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Abstract

This paper investigates the propagation of surface waves

in fibre-reinforced electrically conducting elastic solid media per-

meated by a primary magnetic field. First, the theory of general

surface waves has been derived and then this theory has been ap-

plied to study Rayleigh, Love and Stoneley type of waves, which

are the special cases of the above surface waves. The frequency

equations are found in every case. The results obtained in this

paper may be considered as more general in the sense that some

other important formulas investigated by different authors may

be deduced from our result as special cases. Combined effect of

magnetic field, electrical conductivity and the reinforcement of

the medium on the propagation of Rayleigh and Love type of

waves have been studied numerically with graphical representa-

tions. Numerical study of the Stoneley waves is not pursued due

to its complicated nature. It is found that the presence of mag-

netic field in electrically conducting fibre-reinforced media modu-

lates the Rayleigh wave velocity to a considerable extent. Though

the fibre-reinforcement has a significant effect on the propagation

of Love waves, magnetic field has no role to play in this case. The

modulation of Love wave velocity due to fibre-reinforcement has

also been studied numerically.
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1. Introduction

Interactions between strain and electromagnetic fields are largely being

undertaken due to its various applications in many branches of science and

technology. Development of magnetoelasticity also induces us to study var-

ious problems of geophysics, seismology and related topics. Bazer [3] made

a survey of linear and non-linear wave motion in a perfect magnetoelastic

medium. Without going into the details of the research work published so

far in the fields of magnetoelasticity, magneto-thermo-elasticity, magneto-

thermo-viscoelasticity we mention some recent papers [1], [9, 10], [13], [20],

[29], [31, 32]. At the present time problems of propagation of waves in

anisotropic media have been discussed by many others [6], [11], [12], [14],

[17], [21], [27], [33].

It is known that surface waves play an important role in the study

of earthquake, geophysics and geodynamics. Rayleigh waves, Love waves

and Stoneley waves are the special cases of general surface waves. They

are tightly connected with the earthquake spectrum analysis [23]. Rayleigh

waves cause destruction to the structure owing to its slower attenuation

of the energy than that of the body waves and the characteristic that it

propagates along the surface. Recently P R Sengupta and S Nath [25] in-

vestigated surface waves in fibre-reinforced anisotropic elastic media. Com-

ments on “surface waves in fibre-reinforced anisotropic elastic media” by P

R Sengupta and S Nath may be seen in a paper presented by Sarvajit Singh

[26].

The superiority of fibre-reinforced composite materials over other struc-

tural materials attracted many authors [7, 8], [16], [25], [28] to study different

type of problems in this field. Fibre-reinforced composite concrete structures

are used due to their low weight and high strength. Two important compo-

nents namely concrete and steel of a reinforced medium are bound together

as a single unit so that there can be no relative displacement between them

i.e. they act together as a single anisotropic unit so long as they remain in

the elastic condition. The artificial structures on the surface of the earth are

excited during an earthquake, which gives rise to violent vibrations [24] in

some cases. Engineers and architects are in search of such materials of the

structures that will resist the oscillatory vibration. Again, the earth is placed

in its own magnetic field and most concrete construction near the surface
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of the earth includes steel reinforcing at least nominally. The propagation

of waves depends upon the ground vibration and the physical properties

of the structure. Thus, the role of the propagation of surface waves in a

magnetoelastic fibre-reinforced medium can not be neglected in any way.

In most of the previous investigations, the effect of reinforcement has been

neglected. The idea of continuous self-reinforcement at every point of an

elastic solid may be obtained from the investigation presented by Spencer

[30] and Belfield et al. [4]. Hashin and Rosen [16] introduced the elastic

moduli for fibre-reinforced materials. Reflection of waves at the boundaries

of fibre-reinforced media has been studied by several authors [8, 9, 10], [28].

Merodio and Ogden [18] investigated mechanical response of fibre-reinforced

incompressible non-linearly elastic solids. Crampin et al. [11] and Crampin

[12] considered propagation of surface waves in anisotropic media.

