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Abstract

The objective of this paper is to present an investigation on

the nonlinear stability and dynamics for solidification of a dilute

binary alloy that has been represented via well known Kuramoto-

Sivashinsky equation. The analysis has been carried out using

a semi-analytical method, called homotopy perturbation method

(HPM), which did not need small parameters. The perturbation

method depends on assumption of small parameter and the ob-

tained results, in most cases, end up with a non-physical result,

furthermore, the numerical method may leads to inaccurate re-

sults. Homotopy Perturbation Method (HPM) clearly overcame

the above shortcomings and furthermore it was very convenient

and effective method.

1. Introduction

In many driven nonequilibrium systems, primary instabilities generate

periodic patterns that become unstable to secondary instabilities which gen-

erate chaotic or disordered structures [1]. Spatiotemporal chaos is a complex

phenomenon that arises in many driven nonequilibrium systems such as di-

rectional solidification, parametrically driven surface waves, electro convec-
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tion and directional viscous fingering. These examples illustrate the ubiqui-

tous and diverse nature of spatiotemporal chaos [1].

A classic example of this problem is in directional solidification in which

a liquid-solid system is driven through a temperature gradient at constant

velocity such that the liquid is continuously converted to a solid. If solidi-

fication is accompanied by impurity rejection, the buildup of impurities at

the interface can lead to a primary instability known as the Mullins-Sekerka

instability. At small pulling velocities which tend to select a periodic cellu-

lar interface with characteristic wavelength [1]. This situation enables one

to derive an asymptotic nonlinear partial differential equation (PDE) of the

fourth-order which directly describes the dynamics of the onset and stabi-

lization of cellular structure as follows:

ut + uxxxx + αu + ((2 − u)ux)x = 0, t ∈ (0, T ) (1)

where α > 0 and T > 0.

This is called the Kuramoto-Sivashinsky equation, see [2, 3]. The

Kuramoto-Sivashinsky equation plays an important role as a low-dimensional

prototype for complicated fluid dynamics systems which have been studied

due to its chaotic pattern forming behavior and is one of the simplest one-

dimensional PDE’s which exhibits complex dynamical behavior [4]. As an

evolution equation, it arises in a number of applications including concen-

tration waves and plasma physics, flame propagation and reaction diffusion

combustion dynamics, free surface film-flows and two-phase flows in cylin-

drical or plane geometries [5].

This equation was introduced by Kuramoto (1976) in one-spatial dimen-

sion, for the study of phase turbulence in the Belousov- Zhabotinsky reaction.

Sivashinsky derived it independently in the context of small thermal dilutive

instabilities for laminar flame fronts. It and related equations have also been

used to model directional solidification and, in multiple spatial dimensions,

weak fluid turbulence [6].

The K-S equation is non-integrable, therefore the exact solution of this

equation is not obtainable and only three numerical schemes have been pro-

posed for the solutions of the Kuramoto-Sivashinsky equation, see [7, 8, 22].

The authors make their investigations on a finite interval X = [0, 1] and they
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add some initial and boundary conditions in order to obtain the approximate

numerical solutions.

Partial differential equations which arise in real-world physical prob-

lems are often too complicated to be solved exactly and even if an exact

solution is obtainable, the required calculations may be too complicated to

be practical, or difficult to interpret the outcome. Very recently, some prac-

tical approximate analytical solutions are proposed, such as Exp-function

method [9, 10], Adomian decomposition method [11, 12], variational iter-

ation method (VIM) [13, 14] and homotopy-perturbation method (HPM)

[15, 16]. Other methods are reviewed in Refs. [17, 18].

HPM is the most effective and convenient one for both linear and non-

linear equations and extremely accessible to non-mathematicians and engi-

neers. This method does not depend on a small parameter or linearization,

the solution procedure is very simple, and only few iterations lead to high

accurate solutions which are valid for the whole solution domain [19], and

can freely choose initial solutions [20]. Using homotopy technique in topol-

ogy, a homotopy is constructed with an embedding parameter p ∈ [0, 1],

which is considered as a “small parameter”. This method was successfully

applied to various engineering and physics problems [21, 22, 23]. This pa-

per is motivated to solve problem (1) by means of homotopy perturbation

method.

