SOME THEOREMS ON WEIGHTED
 MEAN SUMMABILITY

BY

MEHMET A. SARIGÖL

Abstract

In this paper we have proved some theorems on weighted mean summability method by using analytical and summability techniques, which also extends the well known result of Hardy on the Cesàro summability.

1. Introduction

Let $\sum x_{v}$ be a given infinite series of complex number with $s=\left(s_{n}\right)$ as the sequence its n-th partial sum and let $\left(p_{n}\right)$ be a sequence of positive numbers where for $n=0,1,2, \ldots$.

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty, \quad P_{-1}=p_{-1}=0
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

defines the sequence $\left(T_{n}\right)$ of $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ [2]. The series $\sum x_{k}$ is said to be summable $\left(\bar{N}, p_{n}\right)$ to a number λ if

$$
T_{n} \rightarrow \lambda \text { as } n \rightarrow \infty
$$

Received December 9, 2008 and in revised form January 6, 2009.
AMS Subject Classification: 40D25, 40G15, 40 G 99.
Key words and phrases: Cesàro, weighted mean, summability field.

It is well known that $\left(\bar{N}, p_{n}\right)$ summability method is regular if and only if $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$. In the special case where $p_{v}=1$ for $v=0,1,2, \ldots$, it reduces to the Cesàro summability $(C, 1)$.

In 1] Hardy proved the following theorem on Cesàro summability.
Theorem 1.1. The series $\sum x_{v}$ is summable $(C, 1)$ to a finite number λ if and only if $\sum b_{n}$ converges to λ, where

$$
b_{n}=\sum_{v=n}^{\infty} \frac{x_{v}}{v+1}, \quad n=0,1, \ldots
$$

We need the following lemma to prove the main theorems.
Lemma 1.2. An infinite matrix $B=\left(b_{n v}\right)$ regular if and only if (see [2])
(a) $\sup _{n} \sum_{v=0}^{\infty}\left|b_{n v}\right|<\infty$,
(b) $\lim _{n} b_{n v}=0(v=0,1, \ldots)$,
(c) $\lim _{n} \sum_{v=0}^{\infty} b_{n v}=1$.

2. The Main Results

In this section we have proved the following theorems on weighted mean summability method using analytical and summability techniques, which also extend the well known result of Hardy on the Cesàro summability.

Theorem 2.1. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be two sequences of positive numbers satisfying the following conditions:

$$
\begin{equation*}
P_{n} \rightarrow \infty, \quad Q_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Then the series $\sum x_{v}$ is summable $\left(\bar{N}, p_{n}\right)$ to λ whenever $\sum b_{n}$ converges to a finite number λ if and only if

$$
\begin{equation*}
\sum_{v=1}^{n}\left|\frac{p_{v} Q_{v+1}}{q_{v+1}}-\frac{p_{v-1} Q_{v-1}}{q_{v}}\right|=O\left(P_{n}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n}=q_{n} \sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

Theorem 2.2. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be two sequences of positive numbers satisfying the following conditions:

$$
\begin{equation*}
\text { (a) } P_{n}=\left(p_{n} Q_{n}\right) \text { and (b) } P_{n} \rightarrow \infty, \quad Q_{n} \rightarrow \infty \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Then the series $\sum b_{n}$ converges to λ whenever the series $\sum x_{v}$ is summable $\left(\bar{N}, p_{n}\right)$ to a finite number λ if and only if

$$
\begin{equation*}
\sum_{v=n}^{\infty} \frac{P_{v}}{Q_{v+1}}\left|\frac{q_{v+1}}{p_{v} Q_{v}}-\frac{q_{v+2}}{p_{v+1} Q_{v+2}}\right|=O\left(1 / Q_{n}\right) \tag{6}
\end{equation*}
$$

where b_{n} is defined by (4).
It is noticed that, if take $p_{n}=q_{n}=1$ for $v=0,1, \ldots$ in Theorem 2.1 and Theorem 2.2, then we obtain Theorem 1.1.

