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ON SPARSE SETS AND DENSITY POINTS DEFINED

BY FAMILIES OF SEQUENCES

BY
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Abstract

In the paper a condition equivalent to sparseness of a set is

formulated. This condition is a base for a definition of a density

point with respect to a family of sequences (C-density). It is shown

that C-density is a generalization of a density with respect to one

sequence (〈a〉-density).

D. N. Sarkhel and A. K. De in the paper [5] defined some integrals of

Peron type. They used notions of a proximal limit, continuity and derivative,

which are generalizations of approximate ones. These generalizations are

based on a notion of a set sparse at a point. Sparse sets were also investigated

in [3] and [4]. In [3] such sets were used to define an analogue of the density

point (called in our paper the proximal density point) and an analogue of

the density topology.

In our paper we formulate a condition equivalent to the definition of a

sparse set (Theorem 1). Replacing in this condition the family of sequences

satisfying lim infn→∞
an+1

an
> 0 by another family C of sequences (and taking

complements) we get definition of an abstract density point depending on

family C (C-density). We note that C-density is a generalization of 〈a〉-density

studied in [2] and [1] (Proposition 4). We show that proximal density (so

sparseness too) cannot be defined by means of 〈a〉-density (Theorem 2).
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Through out the paper we shall use standard notation: R will be the

set of real numbers, N the set of positive integers, L the family of Lebesgue

measurable subsets of R, |A| the Lebesgue measure of a measurable set A

and |A|∗ the outer Lebesgue measure of a set A ⊂ R. We shall also write

A ∼ B if |A△B| = 0. By the density of a measurable set A we mean

d(A, x) = lim
h→0+

|A ∩ (x− h;x+ h)|

2h
.

If d(A, x) = 1, then we say that x is a density point of A. The set of all

density poins of A we denote by Φ(A). Similarly we define upper densities

d(A, x) = lim sup
h→0+

|A ∩ (x− h;x+ h)|

2h
,

d+(A, x) = lim sup
h→0+

|A ∩ (x;x+ h)|

h
, d−(A, x) = lim sup

h→0+

|A ∩ (x− h;x)|

h

and sets Φ(A), Φ+(A), Φ−(A) of all points for which the suitable upper

density is equal to 1. Sequences of real numbers we shall denote by 〈a〉 or

(an).

D. N. Sarkhel and A. K. De have defined in [5] a set sparse at a point.

Their definition may be apply to every subset of the real line (not necessarily

measurable). We restrict our considerations to measurable sets, because

sparseness of a set is equivalent to sparseness of it measurable cover.

A measurable set A is said to be sparse at a point x on the right if for

any ε > 0 there exists h > 0 such that each interval (α;β) ⊂ (x;x+ h) with

α−x < h(β−x) contains at least one point y such that |A∩(x; y)| < ε(y−x).

Sparseness on the left is defined similarly. A set A is said to be sparse at x

if it is sparse at x on the right and on the left. In [5] it was shown that if x

is a dispersion point of A (i.e. d(A, x) = 0) then A is sparse at x, and if A

is sparse at x on the right, then d+(A, x) < 1 and d+(R \ A, x) = 1.

Theorem 1. A measurable set A is sparse at x on the right if and only

if for any ε > 0 there is a decreasing sequence (an) satisfying limn→∞ an = 0,

lim infn→∞
an+1

an
> 0 and such that for each n ∈ N

|A ∩ (x;x+ an)|

an
< ε.
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Proof. Without loss of generality we can assume that x = 0.

Suppose that A is sparse at 0 on the right and fix ε > 0. By the

assumption, there exists h ∈ (0; 1) such that each interval (α;β) ⊂ (0;h)

with α < hβ contains a point y satisfying

|A ∩ (0; y)|

y
< ε.

Let cn = (h
2
)n for n ∈ N. Since cn < h and cn+1

cn
< h, we can find a sequence

(yn) such that yn ∈ (cn+1; cn) and

|A ∩ (0; yn)|

yn
< ε

for every n. Moreover

yn+1

yn
>

cn+2

cn
=

h

4
> 0,

which completes the proof of necessity.

To prove the inverse implication, set any positive ε and find a decreasing

sequence (an) satisfying limn→∞ an = 0, lim infn→∞
an+1

an
> 0 and

|A ∩ (0; an)|

an
< ε (1)

for n ∈ N. We can find δ ∈ (0; 1) such that an+1

an
> δ for all n. Set

h = min{δ, δa1} and consider any interval (α;β) ⊂ (0;h) with α < βh.