This paper is organized as follows: Fundamentals of the proposed method

are presented in Section 2. Following that, in Section 3, some illustrating

examples are given in order to assess the benefits of this method and the

results of HPM are portrayed graphically. The conclusions are then made in

the final Section.

2. Basic Idea of the HPM

To illustrate the basic ideas of this method, we consider the following

equation:

A(u) − f(r) = 0, r ∈ Ω, (2)
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with the boundary condition of:

B

(

u,
∂u

∂n

)

= 0, r ∈ Γ, (3)

where A is a general differential operator, B a boundary operator, f(r) a

known analytical function and Γ is the boundary of the domain Ω. A can

be divided into two parts which are L and N , where L is linear and N is

nonlinear. Eq. (3) can therefore be rewritten as follows:

L(u) + N(u) − f(r) = 0, r ∈ Ω. (4)

Homotopy perturbation structure is shown as follows:

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f(r)] = 0, (5)

where,

v(r, p) : Ω × [0, 1] → R. (6)

In Eq. (6), p ∈ [0, 1] is an embedding parameter and u0 is the first

approximation that satisfies the boundary condition. We can assume that

the solution of Eq. (6) can be written as a power series in p, as following:

v = v0 + pv1 + p2v2 + p3v3 + · · · (7)

and the best approximation for solution is:

u = lim
p→1

v = v0 + v1 + v2 + v3 + · · · (8)

3. The Illustrative Examples

Example 3.1. Consider the Sivashinsky equation

ut + uxxxx + αu + [(2 − u)ux]x = 0, t ∈ (0, T ). (9)

Subjected to the initial condition:

u(x, 0) = sech2

(1

4
x
)

, (10)
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with α = 0.5.

Substituting Eq. (7) into Eq. (5) and rearranging based on powers of

P -terms, we have the coefficient of P 0:

P 0 :
∂u0

∂t
= 0, (11)

with implementation of boundary condition and solution for u0 we have:

u0(x, t) = sech2

(

1

4
x

)

. (12)

The coefficient of P 1:

P 1 :

{

11

8
sech

(

1

4
x

)2

tanh

(

1

4
x

)2[1

4
−

1

4
tanh

(

1

4
x

)2]2

+sech

(

1

4
x

)2[1

4
−

1

4
tanh

(

1

4
x

)2]2

+ 0.5sech

(

1

4
x

)2

−0.25sech

(

1

4
x

)2

tanh

(

1

4
x

)2

+ 0.5sech

(

1

4
x

)2

tanh

(

1

4
x

)2

−sech

(

1

4
x

)2[1

4
−

1

4
tanh

(

1

4
x

)2]

−1.sech

(

1

4
x

)2
{

1

4
sech

(

1

4
x

)2

×tanh

(

1

4
x

)2

−
1

2
sech

(

1

4
x

)2[1

4
−

1

4
tanh

(

1

4
x

)2]
}

= 0, (13)

and solution for u1:

u1(x, t) = −
t
[

− 42cosh
(1

2
x
)

+ 81 + 17cosh(x)
]

4
[

cosh
(3

2
x
)

+ 6cosh(x) + 15cosh
(1

2
x
)

+ 10
]
, (14)

by considering coefficient of P 2 and solving for u2(x, t), we have:

u2(x, t) =
1

1024cosh
(1

4
x
)10

{

[

− 4287cosh
(1

4
x
)6

+ 14325cosh
(1

4
x
)2
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+578cosh
(1

4
x
)8

+ 9135

]

t2

}

. (15)

The final solution is:

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · ·

u(x, t) = sech
(1

4
x
)2

−
t
[

− 42cosh
(1

2
x
)

+ 81 + 17cosh(x)
]

