F (X) 6= 0 if X 6= 0. Thus, the above discussion on V̇ = 0 (t ≥ 0) gives

that

X = Y = Z =W = 0 for all t ≥ 0. (15)

This fact completes the proof of the theorem. �
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