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EIGENVALUE INTERVALS FOR TWO-POINT

GENERAL THIRD ORDER DIFFERENTIAL EQUATION
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K. R. PRASAD, A. KAMESWARA RAO AND P. MURALI

Abstract

Values of the parameter λ are determined for which there

exist positive solutions to the third order eigenvalue problem sat-

isfying general two-point boundary conditions. We establish the

results by applying cone theory and the Krasnosel’skii fixed point

theorem.

1. Introduction

We are concerned with determining eigenvalues, λ, for which there exist

positive solutions with respect to the cone, of the general nonlinear two-point

boundary value problem

y′′′(t) + λf(t, y, y′, y′′) = 0, t ∈ [a, b], (1.1)

α11y(a) + α12y(b) = 0

α21y
′(a) + α22y

′(b) = 0 (1.2)

α31y
′′(a) + α32y

′′(b) = 0

where the coefficients α11, α12, α21, α22, α31, α32 are real constants. The

BVPs of this form arise in the modeling of nonlinear diffusions generated

by nonlinear sources, in thermal ignition of gases, and in concentration in
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chemical or biological problems. In these applied settings, only positive

solutions are meaningful.

The study of determining the values of the parameter, λ, for which there

exist positive solutions was first employed by Erbe and Wang [7] when they

worked to establish the existence of positive solutions in a cone for bound-

ary value problems (BVPs) for second order ordinary differential equations.

Continuing in a similar manner, Erbe, Hu and Wang [6] along with Eloe

and Henderson [4], Henderson and Wang [5] obtained further results. In ad-

dition, the work done by Erbe and Wang [7], the extensions can be viewed

in the following studies [2, 3, 10, 12, 15]. Sun and Wen [16] extended the

results to third order eigenvalue problem,

u′′′(t) = λa(t)f(u(t)), 0 < t < 1

subject to the two-point boundary conditions

αu′(0) − βu′′(0) = 0,

u(1) = u′(1) = 0

and establish multiple positive solutions by utilizing Krasnosel’skii fixed

point theorem. We extend these results to general two-point boundary value

problems in the interval [a, b], where b > a ≥ 0, and also involving the deriva-

tives of y in f . Some of the previous results will be subcases of our problem.

We use the following notation for simplicity,

γi = αi1 + αi2, i = 1, 2, 3 and βi = aαi1 + bαi2, i = 1, 2.

Throughout this paper we assume the following:

(A1) f : [a, b]×R
+3

→ R
+ is continuous, where R

+ is the set of nonnegative

real numbers.

(A2) α11 >0, α12 <0, α21 >0, α22 <0, α31 <0, α32 >0, γ1 >0, γ2 >0,

γ3 >0.

(A3) β2

γ2
− α22γ3

α32γ2
(b − a) ≤ a and β2

γ2
+ α21γ3

α31γ2
(b − a) ≤ a.

(A4) −α11

2γ1
+ α21

γ2
− α31

2γ3
< 0, α12

2γ1
− α22

γ2
+ α32

2γ3
< 0.
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We define the nonnegative extended real numbers f0, f
0, f∞ and f∞ by

f0 = lim
(y,y′,y′′)→(0+,0+,0+)

min
t∈[a,b]

f(t, y, y′, y′′)

y
,

f0 = lim
(y,y′,y′′)→(0+,0+,0+)

max
t∈[a,b]

f(t, y, y′, y′′)

y
,

f∞ = lim
(y,y′,y′′)→(∞,∞,∞)

min
t∈[a,b]

f(t, y, y′, y′′)

y
,

f∞ = lim
(y,y′,y′′)→(∞,∞,∞)

max
t∈[a,b]

f(t, y, y′, y′′)

y
,

and assume that they will exist.

The rest of the paper is organized as follows. In Section 2, as a funda-

mental importance, we estimate the bounds for the Green’s function. In Sec-

tion 3, we present some fundamental lemmas which are needed in the main

result as well as establish the existence of eigenvalue intervals for which the

two point BVP (1.1)−(1.2) has a positive solution, by using Krasnosel’skii

fixed point Theorem. Finally, we give an example to demonstrate our result

as an application.

2. Green’s Function and Bounds

In this section, we estimate the bounds of the Green’s function for the

homogeneous two-point BVP corresponding to (1.1)−(1.2).