4
[

cosh
(3

2
x
)

+ 6cosh(x) + 15cosh
(1

2
x
)

+ 10
]

+
1

1024cosh
(1

4
x
)10

{

[

− 4287cosh
(1

4
x
)6

+ 14325cosh
(1

4
x
)2

+578cosh
(1

4
x
)8

+ 9135

]

t2

}

+ · · · . (16)

Our approximate solution is given by:

uapp(x, t) =
2

∑

i=0

ui(x, t). (17)

The behavior of uapp(x, t) has been illustrated in Figure 1 and Figure 2 and

which are obviously accurate to those of [24].

It’s illustrated from Figure 1 and Figure 2 that the wave spreads sym-

metrically from the center of solidification. In fact, it’s a main property in

the nature of solidification and both Kuramoto-Sivashinsky equation that

was possible.

Example 3.2. Let us consider again the Sivashinsky equation

ut + uxxxx + αu + [(2 − 7)ux]x = 0, t ∈ (0, T ). (18)

Solution 1. We next consider the initial condition as follows:

u0(x, t) = cos
(1

2
x
)

(19)

and α = 0.5.
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Substituting Eq. (7) into Eq. (5) and rearranging based on powers of

p-terms, we have the coefficient of p0:

p0 :
∂u0

∂t
= 0. (20)

Similar to previous example with implementation of boundary condition and

solution for u0 we have:

u0(x, t) = cos
(1

2
x
)

. (21)

The coefficient of p1:

p1:
( ∂

∂t
u1(x, t)

)

−0.25 cos
(1

2
x
)2

+0.5625 cos
(1

2
x
)

+0.25 sin
(1

2
x
)2

=0. (22)

And solution for u1

u1(x, t) =
1

4
t cos(x) −

9

16
t cos

(1

2
x
)

. (23)

Figure 1. The graph of the approximate solution for Example 1.
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Figure 2. The graph of the approximate solution for Example 1 at t = 0 (red line)
and t = 0.5 (green line).

The coefficient of p2:

p2 :

(

∂

∂t
u2(x, t)

)

+ cos
(1

2
x
)

(

−
1

4
t cos(x) +

9

64
t cos

(1

2
x
)

)

− sin
(1

2
x
)

(

−
1

4
t sin(x) +

9

32
t sin

(1

2
x
)

)

+ 0.375t cos(x)

−0.3164t cos
(1

2
x
)

−0.25

(

1

4
t cos(x)−

9

16
t cos

(1

2
x
)

)

cos
(1

2
x
)

=0 (24)

and solution for u2:

u2(x, t) =
89

512
t2 cos

(1

2
x
)

+
9

64
t2 cos

(3

2
x
)

−
21

64
t2 cos(x). (25)

The final solution is:

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · ·

u(x, t) = cos
(1

2
x
)

+
1

4
t cos(x) −

9

16
t cos

(1

2
x
)

+
89

512
t2 cos

(1

2
x
)

+
9

64
t2 cos

(3

2
x
)

−
21

64
t2 cos(x) + · · · . (26)

The numerical results for the approximate solution of Example 2 by using

HPM according to Eq. (17) are portrayed in Figure 3 and Figure 4. These

figures well agree to those of [24].
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Figure 3. The graph of the approximate solution for Example 2.

Figure 4. The graph of the approximate Solution 1 for Example 2 at t = 0 (red
line) and t = 0.5 (green line).

As illustrated in Figure 3 and Figure 4 the qualitative behavior of the

KS equation is quite simple. Cellular structures are generated due to the

linear instability. These cells then interact chaotically with each other via the

nonlinear spatial coupling to form the spatiotemporal chaos (STC) steady

state [25].

Solution 2. As mentioned, the advantage of the homotopy perturbation

method is that it can freely choose initial solutions, therefore this selection

is efficacious on the length of calculation.