Proof of Theorem 2.1. Let $B_{n}=\sum_{v=0}^{n} b_{v} \rightarrow \lambda$. It follows from (4) that

$$
x_{n}=Q_{n}\left(\frac{b_{n}}{q_{n}}-\frac{b_{n+1}}{q_{n+1}}\right), n=0,1, \ldots \text { and } \frac{b_{n}}{q_{n}}=\sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}}
$$

and so

$$
s_{m}=\sum_{v=0}^{m} Q_{v}\left(\frac{b_{v}}{q_{v}}-\frac{b_{v+1}}{q_{v+1}}\right)=B_{m}-Q_{m} \frac{b_{m+1}}{q_{m+1}}
$$

Since the series $\sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}}$ is convergent, we have $\frac{b_{n}}{q_{n}}=\sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}} \rightarrow 0$ as $n \rightarrow \infty$, which implies

$$
\frac{s_{m}}{Q_{m}}=\frac{B_{m}}{Q_{m}}-\frac{b_{m+1}}{q_{m+1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

by virtue of (21). Hence, for $n \geq 0$,

$$
b_{n}=q_{n} \sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}}=\lim _{m} q_{n} \sum_{v=n}^{m} \frac{s_{v}-s_{n-1}}{Q_{v}}, \quad\left(s_{-1}=0\right)
$$

$$
\begin{aligned}
& =\lim _{m} q_{n}\left\{\frac{s_{m}}{Q_{m}}+\sum_{v=n}^{m-1}\left(\frac{1}{Q_{v}}-\frac{1}{Q_{v+1}}\right) s_{v}-\frac{s_{n-1}}{Q_{n}}\right\} \\
& =-\frac{q_{n} s_{n-1}}{Q_{n}}+q_{n} \sum_{v=n}^{\infty} c_{v} s_{v}, \text { where } c_{v}=\frac{1}{Q_{v}}-\frac{1}{Q_{v+1}}
\end{aligned}
$$

On the other hand, using Abel's summation by parts gives us

$$
\begin{aligned}
B_{n} & =\sum_{v=0}^{n} q_{v} \frac{b_{v}}{q_{v}}=\sum_{v=0}^{n-1} Q_{v} \frac{x_{v}}{Q_{v}}+Q_{n} \frac{b_{n}}{q_{n}}=s_{n-1}+Q_{n}\left(-\frac{s_{n-1}}{Q_{n}}+\sum_{v=n}^{\infty} c_{v} s_{v}\right) \\
& =Q_{n} \sum_{v=n}^{\infty} c_{v} s_{v} \Rightarrow \frac{B_{n}}{Q_{n}}=\sum_{v=n}^{\infty} c_{v} s_{v} \Rightarrow c_{n} s_{n}=\frac{B_{n}}{Q_{n}}-\frac{B_{n+1}}{Q_{n+1}}, \quad(n=0,1, \ldots) .
\end{aligned}
$$

By the last equality, we write

$$
\begin{aligned}
T_{n} & =\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \frac{1}{c_{v}}\left(\frac{B_{v}}{Q_{v}}-\frac{B_{v+1}}{Q_{v+1}}\right) \\
& =\frac{1}{P_{n}}\left\{\frac{p_{0}}{c_{0} q_{0}} B_{0}+\sum_{v=1}^{n-1} \frac{1}{Q_{v}}\left(\frac{p_{v}}{c_{v}}-\frac{p_{v-1}}{c_{v-1}}\right) B_{v}-\frac{p_{n}}{c_{n} Q_{n+1}} B_{n+1}\right\} \\
& =\sum_{v=0}^{\infty} c_{n v} B_{v},
\end{aligned}
$$

where the matrix $C=\left(c_{n v}\right)$ is defined by

$$
c_{n v}= \begin{cases}\frac{1}{P_{n}} \cdot \frac{p_{0}}{c_{0} Q_{0}}, & v=0 \\ \frac{1}{P_{n}}\left(\frac{p_{v}}{c_{v}}-\frac{p_{v-1}}{c_{v-1}}\right) \frac{1}{Q_{v}}, & 1 \leq v \leq n \\ -\frac{1}{P_{n}} \frac{p_{n}}{c_{n} Q_{n+1}}, & v=n+1 \\ 0, & v \geq n .\end{cases}
$$

Now, it is clear that $c_{n v} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\sum_{v=0}^{\infty} c_{n v}=\frac{1}{P_{n}}\left\{\frac{p_{0}}{c_{0} Q_{0}}+\sum_{v=1}^{n} \frac{1}{Q_{v}}\left(\frac{p_{v}}{c_{v}}-\frac{p_{v-1}}{c_{v-1}}\right)-\frac{p_{n}}{c_{n} Q_{n+1}}\right\}=1
$$