The Green’s function for the homogeneous problem −y′′′ = 0, satisfying

the boundary conditions (1.2) can be constructed after computation and is

given by

G(t, s)

=











α12γ2γ3(b−s)2+2α22γ3(−β1+tγ1)(b−s)+α32(A−2tγ1β2+t2γ1γ2)
2γ1γ2γ3

a≤t≤s≤b

−α11γ2γ3(s−a)2+2α21γ3(−β1+tγ1)(s−a)−α31(A−2tγ1β2+t2γ1γ2)
2γ1γ2γ3

a≤s≤t≤b.

(2.1)

where A = 2β1β2 − γ2(a
2α11 + b2α12). We now state two Lemmas for mini-

mum and maximum values of Green’s function.
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Lemma 2.1. For t < s, G(t, s) attains minimum value at

t =
α12α32γ2β2 − bα12α22γ2γ3 − α2

22γ3β1 + bα12α22γ2γ3

α12α32γ
2
2 − α2

22γ1γ3
, and

s =
α22α32γ1β2 − bα2

22γ1γ3 − α22α32γ2β1 + bα12α32γ
2
2

α12α32γ
2
2 − α2

22γ1γ3
.

And also, for s < t, G(t, s) attains minimum value at

t =
α11α31γ2β2 − aα11α21γ2γ3 − α2

21γ3β1 + aα11α21γ2γ3

α11α31γ
2
2 − α2

21γ1γ3
, and

s =
α21α31γ1β2 − aα2

21γ1γ3 − α21α31γ2β1 + aα11α31γ
2
2

α11α31γ
2
2 − α2

21γ1γ3
.

Lemma 2.2. Assume that the condition (A4) holds, then G(s, s) has a

maximum value at

s =
bα12γ2γ3 − bα22γ1γ3 − α22γ3β1 + α32γ1β2

α12γ2γ3 − 2α22γ1γ3 + α32γ1γ2
.

Theorem 2.1. Let G(t, s) be the Green’s function for the homogeneous

BVP corresponding to (1.1)−(1.2), then

mG(s, s) ≤ G(t, s) ≤ G(s, s), for all (t, s) ∈ [a, b] × [a, b] (2.2)

where 0 < m = min{m1,m2} ≤ 1.

Proof. The Green’s function G(t, s) for the homogeneous problem of

the BVP (1.1)−(1.2) is given in (2.1). Clearly

G(t, s) > 0 on [a, b] × [a, b]. (2.3)

First we establish the right side inequality by assuming the conditions given

by (A2)−(A3). For t < s,

G(t, s) ≤
α12

2γ1
(b − s)2 +

α22

γ2

(

−β1

γ1
+ s

)

(b − s) +
α32

2γ3

(

A

γ1γ2
− 2s

β2

γ2
+ s2

)

= G(s, s),
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and for s < t,

G(t, s) ≤ −
α11

2γ1
(s−a)2 +

α21

γ2

(

−β1

γ1
+ s

)

(s−a)−
α31

2γ3

(

A

γ1γ2
−2s

β2

γ2
+ s2

)

= G(s, s).

Thus we have established the right hand side inequality of (2.2). By assum-

ing the conditions given by (A2)−(A4), we establish the other inequality.

For t < s, from Lemma 2.1 and Lemma 2.2, we have

G(t, s)

G(s, s)
≥

min G(t, s)

maxG(s, s)
= m1

and for s < t, we have

G(t, s)

G(s, s)
≥

min G(t, s)

maxG(s, s)
= m2.

Therefore,

mG(s, s) ≤ G(t, s), for all (t, s) ∈ [a, b] × [a, b],

where 0 < m = min{m1,m2} ≤ 1. �

3. Existence of Positive Solutions

In this section, first we prove some fundamental lemmas which are

needed in main result and then, establish a criteria to determine the value

of λ for the existence of at least one positive solution of the BVP given by

(1.1)−(1.2).

Let y(t) be the solution of a two-point BVP (1.1)−(1.2), and is given by

y(t) = λ

∫ b

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds, for all t ∈ [a, b]. (3.1)

Define

X =
{

u | u ∈ C3[a, b]
}

,
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with

‖ u ‖= max
t∈[a,b]

| u(t) | .

Now (X, ‖ . ‖) is a Banach space. Define a set κ by

κ =

{

u ∈ X : u(t) ≥ 0 on [a, b] and min
t∈[a,b]

u(t) ≥ m ‖ u ‖

}

. (3.2)

Definition 3.1. Let X be a Banach space. A nonempty closed convex set

κ is called cone of X, if it satisfies the following conditions:

(1) α1u + α2v ∈ κ for all u, v ∈ κ and α1, α2 ≥ 0;

(2) If u ∈ κ and −u ∈ κ, then u = 0.