The above-mentioned authors have not discussed the combined effect of

magnetic field, electrical conductivity and fibre-reinforcement on the prop-

agation of surface waves in anisotropic media. In this paper starting from

the formulation of general surface waves we have discussed Rayleigh, Love

and Stoneley waves as special cases. Numerical calculation and graphs have

been presented for Rayleigh and Love waves only. It is marked that Love

waves are not effected by magnetic field though the fibre-reinforcing has a

significant role to play on such waves. It is believed that the investigations

presented in this paper have not been studied so far.

2. Basic Equations and Formulations of the Problem:

We consider a two dimensional model [fig.1] consisting of two homo-

geneous anisotropic fibre-reinforced elastic solid semi-infinite media M and

M1 with different elastic and reinforcement parameters. They are perfectly

welded in contact at a plane interface. Let us take an orthogonal cartesian

axes oxyz with the origin o at the common plane boundary and oz points

vertically upwards into the medium M (z ≥ 0). Each of the media M (z ≥ 0)

and M1 (z ≤ 0) extends to an infinitely great distance from the plane hori-

zontal boundary surface of separation z = 0. The two media are permeated

into a uniform magnetic field H.
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Figure 1. Schematic diagram of the problem.

It is assumed that the waves travel in the positive direction of the x-axis

in such a way that the disturbance is largely confined to the neighborhood

of the boundary and at any instant, all particles have equal displacements

in any direction parallel to oy. In view of the above assumptions, the waves

may be considered as surface waves and all partial derivatives with respect

to y are zero. We assume that an induced magnetic field h = (0, h, 0) and

an induced electric field E are developed due to the application of initial

magnetic field H = (0,H0, 0).

For a slowly moving homogeneous electrically conducting elastic solid

medium, the linear equations of electrodynamics in a simplified form may

be presented as [20], [31]

∇× h = J + ε0

•

E

∇× E = −µ0

•

h

∇ · h = 0

E= − µ0

(

•

u×H
)























(2.1)

where ∇ is the Hamilton’s operator, ε0 is the electric permeability, µ0

is the magnetic permeability and u is the dynamic displacement vector.

Overdot (•)represents derivative with respect to time. Here we ignore the

small effect of temperature gradient on the current density vector J. The

deformation is supposed to be small and the dynamic displacement vector

is actually measured from a steady state deformed position.

The components of the magnetic intensity vector in the medium are

Hx = 0, Hy = H0 + h (x, z, t) , Hz = 0 (2.2)



2009] MAGNETOELASTIC SURFACE WAVES 337

Since the current density vector J must be parallel to E, we have the com-

ponents of J as

Jx = J1, Jy = 0, Jz = J3 (2.3)

As the electric intensity vector is normal to both the magnetic intensity and

the displacement vectors, its components are

Ex = E1, Ey = 0, Ez = E3 (2.4)

The equations governing the propagation of small elastic disturbances

including only the interactions of mechanical and electromagnetic fields [9]

σij,j + µ0 (J × H)i = ρ
∂2ui

∂t2
, (i, j = 1, 2, 3) (2.5)

where σij are the components of stress tensor, ρ is the mass density and

u= ui = (u, v,w).

Using (2.5) the equations of motion for the present problem may be

written in the following forms

∂σ11

∂x
+ ∂σ13

∂z
+ µ0 (J × H)1 = ρ∂2u

∂t2

∂σ21

∂x
+ ∂σ23

∂z
+ µ0 (J × H)2 = ρ∂2v

∂t2

∂σ31

∂x
+ ∂σ33

∂z
+ µ0 (J × H)3 = ρ∂2w

∂t2















(2.6)

The constitutive equations for a fibre-reinforced linearly elastic anisotropic

medium with respect to the reinforcement direction a are [4], [30]

σij = λekkδij + α (akamekmδij + ekkaiaj) + 2 (µL − µT ) (aiakekj + ajakeki)

+βakamekmaiaj (2.7)

where eij are components of infinitesimal strain; λ, µT are elastic constants;

α, β, µL are reinforcement parameters and a = (a1, a2, a3); a2
1 +a2

2 +a2
3 = 1.

