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Abstract

In this paper we find sufficient conditions for every solution

of the neutral delay difference equation

∆(rn∆(yn − pnyn−m)) + qnG(yn−k) = 0

to oscillate or to tend to zero or ±∞ as n → ∞, where ∆ is the for-

ward difference operator given by ∆xn = xn+1−xn, pn, qn, and rn

are infinite sequences of real numbers with qn ≥ 0, rn > 0. Differ-

ent ranges of {pn} are considered. This paper improves,generalizes

and corrects some recent results of [1, 9, 12, 13, 14].

1. Introduction

In this paper sufficient conditions are found so that every solution of

∆(rn∆(yn − pnyn−m)) + qnG(yn−k) = 0 (E)

oscillates or tends to zero or ±∞ as n → ∞, where ∆ is the forward difference

operator given by ∆xn = xn+1−xn, {pn}, {qn}, and {rn} are assumed to be

infinite sequences of real numbers with qn ≥ 0, rn > 0. We assume m,k,

are non negative integers, and G ∈ C(R,R). Various ranges of {pn} are
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considered. Further the following conditions are assumed for its use in the

sequel.

(H1) xG(x) > 0 for x 6= 0 and G is non-decreasing.

(H2)
∑

∞

n=0 qn = ∞.

(H3)
∑

∞

n=0
1
rn

= ∞.

(H4)
∑

∞

n=0
1
rn

< ∞.

(H5)
∑

∞

n=1
1
rn

∑n−1
i=0 qi = ∞.

In recent years there have been much interest in studing the oscillation

of neutral delay difference equations (NDDE in short). For recent results and

references see the monograph by Agarwal[2] and the papers (see [1, 3, 9, 17]

and [12]–[15]and the references cited there in). The authors of this paper feel

(E) is not yet being given serious attention. In [9] the authors have given

sufficient conditions for all solutions of (E) to be oscillatory. In their work

pn is confined to −1 ≤ pn ≤ 0 only. They restrict rn with (H3). Also they

impose a super linear condition on G i.e

G(x)

x
≥ γ > 0 for x 6= 0. (1)

When G(u) = u
1

3 ,then the above condition is not satisfied. Hence [9] does

not cover a class of NDDEs. Again in [1] the authors have some results

for (E) where they restricted G with the condition that there exists a non-

negative function H such that

G(u)−G(v) = H(u, v)(u − v). (2)

If u → v then H = G′(v). Then eq(2) implies G is non-decreasing, which

most authors assume while dealing with non-linear equations. In most of

the results of [1], the authors have assumed the conditions (H3), pn ≡ p,

which is a constant and m to be an odd positive integer. Not all results of

[1] can be compared with our work but certainly their Theorem 8 invites a

direct comparison with our Theorem 3.1. With all humbleness we have to

say that our Example 2 contradicts the conclusion of that result. The several

restrictions on G imposed in [1, 9] are due to the technique employed by the

authors in their work. Here in this paper an attempt is made to remove
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all these restrictions (See our results in section 3,particularly the Theorems

3.1 and 3.3). Here we may observe that when (H3) holds ,it is possible to

prove all solutions of (E) to be oscillatory as in [9], but when (H4) holds

and −1 ≤ −b ≤ pn ≤ 0, then one may look at the following example where

the NDDE

∆(22n∆(yn +
1

2
yn−1)) +

1

4
yn−2 = 0

has a non oscillatory solution yn = 2−n which approaches to zero as n

approaches ∞. Hence it looks justified when in this work we show that (H3)

or (H5) is a sufficient condition for all solutions of (E) to be oscillatory or

tending to zero or ±∞ as n → ∞ with pn in different ranges. We allow G to

be linear, sublinear or super linear in the entire work unlike [1, 9]. Further

this paper extends and generalize [12, 13] to 2nd order NDDEs since our

assumption (H3) allows us to take rn ≡ 1. Whether it is the discrete or

continuous case so far as study neutral equation (E) is concerned almost all

results (see[1, 4, 16, 9])use (H3) or (H4). But we have some results, where

neither (H3) nor (H4) is required(see Theorems 3.3 and 3.9). We illustrate

our results with suitable examples, which not only establishes the significance

of our work over [9] but also contradict some of the existing results of [1, 14]

(see Examples 1, 2 and 3).