Definition 3.2. Let X and Y be Banach spaces and T : X → Y . T is

said to be completely continuous, if T is continuous, and for each bounded

sequence {xn} ⊂ X, {Txn} has a convergent subsequence.

Lemma 3.1. κ is a cone in X, where κ is defined by the equation (3.2).

Proof. Let {un} ∈ κ be such that ‖ un − u0 ‖→ 0 as n → ∞, where

u0 ∈ X. Then un(t) ≥ 0 on [a, b], and min{un(t)} ≥ m ‖ un ‖, for all

n. Thus, given ǫ > 0, there exists N ∈ N such that −ǫ < un(t) − u0(t) <

ǫ, t ∈ [a, b], n ≥ N and so 0 ≤ un(t) ≤ u0(t) + ǫ, t ∈ [a, b], n ≥ N .

Hence u0(t) ≥ 0 on [a, b], then limn→∞ min{un(t)} ≥ m limn→∞ ‖ un ‖ and

minu0(t) ≥ m ‖ u0 ‖, t ∈ [a, b], implies u0 ∈ κ and κ is closed.

Now let u, v ∈ κ and α1, α2 ≥ 0. Then α1u(t) + α2v(t) ≥ 0, t ∈ [a, b],

and

min{α1u(t) + α2v(t)} ≥ α1 min{u(t)} + α2 min{v(t)}

≥ α1m ‖ u ‖ +α2m ‖ v ‖

≥ m ‖ α1u + α2v ‖ .

Therefore, α1u + α2v ∈ κ. Finally, if u ∈ κ and −u ∈ κ then u(t) = 0 for all

t ∈ [a, b]. Hence the proof. �

Define the operator T : κ → X by

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds, for all t ∈ [a, b]. (3.3)
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If y ∈ κ is a fixed point of T , then y satisfies (3.1) and hence y is a positive

solution of the BVP (1.1)−(1.2). We seek the fixed point of the operator T

in the cone κ.

Lemma 3.2. The operator T is defined in (3.3) is self map on κ.

Proof. Let y ∈ κ. From (2.3), we have (Ty)(t) ≥ 0 for all t ∈ [a, b].

Then

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds

≥ λ

∫ b

a

mG(s, s)f(s, y(s), y′(s), y′′(s))ds

≥ λm

∫ b

a

max
t∈[a,b]

G(t, s)f(s, y(s), y′(s), y′′(s))ds

≥ m max
t∈[a,b]

λ

∫ b

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds

= m ‖ Ty ‖ .

Therefore,

min
t∈[a,b]

(Ty)(t) ≥ m ‖ Ty ‖ .

Hence the proof. �

Lemma 3.3. The operator T is completely continuous, where T is

defined in (3.3).

Proof. Let y ∈ κ and ǫ > 0 be given. By the continuity of f , there

exists δ > 0 such that

| f(t, y, y′, y′′) − f(t, w,w′, w′′) |< ǫ,

whenever | y − w |< δ, | y′ − w′ |< δ, and | y′′ − w′′ |< δ.

| (Ty)(t) − (Tw)(t) | = λ

∫ b

a

G(t, s) | f(s, y, y′, y′′) − f(s,w,w′, w′′) | ds

≤ ǫλ

∫ b

a

G(t, s)ds, t ∈ [a, b].
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Thus,

‖ (Ty)(t) − (Tw)(t) ‖≤ ǫλ

∫ b

a

G(t, s)ds

and T is continuous. Now, let {yn} be a bounded sequence in κ. Since f is

continuous, there exists N > 0, such that | f(t, y(t), y′(t), y′′(t)) |≤ N for all

y with 0 ≤ y < ∞ then, for each t ∈ [a, b] and for each n,

| (Tyn)(t) | =| λ

∫ b

a

G(t, s)f(s, yn, y′n, y′′n)ds |

≤ λ

∫ b

a

| G(s, s) || f(s, yn, y′n, y′′n) | ds

≤ Nλ

∫ b

a

G(s, s)ds

By choosing successive subsequences, there exists a subsequence {Tynj
}

which converges uniformly on [a, b]. Hence T is completely continuous. �

Theorem 3.1. (Krasnosel’skii) [13] Let X be a Banach space, K ⊆

X be a cone, and suppose that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1

and Ω1 ⊂ Ω2. Suppose further that T : K ∩ (Ω2\Ω1) → K is completely

continuous operator such that either

(i) ‖ Tu ‖≤‖ u ‖, u ∈ K ∩ ∂Ω1 and ‖ Tu ‖≥‖ u ‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖ Tu ‖≥‖ u ‖, u ∈ K ∩ ∂Ω1 and ‖ Tu ‖≤‖ u ‖, u ∈ K ∩ ∂Ω2

holds. Then T has a fixed point in K ∩ (Ω2\Ω1).