We choose the fibre direction as a = (1, 0, 0).
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The relevant components of stress tensor are

σ11 = (λ + 2α + 4µL − 2µT + β) e11 + (λ + α) e22 + (λ + α) e33

σ22 = (λ + α) e11 + (λ + 2µT ) e22 + λe33

σ33 = (λ + α) e11 + λe22 + (λ + 2µT ) e33

σ12 = 2µLe12

σ13 = 2µLe13

σ23 = 2µT e23



































(2.8)

where

2eij = ui,j + uj,i (2.9)

Using equation (2.1) one may find the components of µ0 (J × H). Thus intro-

ducing (2.1) and (2.8) into the equations in (2.6) one obtains the concerned

equations of motion as follows:

A11
∂2u
∂x2 + B2

∂2w
∂x∂z

+ B1
∂2u
∂z2 − µ0H0

∂h
∂x

− ε0µ
2
0H

2
0

∂2u
∂t2

= ρ∂2u
∂t2

B1
∂2v
∂x2 + B3

∂2v
∂z2 = ρ∂2v

∂t2

A22
∂2w
∂z2 + B2

∂2u
∂x∂z

+ B1
∂2w
∂x2 − µ0H0

∂h
∂z

− ε0µ
2
0H

2
0

∂2w
∂t2

= ρ∂2w
∂t2















(2.10)

where

A11 = λ + 2α + 4µL − 2µT + β, A22 = λ + 2µT ,

B1 = µL, B2 = λ + α + µL, B3 = µT

From equations (2.1) we may get the expression for h as

h = −H0

(

∂u

∂x
+

∂w

∂z

)

(2.11)

Insertion of (2.11) in (2.10) yields the following dynamical equations of mo-

tion valid for the medium M as

(A11+µ0H
2
0 )

∂2u

∂x2
+

(

B2 + µ0H
2
0

) ∂2w

∂x∂z
+B1

∂2u

∂z2
=

(

ρ + ε0µ
2
0H

2
0

) ∂2u

∂t2
(2.12)

B1
∂2v

∂x2
+ B3

∂2v

∂z2
= ρ

∂2v

∂t2
(2.13)

(A22+µ0H
2
0 )

∂2w

∂z2
+

(

B2 + µ0H
2
0

) ∂2u

∂x∂z
+B1

∂2w

∂x2
=

(

ρ+ε0µ
2
0H

2
0

) ∂2w

∂t2
(2.14)
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Since the media M and M1 posses different elastic and reinforcement

parameters and both the media are permeated into a single uniform magnetic

field, the equations of motion valid for the medium M1 may be written as

(A′

11+µ0H
2
0 )

∂2u′

∂x2
+(B′

2+µ0H
2
0 )

∂2w′

∂x∂z
+B′

1

∂2u′

∂z2
= (ρ′+ε0µ

2
0H

2
0 )

∂2u′

∂t2
(2.12a)

B′

1

∂2v′

∂x2
+B′

3

∂2v′

∂z2
= ρ′

∂2v′

∂t2
(2.13a)

(A′

22+µ0H
2
0 )

∂2w′

∂z2
+(B′

2+µ0H
2
0 )

∂2u′

∂x∂z
+B′

1

∂2w′

∂x2
= (ρ′+ε0µ

2
0H

2
0 )

∂2w′

∂t2
(2.14a)

where (u′, v′, w′) are the displacement components for the medium M1 and

the primes (′) signify the corresponding material constants for the same.

3. Boundary Conditions

The stress continuity conditions across the boundary z = 0 are given by

(

σ3j + σE
3j

)

z→0+
−

(

σ′

3j + σ′E
3j

)

z→0−
= 0, j = 1, 2, 3. (3.1)

where σ3j ,σ
′

3j are the stress components for M and M1 respectively and σE
3j,

σ′E
3j are the corresponding components of Maxwell stress tensor; [9]

σE
ij = µ0 (Hihj + Hjhi − Hkhkδij)

in which Hi = (H1,H2,H3) =initial constant magnetic field H, hj = (h1, h2,

h3) =induced magnetic field h and δij =Kronecker delta.