By Lemma $1.2, T_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ if and only if the matrix C is regular, or
equivalently

$$
\begin{equation*}
\sum_{v=0}^{\infty}\left|c_{n v}\right|=\frac{p_{0}}{P_{n} c_{0} Q_{0}}+\frac{1}{P_{n}} \sum_{v=1}^{n} \frac{1}{Q_{v}}\left|\frac{p_{v}}{c_{v}}-\frac{p_{v-1}}{c_{v-1}}\right|+\frac{p_{n}}{P_{n} c_{n} Q_{n+1}}=O(1) \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

Because of that the boundedness of the middle term implies the other term, (17) is equivalent to (3), whence the result.

Proof of Theorem 2.2. Suppose that if $T_{n} \rightarrow \lambda$ as $n \rightarrow \infty$, then $\sum b_{n}$ converges to λ. Then, by (1), since

$$
s_{0}=T_{0}, \quad s_{n}=\frac{1}{p_{n}}\left(P_{n} T_{n}-P_{n-1} T_{n-1}\right), \quad n=1,2, \ldots
$$

we have

$$
\frac{s_{m}}{Q_{m}} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

by virtue of (5a) and (5b). Hence, for $n \geq 0$,

$$
\begin{aligned}
b_{n} & =q_{n} \sum_{v=n}^{\infty} \frac{x_{v}}{Q_{v}}=\lim _{m} q_{n} \sum_{v=n}^{m} \frac{s_{v}-s_{n-1}}{Q_{v}}, \quad\left(s_{-1}=0\right) \\
& =\lim _{m} q_{n}\left\{\frac{s_{m}}{Q_{m}}+\sum_{v=n}^{m-1}\left(\frac{1}{Q_{v}}-\frac{1}{Q_{v+1}}\right) s_{v}-\frac{s_{n-1}}{Q_{n}}\right\} \\
& =-\frac{q_{n} s_{n-1}}{Q_{n}}+q_{n} \sum_{v=n}^{\infty} c_{v} s_{v}, \quad \text { where } c_{v}=\frac{1}{Q_{v}}-\frac{1}{Q_{v+1}} .
\end{aligned}
$$

On the other hand, it follows from Abel's summation by parts that

$$
\begin{align*}
B_{n} & =\sum_{v=0}^{n} q_{v} \frac{b_{v}}{q_{v}}=\sum_{v=0}^{n-1} Q_{v} \frac{x_{v}}{Q_{v}}+Q_{n} \frac{b_{n}}{q_{n}}=s_{n-1}+Q_{n}\left(-\frac{s_{n-1}}{Q_{n}}+\sum_{v=n}^{\infty} c_{v} s_{v}\right) \\
& =Q_{n} \sum_{v=n}^{\infty} c_{v} s_{v}=Q_{n} \lim _{m} \sum_{v=n}^{m} c_{v} s_{v}=Q_{n} \lim _{m} \sum_{v=n}^{m} c_{v} \frac{1}{p_{v}}\left(P_{v} T_{v}-P_{v-1} T_{v-1}\right) \\
& =Q_{n} \lim _{m}\left\{c_{m} \frac{P_{m}}{p_{m}} T_{m}-c_{n} \frac{P_{n-1}}{p_{n}} T_{n-1}+\sum_{v=n}^{m-1} P_{v}\left(\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right) T_{v}\right\} . \tag{8}
\end{align*}
$$

Now define

$$
\bar{N}=\left\{\left(x_{k}\right): \sum_{k=0}^{\infty} x_{k} \text { is summable }\left(\bar{N}, p_{n}\right)\right\}
$$

and

$$
B=\left\{\left(x_{k}\right):\left(\sum_{k=0}^{n} b_{k}\right) \text { is convergent }\right\}
$$