Theorem 3.2. Assuming the conditions (A1)−(A4) hold and if

1

[m2
∫ b

a
G(s, s)ds]f∞

< λ <
1

[
∫ b

a
G(s, s)ds]f0

, (3.4)

then the two-point BVP (1.1)−(1.2) has at least one positive solution in κ.

Proof. Let λ be given as in (3.4) and let ǫ > 0 be such that

1

[m2
∫ b

a
G(s, s)ds](f∞ − ǫ)

≤ λ ≤
1

[
∫ b

a
G(s, s)ds](f0 + ǫ)

.

Let T be the cone preserving, completely continuous operator defined as in



2010] EIGENVALUE INTERVALS FOR TWO-POINT BVPS 63

(3.3). By the definition of f0, there exists H1
i > 0 such that

max
t∈[a,b]

f(t, y, y′, y′′)

y
≤ (f0 + ǫ), for 0 < y(i) ≤ H1

i , i = 0, 1, 2.

Let H1 = min{H1
i : i = 0, 1, 2}. It follows that

f(t, y, y′, y′′) ≤ (f0 + ǫ)y, for 0 < y(i) ≤ H1, i = 0, 1, 2.

Let us choose y ∈ κ with ‖ y ‖= H1. Then, from (2.2),

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y, y′, y′′)ds

≤ λ

∫ b

a

G(s, s)f(s, y, y′, y′′)ds

≤ λ

∫ b

a

G(s, s)(f0 + ǫ)y(s)ds

≤ λ

∫ b

a

G(s, s)(f0 + ǫ) ‖ y ‖ ds

≤‖ y ‖, t ∈ [a, b].

Therefore, ‖ Ty ‖≤‖ y ‖. Hence, if we set

Ω1 = {u ∈ X :‖ u ‖< H1},

then

‖ Ty ‖≤‖ y ‖, for y ∈ κ ∩ ∂Ω1. (3.5)

By the definition of f∞, there exists H
2
i > 0 such that

min
t∈[a,b]

f(t, y, y′, y′′)

y
≥ (f∞ − ǫ), for y(i) ≥ H

2
i , i = 0, 1, 2.

Let H
2

= max{H
2
i : i = 0, 1, 2}. It follows that

f(t, y, y′, y′′) ≥ (f∞ − ǫ)y, for y(i) ≥ H
2
, i = 0, 1, 2.

Let

H2 = max

{

2H1,
1

m
H

2
}

,
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and define

Ω2 = {u ∈ X :‖ u ‖< H2}.

If y ∈ κ ∩ ∂Ω2, so that ‖ y ‖= H2, then

min
t∈[a,b]

y(t) ≥ m ‖ y ‖≥ H
2
.

Consider,

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y, y′, y′′)ds

≥ λ

∫ b

a

mG(s, s)f(s, y, y′, y′′)ds

≥ mλ

∫ b

a

G(s, s)(f∞ − ǫ)y(s)ds

≥ m2λ

∫ b

a

G(s, s)(f∞ − ǫ) ‖ y ‖ ds

≥‖ y ‖ .

Thus, ‖ Ty ‖≥‖ y ‖, and so

‖ Ty ‖≥‖ y ‖, for y ∈ κ ∩ ∂Ω2. (3.6)

An application of Theorem (3.1) to (3.5) and (3.6) yields a fixed point of

T that lies in κ ∩ (Ω2\Ω1). This fixed point is the positive solution of the

two-point BVP (1.1)−(1.2). �

Theorem 3.3. Assuming the conditions (A1)−(A4) hold and if

1

[m2
∫ b

a
G(s, s)ds]f0

< λ <
1

[
∫ b

a
G(s, s)ds]f∞

, (3.7)

then the two-point BVP (1.1)−(1.2) has at least one positive solution in κ.

Proof. Let λ be given as in (3.7) and let ǫ > 0 be such that

1

[m2
∫ b

a
G(s, s)ds](f0 − ǫ)

≤ λ ≤
1

[
∫ b

a
G(s, s)ds](f∞ + ǫ)

.

Let T be the cone preserving, completely continuous operator defined as in
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(3.3). By the definition of f0, there exists J1
i > 0 such that

min
t∈[a,b]

f(t, y, y′, y′′)

y
≥ f0 − ǫ, for 0 < y(i) ≤ J1

i , i = 0, 1, 2.