In the present problem both the media are permeated by a uniform

magnetic field H. As considered by many authors [1, 9, 13, 22, 29] in their

different magnetoelastic problems, the continuity of Maxwell stress tensor

along the boundary surface of separation is assumed in this problem also

and hence
[

σE
3j

]

z→0+
=

[

σ′E
3j

]

z→0−
, j = 1, 2, 3 (3.1a)

Insertion of (3.1a) in (3.1) leads to

[σ3j ]z→0+ =
[

σ′

3j

]

z→0−



340 D. P. ACHARYA AND INDRAJIT ROY [September

Thus, at the interface of the two magneto elastic fibre-reinforced medium

the stress continuity conditions (3.1) reduces to

σ13 = σ′

13, σ23 = σ′

23, σ33 = σ′

33 on z = 0. (3.2)

where symmetric condition of stress components has been applied.

Again the components of displacements at the boundary surface z = 0

between two media M and M1 must be continuous at all places and for all

times i.e.

u = u′, v = v′, w = w′ on z = 0. (3.3)

4. Solution of the Problem

Befitting the actual situation of the problem, we seek solutions of (2.12),

(2.13) and (2.14) valid for the medium M as [5]

(u, v,w) = {û(z), v̂(z), ŵ(z)} exp {iω(x − ct)} (4.1)

where û(z),v̂(z),ŵ(z) are functions of z only and 2π
ω

represents wave length

of the harmonic waves traveling forward with speed c.

Analogous solutions of (2.12a), (2.13a) and (2.14a) valid for the medium

M1 (−∞ < z ≤ 0) may be taken as

(

u′, v′, w′
)

=
{

û′(z), v̂′(z), ŵ′(z)
}

exp {iω(x − ct)} (4.2)

in which û′(z),v̂′(z),ŵ′(z) are functions of z only.

Substituting (4.1) into the equations (2.12) and (2.14), we arrive at the

following equations:

[

B1D
2+ω2

{(

ρ + ε0µ
2
0H

2
0

)

c2 −
(

A11+µ0H
2
0

)}]

û+iω
(

B2+µ0H
2
0

)

Dŵ=0

(4.3)

[(

A22+µ0H
2
0

)

D2+ω2
{(

ρ+ε0µ
2
0H

2
0

)

c2 − B1

}]

ŵ+iω
(

B2+µ0H
2
0

)

Dû=0

(4.4)

where D ≡ d
dz

.
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From equations (4.3) and (4.4) we get the following equations determin-

ing û or ŵ as
(

D2 + λ2
1ω

2
) (

D2 + λ2
2ω

2
)

(û, ŵ) = 0 (4.5)

where

λ2
1 + λ2

2 =

(

A22 + µ0H
2
0

) {(

ρ + ε0µ
2
0H

2
0

)

c2 −
(

A11 + µ0H
2
0

)}

+B1

{(

ρ + ε0µ
2
0H

2
0

)

c2 − B1

}

+
(

B2 + µ0H
2
0

)2

B1

(

A22 + µ0H
2
0

)

and

λ2
1λ

2
2 =

{(

ρ + ε0µ
2
0H

2
0

)

c2−B1

}{(

ρ+ε0µ
2
0H

2
0

)

c2−
(

A11+µ0H
2
0

)}

B1

(

A22 + µ0H
2
0

)











































(4.6)

Now u, v, w, describe surface waves and as such they must be vanishingly

small as z → ∞. Hence in view of the equations (4.5) we take exponential

solutions of (2.12) and (2.14) in the following forms:

u = A exp {iω (−λ1z + x − ct)} + B exp {iω (−λ2z + x − ct)}

w = A′ exp {iω (−λ1z + x − ct)} + B′ exp {iω (−λ2z + x − ct)}

}

(4.7)

where A, B, A′, B′ are constants.

Moreover, the solution of (2.13) may be expressed as

v = E exp {iω (−λ3z + x − ct)} (4.8)

in which E is a constant and

λ2
3 =

ρc2 − B1

B3
(4.9)

Using (4.7) in (2.12) and (2.14) and equating the coefficients of e−iωλ1z and

e−iωλ2z to zero we obtain

A′ = k1A, B′ = k2B (4.10)

where ki =
B1λ

2
i −

(

ρ + ε0µ
2
0H

2
0

)

c2 +
(

A11 + µ0H
2
0

)

λi

(

B2 + µ0H
2
0

) , i = 1, 2.