Since β ≤ h < a1, β ∈ (ap+1; ap〉 for some p ∈ N. Thus the inequality

α

β
< h ≤ δ <

ap+1

ap

implies ap+1 ∈ (α;β), and from (1) we conclude that A is sparse at 0 on the

right. �

Theorem 1 motivates us to define a new kind of density point. A family

C of decreasing sequences convergent to 0 such that

inf{a1; 〈a〉 ∈ C} = 0
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we call acceptable. We say that x is a C-density point (right-hand C -density

point) of a measurable set A if for every ε > 0 there exists 〈a〉 ∈ C such that

for each n

|A ∩ (x− an;x+ an)|

2an
> 1− ε

( |A ∩ (x;x+ an)|

an
> 1− ε

)
.

Similarly we define left-hand C -density points. The set of all C-density

points (right-hand C-density points, left-hand C-density points) we denote

by ΦC(A) (Φ
+

C (A), Φ
−
C (A)).

It is clear that

Proposition 1. For any A,B ∈ L and any acceptable C, C1, C2

(a) ΦC(∅) = ∅ and ΦC(R) = R.

(b) If A ∼ B then ΦC(A) = ΦC(B).

(c) If A ⊂ B then ΦC(A) ⊂ ΦC(B).

(d) If C1 ⊂ C2 then ΦC1(A) ⊂ ΦC2(A).

The following definition enables us to explain connections between

sparseness and C-density. We say that x is a proximally density point (right-

hand proximally density point, left-hand proximally density point) of a set

A if its complement R \A is sparse at x (sparse at x on the right, sparse at

x on the left). By Φpr(A) we denote the set of all proximally density points

of a measurable set A. Similarly we define Φ+
pr(A) and Φ−

pr(A). Clearly

Φ+
pr(A) ∩ Φ−

pr(A) = Φpr(A). In [3] it was proved that Φpr is a lower density

operator.

Let us denote by C0 the family of all decreasing sequences convergent to

0 and satisfying lim infn→∞
an+1

an
> 0. Theorem 1 implies

Corollary 1. Φ+

C0
= Φ+

pr.

Let C̃ denote the family of all decreasing sequences convergent to 0.

Clearly, C̃ is acceptable and we have

Proposition 2. ΦC̃ = Φ.

Proposition 3. For any A ∈ L and any acceptable C

(a) Φ(A) ⊂ ΦC(A) ⊂ Φ(A).
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(b) ΦC(A) ∈ L.

(c) ΦC(A) ∼ A.

Proof. Condition (a) is evident. Since Φ(A) ⊂ R\Φ(R \ A), (a) and the

Lebesgue Density Theorem imply

|ΦC(A)\Φ(A)|
∗ ≤ |Φ(A)\Φ(A)|∗ ≤ |R\Φ(R \ A)\Φ(A)| = 0.

Hence we conclude (b) and (c). �

Let us notice that Propositions 1, 2 and 3 are still true for one-sided

C-densities Φ+

C and Φ−
C .

It is obvious that ΦC(A) ⊂ Φ+

C (A) ∩ Φ−
C (A). The inverse inclusion need

not be true.

Example 1. If

A =

∞⋃

n=1

( 1

(2n)!
;

1

(2n − 1)!

)
∪

∞⋃

n=1

( −1

(2n)!
;

−1

(2n+ 1)!

)
,

then d+(A, 0) = d−(A, 0) = 1, and so 0 ∈ Φ+(A)∩Φ−(A) = Φ+

C̃
(A)∩Φ−

C̃
(A).

But d(A, 0) = d(A, 0) = 1

2
, and consequently 0 /∈ Φ(A) = ΦC̃(A).

Proposition 1 yields ΦC(A ∩ B) ⊂ ΦC(A) ∩ ΦC(B). The equality need

not hold.

Example 2. If

A =

∞⋃

n=1

( 1

(2n)!
;

1

(2n− 1)!

)
, B =

∞⋃

n=1

( 1

(2n + 1)!
;

1

(2n)!

)
,

then d+(A, 0) = d+(B, 0) = 1, and so 0 ∈ Φ+

C̃
(A) ∩ Φ+

C̃
(B). On the other

hand Φ+

C̃
(A ∩B) = Φ+

C̃
(∅) = ∅. Adding to A and B their mirror images, we

can get the same conditions for two-sided C̃-density.