Let s = max{m,k} and n0 be a fixed nonnegative integer. By a solution

of (E) we mean a real sequence {yn} which is defined for all positive integer

n ≥ n0 − s and satisfies (E) for n ≥ n0. Clearly if the initial condition

xn = an for n0 − s ≤ n ≤ n0 (3)

are given, then the equation (E) has a unique solution satisfying the given

initial condition (3). A solution {yn} of (E) is said to be oscillatory if for

every positive integer n0 > 0, there exists n ≥ n0 such that ynyn+1 ≤ 0,

otherwise {yn} is said to be non-oscillatory.

In the sequel for convenience when we write a functional inequality with-

out specifying its domain of validity, we assume that it holds for all suffi-

ciently large positive integer n.

2. Some Lemmas

First we state a lemma which is due to [13].
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Lemma 2.1. Let {fn}, {qn} and {pn} be sequences of real numbers

defined for n ≥ N0 ≥ 0 such that

fn = qn − pnqn−m, n ≥ N0 +m

where m ≥ 0 is an integer. Suppose that there exist real numbers b, b1, b2

such that pn satisfies one of the following three conditions

(i) −1 < −b ≤ pn ≤ 0,

(ii) −b2 ≤ pn ≤ −b1 < −1,

(iii) 0 ≤ pn ≤ b2.

If qn > 0 for n ≥ N0, lim infn→∞ qn = 0 and limn→∞ fn = L exists then

L = 0.

Before we start our main results, for a better understanding of our as-

sumptions, first we would like to present a useful remark.

Remark 1.

(i) Since rn > 0,therefore either (H3) or (H4)holds but not both.

(ii) If (H3) holds, then (H2) implies (H5) but not conversely. This is justi-

fied from the the example when rn = 3−n and qn = 2−n.

(iii) If (H4) holds, then (H5) implies (H2) but not conversely. Indeed this

can be verified from the example when rn = n3 and qn ≡ 1

(iv) If (H2) and (H5) hold, then nothing can be said about (H3) and (H4).

This can be seen from the example rn = n2 and qn ≡ 1. In this case

(H2), (H5) and (H4) hold but not (H3). Next consider the example

rn ≡ 1 and qn ≡ 1. Here (H2), (H5)and (H3) hold but not (H4).

Lemma 2.2. Suppose that {pn} lies in one of the following three ranges

(A1) : 0 ≤ pn ≤ b < 1,

(A2) : −1 < −b ≤ pn ≤ 0,

(A3) : −d ≤ pn ≤ −c < −1.

where b, c and d are positive real numbers. If (H1), (H2) and (H3) hold and

{yn} be a nonoscillatory solution of (E) for n ≥ n0,then setting

zn = yn − pnyn−m (4)
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for n > n0, one may conclude that limn→∞ zn = 0.

Proof. Let {yn} be an eventually positive solution of (E) for n ≥ n0.

Then setting

rn∆zn = wn (5)

for n ≥ n1 > n0, we obtain

∆wn = −qnG(yn−k) ≤ 0. (6)

Then {wn} is monotonic and consequently limn→∞wn = l where −∞ ≤

l < ∞. Consider the first case when −∞ ≤ l < 0. Then wn < 0 and is

decreasing, so we can find a large positive intrger n2 such that for n ≥ n2

implies w(n) ≤ wn2
. This further implies ∆zn ≤

wn2

rn
. Then summing it

from n = n2 to ∞ and using (H3), we obtain zn → −∞. Then pn must be

in (A1) and zn < 0 for large n. Hence yn < yn−m for large n, which implies

yn is bounded. Consequently zn is bounded, which is a contradiction. Next

we consider the second case l ≥ 0. This implies wn is eventually positive.