Let J1 = min{J1
i : i = 0, 1, 2}. It follows that

f(t, y, y′, y′′) ≥ (f0 − ǫ)y, for 0 < y(i) ≤ J1, i = 0, 1, 2.

In this case, define Ω1 = {u ∈ X :‖ u ‖< J1}. Then, for y ∈ κ∩∂Ω1, we have

f(s, y, y′, y′′) ≥ (f0−ǫ)y, s ∈ [a, b], and moreover, y(t) ≥ m ‖ y ‖, t ∈ [a, b],

and we have

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y, y′, y′′)ds

≥ λ

∫ b

a

mG(s, s)f(s, y, y′, y′′)ds

≥ mλ

∫ b

a

G(s, s)(f0 − ǫ)y(s)ds

≥ m2λ

∫ b

a

G(s, s)(f0 − ǫ) ‖ y ‖ ds

≥‖ y ‖ .

Thus, ‖ Ty ‖≥‖ y ‖, and so

‖ Ty ‖≥‖ y ‖, for y ∈ κ ∩ ∂Ω1. (3.8)

It remains for us to consider f∞. By the definition of f∞, there exists J
2
i > 0

such that

max
t∈[a,b]

f(t, y, y′, y′′)

y
≤ (f∞ + ǫ), for y(i) ≥ J

2
i , i = 0, 1, 2.

Let J
2

= max{J
2
i : i = 0, 1, 2}. It follows that

f(t, y, y′, y′′) ≤ (f∞ + ǫ)y, for y(i) ≥ J
2
, i = 0, 1, 2.

There are two cases.

Case(i). f is bounded. Suppose L > 0 is such that maxt∈[a,b] f(t, y, y′, y′′) ≤
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L, for all 0 < y < ∞, 0 < y′ < ∞, 0 < y′′ < ∞. Let

J2 = max

{

2J1, Lλ

∫ b

a

G(s, s)ds

}

,

and let

Ω2 = {u ∈ X :‖ u ‖< J2}.

Then, for y ∈ κ ∩ ∂Ω2, we have

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y, y′, y′′)ds

≤ λ

∫ b

a

G(s, s)f(s, y, y′, y′′)ds

≤ λL

∫ b

a

G(s, s)ds

≤‖ y ‖, t ∈ [a, b].

and so

‖ Ty ‖≤‖ y ‖, for y ∈ κ ∩ ∂Ω2. (3.9)

Case(ii). f is unbounded. Let J2
i >max{2J1

i , J
2
i } be such that f(t, u, u′, u′′)

≤ f(t, J2
0 , J2

1 , J2
2 ), for 0 < u(i) ≤ J2

i , i = 0, 1, 2. Let J2 = max{J2
i : i =

0, 1, 2}, and let

Ω2 = {u ∈ X :‖ u ‖< J2}.

Choosing y ∈ κ ∩ ∂Ω2,

(Ty)(t) = λ

∫ b

a

G(t, s)f(s, y, y′, y′′)ds

≤ λ

∫ b

a

G(s, s)f(s, y, y′, y′′)ds

≤ λ

∫ b

a

G(s, s)f(s, J2
0 , J2

1 , J2
2 )ds

≤ λ

∫ b

a

G(s, s)(f∞ + ǫ)y(s)ds

≤ λ

∫ b

a

G(s, s)(f∞ + ǫ) ‖ y ‖ ds
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≤ ‖ y ‖, t ∈ [a, b].

And so

‖ Ty ‖≤‖ y ‖, for y ∈ κ ∩ ∂Ω2. (3.10)

An application of Theorem (3.1) to (3.8), (3.9) and (3.10) yields a fixed point

of T that lies in κ∩ (Ω2\Ω1). This fixed point is the positive solution of the

two-point BVP (1.1)−(1.2). �

4. Example

Now, we give an example to illustrate the above results. Consider the

following two-point eigenvalue problem

y′′′ + λy(20 − 19.5e−7y)(25 − 24e−5y′

)(72 − 71e−3y′′

) = 0, t ∈ [0, 1] (4.1)

with the boundary conditions

5y(0) −
9

2
y(1) = 0

3y′(0) − 2y′(1) = 0

y′′(0) − 2y′′(1) = 0.

(4.2)

We found that m = 0.1757, f∞ = 18000, and f0 = 1. Employing Theorem

3.2, we get the optimal eigenvalue interval 0.0000493 < λ < 0.02739, for

which (4.1)−(4.2) has a positive solution.
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