Finally the displacement components for the medium M may be ex-
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pressed as

u = A exp {iω (−λ1z + x − ct)} + B exp {iω (−λ2z + x − ct)}

v = E exp {iω (−λ3z + x − ct)}

w = k1A exp {iω (−λ1z + x − ct)} + k2B exp {iω (−λ2z + x − ct)}















(4.11)

Similarly, for the medium M1 we derive

u′ = C exp {iω (λ′

1z + x − ct)} + D exp {iω (λ′

2z + x − ct)}

v′ = E′ exp {iω (λ′

3z + x − ct)}

w′ = k′

1C exp {iω (λ′

1z + x − ct)} + k′

2D exp {iω (λ′

2z + x − ct)}















(4.12)

where C, D, E′ are constants,

k′

i =
B′

1λ
′2
i −

(

ρ′ + ε0µ
2
0H

2
0

)

c2 +
(

A′

11 + µ0H
2
0

)

λ′

i

(

B′

2 + µ0H
2
0

) , i = 1, 2.

and

λ′2
1 + λ′2

2 =

(

A′

22 + µ0H
2
0

) {(

ρ′ + ε0µ
2
0H

2
0

)

c2 −
(

A′

11 + µ0H
2
0

)}

+B′

1

{(

ρ′ + ε0µ
2
0H

2
0

)

c2 − B′

1

}

+
(

B′

2 + µ0H
2
0

)2

B′

1

(

A′

22 + µ0H
2
0

)

λ′2
1λ

′2
2 =

{(

ρ′ + ε0µ
2
0H

2
0

)

c2 − B′

1

}{(

ρ′ + ε0µ
2
0H

2
0

)

c2 −
(

A′

11 + µ0H
2
0

)}

B′

1

(

A′

22 + µ0H
2
0

)

(4.12a)

λ′2
3 =

ρ′c2 − B′

1

B′

3

(4.12b)

Applying boundary conditions, we get

A + B − C − D = 0 (4.13)

E = E′(4.14)

k1A + k2B − k′

1C − k′

2D = 0 (4.15)

B1 (λ1−k1) A + B1 (λ2−k2) B+B′

1

(

λ′

1+k′

1

)

C+B′

1

(

λ′

2+k′

2

)

D = 0 (4.16)

−B3λ3E = B′

3λ
′

3E
′ (4.17)

(B2 − B1 − A22λ1k1)A + (B2 − B1 − A22λ2k2) B

−
(

A′

22λ
′

1k
′

1 − B′

2 + B′

1

)

C +
(

A′

22λ
′

1k
′

1 − B′

2 + B′

1

)

D = 0 (4.18)
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From equations (4.14) and (4.17), it follows that

E = E′ = 0 (4.19)

Thus, the conditions in (4.19) imply that there is no propagation of the

transverse component of displacement.

Elimination of the indispensable constants A, B, C, D from (4.13),

(4.15), (4.16) and (4.18) gives the following determinantal equation

∣

∣

∣

∣

∣

∣

∣

1 1 −1 −1
k1 k2 −k′

1 −k′

2

B1 (λ1 − k1) B1 (λ2 − k2) B′

1 (λ′

1 + k′

1) B′

1 (λ′

2 + k′

2)
B2−B1−A22λ1k1 B2−B1−A22λ2k2 A′

22λ
′

1k
′

1−B′

2+B′

1 A′

22λ
′

2k
′

2−B′

2+B′

1

∣

∣

∣

∣

∣

∣

∣

= 0 (4.20)

The equation (4.20) gives the wave velocity c of the general surface waves

propagating along the common boundary of two fibre-reinforced electrically

conducting elastic solid media under the influence of magnetic field. Since

λ1,λ2,λ
′

1,λ
′

2,k1,k2,k
′

1,k
′

2 do not contain ω explicitly hence the wave velocity

c obtained from (4.20) can not directly depend on ω which indicates that

dispersion of the general wave form does not occur in the present case as we

have seen in the classical case also.

Hence, neither fibre reinforcing nor the presence of magnetic field causes

dispersion of general wave form.