We claim

lim inf
n→∞

yn = 0. (7)

Otherwise yn > α > 0 for large n ≥ n2 which implies

∞
∑

n=n2

qnG(yn−k) > G(α)
∞
∑

n=n2

qn = ∞ (8)

by (H2). On the other hand taking summation of Eq(6) from n = n2 to ∞

we obtain
∞
∑

n=n2

qnG(yn−k) < ∞ (9)

a contradiction to Eq(8). Thus our claim holds. Since wn > 0 for n ≥ n3 ≥

n2 then, Eq(5) with rn > 0 yields ∆zn > 0. Consequently zn > 0 or zn < 0

for large n. Hence limn→∞ zn = a where −∞ < a ≤ ∞. If a = ∞ then

∆zn > 0 with zn > 0 and

lim inf
n→∞

yn

zn
= 0. (10)
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However,

lim
n→∞

{

yn

zn
−

p∗nyn−m

zn−m

}

= 1 (11)

where p∗n = pnzn−m

zn
. Since zn is increasing then zn−m

zn
< 1. Hence it is clear

that p∗n → pn as n → ∞. If pn is in (A1) then 0 < p∗n < pn. However,if pn is

in (A2) or (A3) then 0 > p∗n > pn. Then it follows that p∗n lies in the required

ranges of Lemma 2.1, when pn is in (A1), (A2) or (A3). Hence from Eq(10)

and Lemma 2.1 it follows that

lim
n→∞

{

yn

zn
−

p∗nyn−m

zn−m

}

= 0,

which contradicts (11). Thus a is finite and is equal to zero again by lemma

2.1. What is important to note here is that zn is eventually negative since

it is increasing. The proof for the case yn < 0, is similar. �

Remark 2. In the above lemma {wn} is positive and decreasing but

{zn} is negative and increasing. Further we may note that a = −∞ is not

possible even if zn is decreasing because pn satisfies (A1), (A2) or (A3).

Lemma 2.3. Suppose that {pn} is in one of the ranges (A1), (A2) or

(A3). If (H1), (H4) and (H5) hold and {yn} be a nonoscillatory solution of

(E) for n ≥ n0, then setting zn as in Eq(4) one may conclude limn→∞ zn = 0.

Proof. By Remark 1(iii) one may observe that (H2) holds. Here we

proceed as in the previous lemma and need only prove the first part of the

lemma where (H3) is used. In that case l < 0 and we proceed as follows.

It is clear that zn is decreasing and limn→∞ zn = a. We claim that Eq(7)

holds. Otherwise yn > β > 0 for large n say n > n1. Then from Eq(6) one

may obtain

i−1
∑

n=n1

∆wn = −

i−1
∑

n=n1

qnG(yn−k) for i > n1 + 1,

that is

wi − wn1
= −

i−1
∑

n=n1

qnG(yn−k) < −G(β)

i−1
∑

n=n1

qn.
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This implies

∆zi < −
G(β)

ri

i−1
∑

n=n1

qn +
wn1

ri
for i > n1 + 1.

Then one may find n2 > n1 and δ > 0 such that for i ≥ n2 + 1

∆zi < −
G(β)

ri

i−1
∑

n=n2

qn −
δ

ri
.

This implies

j−1
∑

i=n2

∆zi < −G(β)

j−1
∑

i=n2

1

ri

i−1
∑

n=n2

qn − δ

j−1
∑

i=n2

1

ri

< −G(β)

j−1
∑

i=n2

1

ri

i−1
∑

n=n2

qn → −∞,

as j → ∞ by (H5). Thus zj → −∞ as j → ∞, which implies zn < 0

for large n. Then pn must be in (A1). This implies yn is bounded. Con-

sequently zn is bounded, a contradiction. Hence lim infn→∞ yn = 0 holds.

Then limn→∞ zn = 0, follows from Lemma 2.1. �

Lemma 2.4. Suppose that (H1), (H2) and (H5) hold, and let {pn} be in

one of the ranges (A1), (A2) or (A3). If {yn} is a non-oscillatory solution of

(E) for n ≥ n0 then setting zn as in Eq(4) one may obtain limn→∞ zn = 0.

Proof. The proof for the case when l ≥ 0 follows from Lemma 2.2, and

the proof for the case when l < 0 follows from Lemma 2.3. �

Lemma 2.5. Suppose {pn} is in the range (A4): 1 ≤ pn ≤ b, where b

is a real number. If (H1), (H2) and (H3) hold and {yn} be a non oscillatory

solution of (E) for n ≥ n0 then setting zn as in Eq(4), one may obtain

lim
n→∞

zn = 0 or lim
n→∞

zn = −∞.

Proof. Let {yn} be an eventually positive solution of (E) for n ≥ n0.