50 M. KAZEMINIA, S. A. ZAHEDI AND N. TOLOU [March

Here, the initial condition is assumed with unknown parameter:

u0(x, t) = cos(0.5x + bt). (27)

Where b is the unknown parameter and the cosine form is due to the

symmetric shape of physical properties in solidification.

According to the initial guess and Eq. (18), a homotopy should be con-

structed:

ut(x, t) + 0.5u(x, t) − u0t
(x, t) − 0.5u0(x, t) − p⌊u0t

(x, t) + 0.5u0(x, t)⌋

+p{uxxxx(x, t) + [(2 − u(x, t))x]x} = 0. (28)

Where p ∈ [0, 1] is embedding parameter and it is obvious that when

p = 0, Eq. (28) becomes a linear equation and; when p = 1 it becomes the

original nonlinear one.

Using p as an expanding parameter as that one in classic perturbation

method, we have:

u0t
(x, t) + u0(x, t) + b sin(0.5x + bt) − cos(0.5x + bt) = 0 (29)

u1t
(x, t) + u1(x, t) − b sin(0.5x + bt) + cos(0.5x + bt) + u0xxxx

(x, t)

+u0x
(x, t)2 + 2u0xx

(x, t) − u0(x, t)u0xx
(x, t) = 0. (30)

Generally, we need few items only. Setting p = 1, we obtain the first order

approximate solution which reads:

u(x, t) = u0(x, t) + u1(x, t)

= cos(0.5x + bt) −
1

32

1

1 + 5b2 + 4b4

{

e−1

[

cos(x) + cos(x)b2

+2 sin(x)b + 2 sin(x)b3 − 104b2 cos
(1

2
x
)

− 128b2 cos
(1

2
x
)

+14b sin
(1

2
x
)

+ 56b3 sin
(1

2
x
)

− 18 cos
(1

2
x
)

− 1 − 5b2 − 4b2

+8b cos(x) + 8b3 cos(x) − 4b2 sin(x)

]

}

+
1

32

{

cos(x + 2bt)

+b2 cos(x + 2bt) + 2b sin(x + 2bt) + 2b3 sin(x + 2bt)

−104b2 cos(0.5x + bt) − 128b4 cos(0.5x + bt) + 14b sin(0.5x + bt)
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Figure 5. The graph of the approximate Solution 2 for Example 2 at t = 0 (red
line) and t = 0.5 (green line) with b = 0.25.

+56b3 sin(0.5x + bt) − 18 cos(0.5x + bt) − 1 − 5b2 − 4b4

+8b cos(x + 2bt) + 8b3 cos(x + 2bt) − 4b2 sin(x + 2bt)

}

/

(1+5b2+4b4) (31)

There are many approaches to identification of the unknown parameter

in the obtained solution. We suggest hereby the method of the weighted

residuals, spatially the last squares method:

∫

1

0

R
∂R

∂b
dt = 0. (32)

Where R is the residual R(u(x, t)) = Lu + Nu.

As illustrated in Figure (5) and comparison with Figure (4), the initial

solution can have intensive affection on the convergence of the process.

4. Conclusions

In this paper, our objective has been the investigation of nonlinear be-

havior of a prototypical partial-integral differential equation arising in fluid

dynamics called Kuramoto-Sivashinsky equation using an effective and con-

venient method, called Homotopy perturbation method (HPM). We consider

its special implementation in solidification of binary dilute alloy. The results

obviously illustrate the axisymmetric behavior of this phenomenon that was

predictable from the nature of spatiotemporal chaos of solidification.
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Besides, this survey clearly demonstrated the capability of HPM to solve

a large class of differential equations with rapid convergence. HPM is very

intelligible, because it reduces the size of calculations. An interesting point

about HPM is that with the fewest number of iterations or even in some

cases, once, it can converge to correct results. The homotopy perturbation

method, which has been used to solve the differential equations, seems to be

very straightforward and accurate to approach reliable results. The obtained

approximate results are only from three terms of evaluation which they are

in perfect agreement with the Ref. [24].
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