5. Particular Cases

CaseI : Rayleigh wave: Rayleigh wave is a special case of the above

general surface wave. In this case we consider a model where the medium

M1 is replaced by vacuum. Since the boundary z = 0 is adjacent to vacuum,

it is free from surface traction. So the stress boundary condition in this case

may be expressed as [20]

σ13 = 0, σ33 = 0 on z = 0.
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Under such special circumstances, one obtains the following conditions from

(4.16) and (4.18)

(λ1 − k1) A + (λ2 − k2)B = 0

(B2 − B1 − A22λ1k1) A + (B2 − B1 − A22λ2k2)B = 0

Eliminating the constants A and B we get the wave velocity equation for

Rayleigh type of waves in the fibre-reinforced elastic medium under the in-

fluence of magnetic field as

∣

∣

∣

∣

∣

λ1 − k1 λ2 − k2

B2 − B1 − A22λ1k1 B2 − B1 − A22λ2k2

∣

∣

∣

∣

∣

= 0 (5.1)

For the sake of numerical calculation we take α + 2µL = 2µT , β = 0. Many

authors have made such type of assumption. Eringen [15] extended the

concept of Poisson material in the case of non-local elastic solid. Acharya

and Mandal [2] further extended the concept to non-local viscoelastic solid.

Nowacki [19] adopted the concept of β → ∞ in the problem of magnetoe-

lasticity where β denotes the conduction of electricity. For convenience, we

introduce the following

c2
A =

µ0H
2
0

ρ
, c2

0 =
1

ε0µ0
, c2

1 =
λ + 2µT

ρ
, c2

2 =
µL

ρ
, s =

c

c2

α0 = 1 +
c2
A

c2
2

×
c2
2

c2
0

, β0 =

1 +
c2
A

c2
2

×
c2
2

c2
0

1 +
c2
A

c2
2

×
c2
2

c2
1

, γ0 =
c2
2

c2
1

,

and hence the equation (5.1) transforms to

(

2 − α0s
2
) (

2 − β0s
2
)

= 4
(

1 − α0s
2
)

1

2

(

1 − β0γ0s
2
)

1

2 (5.2)

Case II: Love wave: Love wave is also a particular case of general surface

wave. For the existence of Love waves one has to consider a layered semi-

infinite medium in which the medium M1 is an infinitely extended horizontal

plate of finite thickness d and bounded by two horizontal plane surfaces z = 0

and z = −d. The medium M is semi-infinite as in the general case [fig.2].
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Figure 2. Geometry for the propagation of Love waves.

For the propagation of Love waves v is the only component of displace-

ment vector to play the role and the boundary conditions are

(i) v = v′, σ23 = σ′

23 at any point on z = 0,

(ii) σ′

23 = 0 at z = −d.

Since v′ satisfies the dynamical equation (2.13a) the solution valid for the

medium M1 of finite thickness d may be taken as

v′ = E′ exp
{

iω
(

λ′

3z + x − ct
)}

+ F ′ exp
{

iω
(

−λ′

3z + x − ct
)}

(5.3)

Since the medium M is a semi-infinite one, considering the regularity con-

ditions satisfied by v as z → ∞ the solution of (2.13) may be taken as

v = E exp {iω (−λ3z + x − ct)} (5.3a)

where λ3 and λ′

3 are given by (4.9) and (4.12b) respectively.

Employing the boundary conditions, we get

E − E′ − F ′ = 0,

−B3λ3E − B′

3λ
′

3E
′ − B′

3λ
′

3F
′ = 0,

E′ − e2iωλ3dF ′ = 0.











(5.4)

Eliminating E,E′,F ′ one obtains

∣

∣

∣

∣

∣

∣

∣

1 −1 −1

−B3λ3 −B′

3λ
′

3 B′

3λ
′

3

0 1 −e2iωλ3d

∣

∣

∣

∣

∣

∣

∣

= 0 (5.5)
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which on simplification yields

ωd =
1

{

c2
T ×

µ′

L

µ′

T

−
µ′

L

µ′

T

}
1

2

tan−1









µT

µ′

T







µL

µT
− c2

T ×
µ′

L/ρ′

µT /ρ

c2
T ×

µ′

L

µ′

T

−
µ′

L

µ′

T







1

2









(5.6)

in which cT = c
/√

µ′

L/ρ′.