Then setting zn and wn as in Eq(4) and Eq(5)respectively one may obtain

Eq(6). Then wn is monotonic and cosequently limn→∞wn = l where −∞ ≤
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l < ∞. First consider the case when l < 0. Then ∆zn < 0 and hence {zn}

is decreasing. Consequently limn→∞ zn = a, where −∞ ≤ a < ∞. Suppose

that a 6= −∞. Then using Remark 1(ii) and proceeding as in Lemma 2.3 we

prove lim infn→∞ yn = 0. Then application of Lemma 2.1 yields a = 0. Since

{zn} is decreasing then zn > 0. Because of (A4) we obtain lim infn→∞ yn > 0,

a contradiction. Next Consider the case when l ≥ 0 and is finite. Then we

proceed as in Lemma 2.2 and prove lim infn→∞ yn = 0. From Eq(5) and

the fact that rn > 0 it follows that {zn} is monotonic increasing and hence

limn→∞ zn = a, where −∞ < a ≤ ∞. If a > 0 then because of (A4) we

obtain yn > yn−m. This implies lim infn→∞ yn > 0, a contradiction. If a ≤ 0

then since it is finite so application of Lemma 2.1 yields a = 0. The proof

for the case when yn < 0 is similar. Thus the lemma is proved. �

Remark 3. In the above Lemma if l ≥ 0 then a = 0 and zn < 0.

However, if l < 0 then a = −∞.

Lemma 2.6. Suppose that pn is in the range (A4). If (H1), (H4) and

(H5) hold and {yn} be a non oscillatory solution of (E) for n ≥ n0, then

setting zn as in Eq(4), one may obtain

lim
n→∞

zn = 0 or lim
n→∞

zn = −∞.

Proof. The proof is omitted because it follows on similar lines as the

proof of the previous lemmas. �

3. Sufficient Conditions

Theorem 3.1. If we assume (H1), (H2) and (H3) then the following

holds.

(i) If {pn} is in (A1) then every solution of (E) oscillates or tends to

zero as n → ∞.

(ii) If {pn} is in (A2) or (A3) then every solution of (E) is oscillatory.

Proof. First consider the proof of (i). Let y = {yn} be a nonoscillatory

and eventually positive solution of (E) for n ≥ n0. Then setting zn as in



2008] OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF A NDDE 461

Eq(4) and applying Lemma 2.2 we obtain limn→∞ zn = 0. If {pn} is in (A1)

then

0 = lim
n→∞

zn = lim sup
n→∞

(yn − pnyn−m)

≥ lim sup
n→∞

yn + lim inf
n→∞

(−pnyn−m)

≥ (1− b) lim sup
n→∞

yn,

which implies lim supn→∞
yn = 0. Hence limn→∞ yn = 0.

Next consider the proof for (ii). If yn is an eventually positive solution of

(E) and if {pn} is in (A2) or (A3) then zn > 0 for large n. But from Lemma

2.2 and Remark 2 it follows that zn < 0. Hence we get a contradiction. The

proof for the case yn < 0 is similar. �

Theorem 3.2. Suppose that (H1), (H4) and (H5) hold. If {pn} is in

one of the ranges (A1), (A2) or (A3) then every solution of (E) oscillates or

tends to zero as n → ∞.

Proof. The proof is similar to that of Theorem 3.1 and the only difference

is that here Lemma 2.3 is to be applied in place of Lemma 2.2. If {pn}

satisfies (A2) or (A3) then since yn ≤ zn, implies limn→∞ yn = 0. �

Theorem 3.3. Let {pn} be in one of the ranges (A1), (A2), (A3) and

suppose that (H1), (H2), (H5) hold. Then every solution of (E) oscillates or

tends to zero as n → ∞.

Proof. It follows from Theorem 3.1 with the application of Lemma 2.4.

If {pn} satisfies (A2) or (A3) then since yn ≤ zn, implies limn→∞ yn = 0. �

Example 1. Consider the NDDE

∆2(yn − 4yn−1) + 4(n+1)/3y
1/3
n−2 = 0, n ≥ 3

In the above NDDE rn ≡ 1 is in (H3). Also (H1), (H2) hold. But pn is in

(A4). It may be verified that yn = 2n is a solution of the above NDDE which

→ ∞ as n → ∞. This example is the motivation behind our next result.