In [2] it was defined a notion of a density point with respect to an

increasing sequence convergent to infinity. For simplicity of notation, we

formulate this definition for decreasing sequences convergent to 0.
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Let 〈a〉 be a decreasing sequence convergent to 0. We say that x is an

〈a〉-density point of a measurable set A if

lim
n→∞

|A ∩ (x− an;x+ an)|

2an
= 1.

The set of all 〈a〉-density points of A we denote by Φ〈a〉(A). In the same way

one can define one-sided 〈a〉-density points and sets Φ+

〈a〉(A) and Φ−
〈a〉(A).

Obviously, Φ〈a〉(A) = Φ+

〈a〉
(A)∩Φ−

〈a〉
(A). In [2] it was proved that Φ〈a〉(A) ∈ L

for A ∈ L and that Φ〈a〉 is a lower density operator.

Let 〈a〉 be a decreasing sequence convergent to 0. It is clear that the

family

C〈a〉 = {(ak, ak+1, ak+2, . . .); k ∈ N}

is acceptable and

Proposition 4. ΦC〈a〉 = Φ〈a〉.

The notion of C-density is strictly wider than that of 〈a〉-density. From

Example 2 it follows that Φ
C̃
is not a lower density, and hence Φ

C̃
is generated

by no sequence 〈a〉.

In [2] it was showed that Φ〈a〉 = Φ for any sequence 〈a〉 with

lim infn→∞
an+1

an
> 0. Thus ΦC〈a〉 = Φ too. It is easy to see that the equality

ΦC = Φ can also be true for families greater than C〈a〉.

Example 3. Let C1 be the family of all decreasing sequences convergent

to 0 and satisfying limn→∞
an+1

an
= 1. We shall show that ΦC1 = Φ. On the

contrary, suppose that ΦC1(A) \ Φ(A) 6= ∅ for some measurable set A. We

can assume that 0 ∈ ΦC1(A) \ Φ(A). Thus there are a positive number ε0,

a decreasing sequence (xn) convergent to 0 and a sequence (an) ∈ C1 such

that

|(0;xn) \ A|

xn
> ε0 and

|(0; an) \ A|

an
<

ε0
2

(2)

for n ∈ N. Choose two positive integers n0 and p such that an < 2an+1

for n ≥ n0 and xp ≤ an0
. Thus for every n ≥ p there exists kn ≥ n0 with
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akn+1 < xn ≤ akn , and consequently

|(0;xn) \ A|

xn
≤

|(0; akn) \A|

akn+1

≤
|(0; akn) \ A|

akn
·

akn
akn+1

< ε0.

This contradicts (2) and completes the proof.

We finish the paper proving that proximal density cannot be defined by

means of 〈a〉-density.

Theorem 2. Φ+
pr 6= Φ+

〈a〉 for each decreasing sequence 〈a〉 convergent to

0.

Proof. Let 〈a〉 be a decreasing sequence convergent to 0 and let 〈b〉 be

a subsequence of 〈a〉 such that

lim
n→∞

bn+1

bn
= 0. (3)

Set

A =

∞⋃

n=1

(bn
2
; bn

)
.

Since

|A ∩ (0; bn)|

bn
≥

bn − bn
2

bn
=

1

2
,

0 /∈ Φ+

〈a〉
(R \ A).

Now we show that A is sparse at 0 on the right (i.e. 0 ∈ Φ+
pr(R \ A)).

Choose any ε > 0. We may assume that ε < 1. From (3) it follows that

there is a positive integer n0 such that for each n ≥ n0

bn+1

bn
<

ε

2
.

Set h = min{
bn0

2
, ε
4
} and fix any interval (α;β) ⊂ (0;h) with α < βh. We

look for a point y ∈ (α;β) satisfying |A ∩ (0; y)| < εy.

If
bp
2
∈ (α;β) for some p ∈ N, then bp < 2β ≤ 2h ≤ bn0

, and so p > n0.
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Consequently,

|A ∩ (0; 1
2
bp)|

1

2
bp

≤ 2
bp+1

bp
< ε. (4)

If bn
2

/∈ (α;β) for each n ∈ N, then there is a positive integer p such that

1

2
bp ≤ α < β ≤

1

2
bp−1.

Thus for y = α+β
2

we have y ∈ (α;β) and

|A ∩ (0; y)|

y
≤

bp
1

2
β

≤
2α
1

2
β

= 4
α

β
< 4h ≤ ε. (5)

From (4) and (5) it follows that 0 ∈ Φ+
pr(R\A), which ends the proof. �
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