The equation (5.6) gives the wave velocity of Love type of wave propa-

gating in a fibre-reinforced model (fig.2) in presence of an initial magnetic

field (0,H0, 0). It is interesting to note here that equation (5.6) is indepen-

dent of any constraint due to the presence of initial magnetic field. Hence,

the presence of the initial magnetic field can not modulate the Love wave

velocity under consideration.

Case III: Stoneley waves: It is also a surface wave and may be consid-

ered as the generalized form of Rayleigh waves propagating at the common

boundary of M and M1. Hence, the wave velocity equation (4.20) for gen-

eral surface waves may also be considered for the Stoneley waves in a fibre-

reinforced magneto elastic media along the common boundary. Since the

wave velocity equation (4.20) for Stoneley waves under the present circum-

stances does not contain ω explicitely, such types of waves are not dispersive

like the classical one.

Special case I: In the absence of magnetic field (H0 = 0) the wave velocity

equation (4.20) transforms to

∣

∣

∣

∣

∣

∣

∣

1 1 −1 −1
k4 k5 −k′

4 −k′

5

B1 (λ4 − k4) B1 (λ5 − k5) B′

1 (λ′

4 + k′

4) B′

1 (λ′

5 + k′

5)
B2−B1−A22λ4k4 B2−B1−A22λ5k5 A′

22λ
′

4k
′

4−B′

2+B′

1 A′

22λ
′

5k
′

5−B′

2+B′

1

∣

∣

∣

∣

∣

∣

∣

= 0 (5.7)

where λ4,λ5, λ′

4,λ
′

5, k4, k5, k′

4, k′

5 are given by the following

λ2
4 + λ2

5 =
A22(ρc2−A11)+B1(ρc2−B1)+B2

2

B1A22
, λ2

4λ
2
5 =

(ρc2−B1)(ρc2−A11)
B1A22

λ′2
4 + λ′2

5 =
A′

22(ρ′c2−A′

11)+B′

1(ρ′c2−B′

1)+B′2

2

B′

1
A′

22

, λ′2
4λ

′2
5 =

(ρ′c2−B′

1)(ρ′c2−A′

11)
B′

1
A′

22
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and

ki =
B1λ

2
i − ρc2 + A11

λiB2
, k′

i =
B′

1λ
′2
i − ρ′c2 + A′

11

λ′

iB
′

2

, i = 4, 5.

The equation (5.7) represents the wave velocity equation for Stoneley

waves propagated near the common boundary of two fibre-reinforced semi-

infinite media.

Special case II: Stoneley wave velocity equation for a magnetoelastic media

may be obtained from (4.20) (by taking µL = µT = µ, α = 0, β = 0 in which

λ and µ are Lame elastic constants) as

∣

∣

∣

∣

∣

∣

∣

1 1 −1 −1
k1 k2 −k′

1 −k′

2

B1 (λ1 − k1) B1 (λ2 − k2) B′

1 (λ′

1 + k′

1) B′

1 (λ′

2 + k′

2)
B2−B1−A22λ1k1 B2−B1−A22λ2k2 A′

22λ
′

1k
′

1−B′

2 + B′

1 A′

22λ
′

2k
′

2−B′

2 + B′

1

∣

∣

∣

∣

∣

∣

∣

= 0 (5.8)

where A11 = A22 = λ + 2µ, B1 = B3 = µ, B2 = λ + µ.

Putting H0 = 0 in (5.8), the classical Stoneley wave velocity equation

may be obtained easily.

6. Numerical Results and Physical Discussions

Rayleigh waves:

Using commercially available software MS Excel and MathCAD 12, the

values of Rayleigh wave velocity in non-dimensional form (c/c2) has been

calculated from (5.1) for different values of Alfven wave velocity parame-

ter (cA/c2), conductivity parameter (c2/c0) and reinforcement parameter

(c2/c1). The results have been depicted in graphs and are given in figure 3

and figure 4. Figure 3 gives the variation of Rayleigh wave velocity with re-

spect to the Alfven wave velocity parameter for different values of electrical

conductivity parameter
(

c2
c0

= 0, c2
c0

= 0.7, c2
c0

= 1, c2
c0

= 1.3
)