Theorem 3.4. Suppose that (H1), (H2) and (H3) hold. If {pn} is in
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(A5) b2 ≥ pn ≥ b1 > 1, then every bounded solution of (E) oscillates or

tends to zero as n → ∞.

Proof. Let y = {yn} be an nonoscillatory and eventually bounded pos-

itive solution of (E) for n ≥ n0. Then setting zn as in Eq(4) and applying

Lemma 2.5 we obtain limn→∞ zn = 0. Then

0 = lim
n→∞

zn = lim inf
n→∞

(yn − pnyn−m)

≤ (1− b1) lim sup
n→∞

yn.

Hence limn→∞ yn = 0. The proof for the case yn < 0 is similar. �

Theorem 3.5. Suppose {pn} is in (A5). If (H1), (H4) and (H5) hold

then every bounded solution of (E) oscillates or tends to zero as n → ∞.

Proof. The proof is similar to that of Theorem 3.4 but here Lemma 2.6

is to be applied. �

Example 2. Consider the NDDE

∆2(yn − 2e−1yn−1) +
(1− e)2

e5
yn−3 = 0 (12)

Here pn = 2
e ∈ (A1), rn ≡ 1, qn = (1−e)2

e5
. It is clear that the above NDDE

satisfies all the conditions (H1), (H2) and (H3) of Theorem 3.1(i). Since (H5)

too holds then it satisfies all the conditions of Theorem 3.3 also. Hence all

solutions of Eq(12) oscillates or tends to zero as n → ∞. As such yn = e−n

is a non-oscillatory solution which → 0 as n → ∞. Further this example

contradicts the conclusion of Theorem 8 of [1] which says all solutions of (E)

are oscillatory under the conditions (H2), (H3), (A1) and m odd.

Example 3. The NDDE

∆2(yn +
1

2
yn−1) + 2y

1

3

n−3 = 0

satisfies all the conditions of Theorem 3.1(ii) and hence all its solutions

are oscillatory. As such yn = (−1)n is the oscillatory solution of the above

NDDE. But the results of [9] cannot be applied to this NDDE as G(U) = U
1

3

is sublinear and does not satisfy (1).
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Example 4. The NDDE

∆(22n∆(yn −
1

2
yn−1)) + 4n−2yn−2 = 0

satisfies all the conditions of Theorems 3.2 and 3.3. Here (H2), (H4) and

(H5) hold. The range of pn is (A1). Hence all solutions either oscillate or

tend to zero, as such yn = 2−n is the solution which → 0 as n → ∞.

Theorem 3.6. Suppose that (H1) and (H3) hold. Let {pn} be in the

range (A4) and if for every sequence {qnj
} of {qn}

(H6)
∞
∑

j=0

qnj
= ∞

holds then every solution of (E) oscillates or tends to zero or tends to ±∞

as n → ∞.

Proof. First we may note that (H6) implies (H2) and we follow the proof

of Lemma 2.5 to prove this result. Let y = {yn} be a non-oscillatory and

eventually positive solution of (E) for n ≥ n0. Then set zn and wn as in

Eq(4) and Eq(5)respectively. Then let limn→∞wn = l and limn→∞ zn = a.

Consider the first case l < 0. Then by Remark 3 one may obtain a =

−∞ Then from (A4) and Eq(4) it follows that yn−m ≥ − zn
b . This implies

limn→∞ yn = ∞. Next consider the second case that l ≥ 0 and is finite.

Using Remark 3 we get a = 0. Then taking summation of Eq(6) from

n = n2 to ∞ we obtain Eq(9). We claim {yn} is bounded. Otherwise if yn is

unbounded then there exists a subsequence {ynj
} such that ynj−k > α > 0

for j > n1. Hence

∞
∑

j=n1

qnj
G(ynj−k) > G(α)

∞
∑

j=n1

qnj
= ∞ (13)

by (H6) which contradicts (9). Hence yn is bounded. If lim supn→∞
yn =

γ > 0 then there exists a subsequence {ynj
} such that ynj−k > α > 0 for

j > n1. From this using (H6) we again obtain Eq(13) which contradicts

Eq(9). Hence lim supn→∞
yn = 0. Thus limn→∞ yn = 0. The proof for the

case when yn < 0 is similar. �
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Remark 4. Theorem 2.6 of [14, pp.761] for m even says “Under (A4)

and (H2) every solution of (E) with rn ≡ 1 is oscillatory.” Theorem 2.7 of

[14, pp.762] for m even says “Under (A5) and (H2) every solution of (E)

with rn ≡ 1 oscillates.” Our Example 1 contradicts both the theorems. The

above two theorems of this paper are the corresponding correct results.