These are BK-spaces (i.e., Banach spaces with continuous coordinates) with respect to the norms

$$
\begin{equation*}
\|x\|_{\bar{N}}=\sup _{n}\left|T_{n}\right|=\sup _{n}\left|\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k}\right| \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{B}=\sup _{n}\left|\sum_{k=0}^{n} b_{k}\right|=\sup _{n}\left|\sum_{k=0}^{n} q_{k} \sum_{v=k}^{\infty} \frac{x_{v}}{Q_{v}}\right| \tag{10}
\end{equation*}
$$

respectively. By the Banach-Steinhaus theorem, there exists a constant $M>$ 0 such that

$$
\begin{equation*}
\|x\|_{B} \leq M\|x\|_{\bar{N}} \tag{11}
\end{equation*}
$$

for all $x \in \bar{N}$. Applying (9) and (10) to the special sequence

$$
x_{n}=\left\{\begin{array}{cl}
1, & n=k \\
-1, & n=k+1, \\
0, & \text { otherwise }
\end{array} \quad k=0,1,2, \ldots\right.
$$

we have

$$
\|x\|_{\bar{N}}=\frac{p_{k}}{P_{k}} \text { and }\|x\|_{B}=Q_{k} c_{k}
$$

It follows from (11) that for $k=0,1,2, \ldots$

$$
\begin{equation*}
Q_{k} c_{k} \leq M \frac{p_{k}}{P_{k}} \Leftrightarrow c_{k} \cdot \frac{P_{k}}{p_{k}}=O\left(\frac{1}{Q_{k}}\right) \tag{12}
\end{equation*}
$$

which implies

$$
\begin{equation*}
c_{m} \frac{P_{m}}{p_{m}} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{13}
\end{equation*}
$$

by virtue of (5b). Thus, considering (8) we write

$$
\begin{equation*}
B_{n}=-\frac{Q_{n} c_{n} P_{n-1}}{p_{n}} T_{n-1}+Q_{n} \sum_{v=n}^{\infty} P_{v}\left(\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right) T_{v}=\sum_{v=0}^{\infty} b_{n v} T_{v} \tag{14}
\end{equation*}
$$

where the matrix $B=\left(b_{n v}\right)$ is defined by

$$
b_{n v}=\left\{\begin{array}{cl}
0, & 0 \leq v<n-1 \tag{15}\\
-\frac{Q_{n} c_{n} P_{n-1}}{p_{n}}, & v=n-1 \\
Q_{n} P_{v}\left(\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right), & v \geq n
\end{array}\right.
$$

By hypothesis, the matrix B is regular. Now it is clear that $\lim _{n} b_{n v}=0$ and $\sum_{v=0}^{\infty} b_{n v}=1$. Therefore it follows from Lemma 1.2 that B is regular if and only if

$$
\begin{equation*}
\sum_{v=0}^{\infty}\left|b_{n v}\right|=\frac{Q_{n} c_{n} P_{n-1}}{p_{n}}+Q_{n} \sum_{v=n}^{\infty} P_{v}\left|\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right|=O(1) \text { as } n \rightarrow \infty \tag{16}
\end{equation*}
$$

By considering (13) we obtain

$$
Q_{n} P_{n-1} \frac{c_{n}}{p_{n}} \leq Q_{n} \sum_{v=n}^{\infty} P_{v}\left|\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right|
$$

and so (16) is equivalent to

$$
Q_{n} \sum_{v=n}^{\infty} P_{v}\left|\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right|=O(1) \text { as } n \rightarrow \infty
$$

Thus, the condition (6) is necessary.

Conversely, if the condition (6) is satisfied, then the series

$$
\sum_{v=0}^{\infty} P_{v}\left(\frac{c_{v}}{p_{v}}-\frac{c_{v+1}}{p_{v+1}}\right)
$$

converges. Hence it follows that the sequence $\left(P_{n} \frac{c_{n+1}}{p_{n+1}}\right)$ converges, which
implies that

$$
\frac{c_{n}}{p_{n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

by virtue of (5b). By considering (6) again, we have $\frac{P_{n} c_{n}}{p_{n}} \rightarrow 0$ as $n \rightarrow \infty$ and so (14) is valid. Therefore the result is seen by the regularity of the matrix B, and completes the proof.

References

1. G. H. Hardy, A theorem concerning summable series, Proc. Cambridge Philos. Soc., 20(1920-21), 304-307.
2. G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).

Department of Mathematics, Pamukkale University, Denizli 20017, Turkey.
E-mail: msarigol@pamukkale.edu.tr