. The physical in-

terpretation which may be made from figure 3 is that as the Alfven wave

velocity increases phase velocity of Rayleigh wave decreases continuously in

magnitude. Such decrements become more and more significant as the elec-

trical conductivity increases. From the curve, corresponding to c2
c0

= 0 it is
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observed that in the absence of electrical conductivity variations of Rayleigh

wave velocity with respect to Alfven wave velocity is very small. For a

particular value of Alfven wave velocity parameter, Rayleigh wave velocity

decreases with the increase of electrical conductivity (c2/c0). Figure 4 gives

the velocity of Rayleigh waves verses Alfven wave velocity for different type

of fibre-reinforced material ( c2
c1

= 0.463, c2
c1

= 0.635, c2
c1

= 0.825) when the

electrical conductivity c2
c0

= 0.7. In this case, the physical interpretation is

that the phase velocity of Rayleigh wave decreases as the Alfven wave veloc-

ity increases. For a particular value of Alfven wave velocity, phase velocity

decreases as the fibre-reinforcement parameter c2
c1

increases. The above dis-

cussion expresses the physical fact, in general, that the magnetic field as well

as fibre-reinforcement which are generally neglected in corresponding classi-

cal problems, influences the propagation of Rayleigh waves to a considerable

extent.

Love waves:

The frequency equation (5.6) expresses the fact that the phase velocity

of Love wave depends upon frequency, densities of the media and fibre-

reinforcing material parameters. It is also observed from this equation that

the presence of initial magnetic field can not influence the propagation of

Love waves in a model consisting of a fibre-reinforced layer and another

Figure 3. Rayleigh wave velocity (c/c2) vs. Alfven velocity (cA/c2) for

different conductivity (c2/c0) when the reinforcement parameter c2/c1 =

0.463.
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Figure 4. Rayleigh wave velocity (c/c2) vs. Alfven velocity (cA/c2) for

different fibre-reinforced material(c2/c1) when conductivityc2/c0 = 0.7.

elastic half-space of different fibre-reinforced materials. For the purpose of

graphical representation, we take the values of material parameters and the

densities of the media as

µL = 5.66 × 109N/m2, µT = 2.46 × 109 N/m2, ρ = 7800 kg/m3

µ′

L = 2.45 × 109N/m2, µ′

T = 1.89 × 109 N/m2, ρ′ = 6500 kg/m3

Numerical values of c
q

µ′

L
/ρ′

have been calculated from (5.6) for different

values of ωd by using commercially available software MS Excel and Math-

CAD 12. It is interesting to note from figure 5 that Love wave velocity propa-

gated along the interface between two fibre-reinforced material media [fig.2],

rapidly drops down to 1.05(approx) from its highest value 1.4(approx) as ωd

increases from 0 to 3.5(approx). For values of ωd>3.5 the rate of decrement

of Love wave velocity is very small under the present situation. The physi-

cal fact which emerges out of the above analysis is that fibre-reinforcement

plays a vital role in the propagation of Love waves where as the presence

of magnetic field can not influence the same. Moreover the thickness of the

fibre-reinforced layer has a pronounced effect on the propagation of Love

waves.
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Figure 5. Love wave velocity c
/√

µ′

L/ρ′ vs. ωd.

8. Conclusions

In the light of the above analysis, following conclusions may be made.

1. Fibre reinforcing modulates Rayleigh wave velocity to a considerable

extent. Further modulation of wave velocity takes place due to the pres-

ence of initial magnetic field in a fibre-reinforced medium. Presence of

initial magnetic field (0,H0, 0) in a fibre reinforcing material can not

cause the dispersion of the general wave form for Rayleigh waves. Effect

of electrical conductivity plays a significant role.

2. Initial magnetic field (0,H0, 0) can not influence Love wave propagation.

Frequency (ω), thickness of the layer (d) and fibre reinforcing parameters

have a salient influence on the Love wave propagation.

3. Numerical discussion of Stoneley wave is not pursued in this paper due

to its complicated nature and cumbersome calculation. However from

the wave velocity equation (4.20) we may state that the combined effect

of initial magnetic field and fibre reinforcing has a significant role to play

on the propagation of Stoneley waves.

4. Results obtained in this paper may be considered as more general in the

sense that they include the combined effect of fibre reinforcing and initial

magnetic field.
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