Example 5. Consider the NDDE

∆(n−1∆(yn − 4yn−1) +
4

n+1

3 (n − 1)

n(n+ 1)
y

1

3

n−2 = 0, n ≥ 3

In the above NDDE rn = n−1 is in (H3), qn = 4
n+1
3 (n−1)
n(n+1) . Also (H1), (H6)

hold. Here pn = 4 is in (A4). It may be veryfied that yn = 2n is a solution of

the above NDDE which → ∞ as n → ∞. This example illustrates Theorem

3.6

Theorem 3.7. Let {pn} satisfy

(A6): −d ≤ pn ≤ 0,

where d is a positive real number. Suppose that (H1) and (H3) hold. Further

assume

(H7)
∑

∞

n=s q
∗

n = ∞, where q∗n = min(qn, qn−m),

(H8) For u > 0, v > 0 there exists δ > 0 such that G(u)+G(v) ≥ δG(u+v),

(H9) G(u)G(v) ≥ G(uv) for u > 0, v > 0,

(H10) G(−u) = −G(u).

Then every solution of (E) oscillates or tends to zero as n → ∞.

Proof. Let y = {yn} be an eventually positive solution of (E) for

n ≥ n0 > 0. Then setting zn, wn as in (2.1) and (2.2) we arrive at (2.3).

Consequently limn→∞wn = l, where −∞ ≤ l < ∞. Consider the first case

l < 0. Then wn < 0 and consequently ∆zn < 0. Because of (A6) we have

limn→∞ zn = a where a ≥ 0 and is finite. Then as in Lemma 2.2 one may

use (H3) and obtain zn → −∞, a contradiction. Next consider the other

case l ≥ 0. Since rn > 0 then ∆zn > 0. Consequently limn→∞ zn = a

where −∞ < a ≤ ∞. Due to (A6), zn > 0. Hence a ≥ 0. If a = 0 then
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limn→∞ yn = 0 follows from the inequality yn ≤ zn. If a > 0 then zn > λ > 0

for large n > n1. Then using (H7) and (H10) we obtain for n ≥ n1

0 = ∆wn + qnG(yn−k) +G(−pn−k){∆wn−m + qn−mG(yn−k−m)}

≥ ∆wn +G(d)∆wn−m + δq∗nG(zn−k)

≥ ∆wn +G(d)∆wn−m + δq∗nG(λ).

If we take sum from n = n2 to n = i− 1 and take limit i → ∞ and use (H7)

then we obtain the contradiction that wi+G(d)wi−m → −∞ as i → ∞. The

proof for the case yn < 0 for large n is similar. In this case (H10) is required.

Thus the theorem is proved. �

Remark 5.

(i) (H7) implies (H2) but not conversely.

(ii) The prototype of G satisfying (H1), (H8), (H9) and (H10) is G(u) =

(β + |u|µ)|u|λsgnu where λ > 0, µ > 0, β ≥ 1. For proof one may refer

[7, page-292].

Theorem 3.8. Let pn satisfy (A6). Suppose that (H1), (H4), and

(H8)− (H10) hold. Further if

(H11)
∑

∞

n=n0

1
rn

∑n−1
i=s q∗i = ∞, for n0 > s

holds, then every solution of (E) oscillates or tends to zero as n → ∞.

Proof. It may be noted that (H4) and (H11) implies (H7). Then the

proof is similar to that of the above theorem except in case when wn < 0 we

use (H11) to get a contradiction. �

Theorem 3.9. Let pn satisfy (A6). Suppose that (H1), and (H7)−(H11)

hold. Then every solution of (E) oscillates or tends to zero as n → ∞.

Proof. The proof is similar to that of the above theorem. When wn > 0

we use (H7) and proceed as in Theorem 3.7 and in case when wn < 0 we use

(H11) as in Theorem 3.8 to get a contradiction. �
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