ON A CLASS OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH AN INTEGRAL OPERATOR

BY

JIN-LIN LIU

III

Abstract

The object of the present paper is to introduce and study a new class of multivalent analytic functions associated with an integral operator Q_{β}^{α} which was investigated recently by Jung, Kim and Srivastava [J.Math.Anal.Appl. 176(1993), 138-147].

1. Introduction and Preliminaries

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n} z^{n+p} \quad(p \in N=\{1,2,3, \cdots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$.
Suppose that $f(z)$ and $g(z)$ are analytic in U. We say that the function $f(z)$ is subordinate to $g(z)$ in U, and we write $f(z) \prec g(z) \quad(z \in U)$, if there exists an analytic function $w(z)$ in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)) \quad(z \in U)$. If $g(z)$ is univalent in U, then the following equivalence relationship holds true.

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

Received June 11, 2008 and in revised form March 03, 2009.
AMS Subject Classification: 30C45.
Key words and phrases: Analytic function, multivalent function, integral operator, convex univalent function, Hadamard product (or convolution), subordination.

For functions $f_{j}(z) \in A(p) \quad(j=1,2)$ given by

$$
f_{j}(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, j} z^{n+p} \quad(j=1,2)
$$

we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n+p}=\left(f_{2} * f_{1}\right)(z) .
$$

Recently, Jung, Kim and Srivastava [3] introduced the following integral operator $Q_{\beta}^{\alpha}: A(1) \rightarrow A(1):$

$$
\begin{gather*}
Q_{\beta}^{\alpha} f(z)=\binom{\alpha+\beta}{\alpha} \frac{\alpha}{z^{\beta}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) d t \\
(\alpha>0, \beta>-1 ; f(z) \in A(1)) . \tag{1.2}
\end{gather*}
$$

Some interesting subclasses of analytic functions, associated with the operator Q_{β}^{α}, have been considered by Jung et al. 3], Aouf et al. [1], Liu [4, 6, (7], Liu and Owa [5] and others.

Motivated by Jung, Kim and Srivastava's work 3]. we consider a linear operator $Q_{\beta}^{\alpha}: A(p) \rightarrow A(p)$ as following:

$$
\begin{gather*}
Q_{\beta}^{\alpha} f(z)=\binom{p+\alpha+\beta-1}{p+\beta-1} \frac{\alpha}{z^{\beta}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) d t \\
(\alpha \geq 0, \beta>-1 ; f(z) \in A(p)) . \tag{1.3}
\end{gather*}
$$

It is easily verified from the definition (1.3) that

$$
\begin{equation*}
z\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}=(\alpha+\beta+p-1) Q_{\beta}^{\alpha-1} f(z)-(\alpha+\beta-1) Q_{\beta}^{\alpha} f(z) \tag{1.4}
\end{equation*}
$$

Let P be the class of functions $h(z)$ with $h(0)=1$, which are analytic and convex univalent in U.

Now we introduce the following subclass of $A(p)$ associated with the operator Q_{β}^{α}.

Definition. A function $f(z) \in A(p)$ is said to be in the class $M_{p, \alpha, \beta}(\lambda ; h)$ if it satisfies the subordination condition

$$
\begin{equation*}
(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \prec h(z), \tag{1.5}
\end{equation*}
$$

where λ is a complex number and $h(z) \in P$.
A function $f(z) \in A(1)$ is said to be in the class $S^{*}(\rho)$ if

$$
\begin{equation*}
\operatorname{Re} e\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho \quad(z \in U) \tag{1.6}
\end{equation*}
$$

for some $\rho(\rho<1)$. When $0 \leq \rho<1, S^{*}(\rho)$ is the class of starlike functions of order ρ in U. A function $f(z) \in A(1)$ is said to be prestarlike of order ρ in U if

$$
\begin{equation*}
\frac{z}{(1-z)^{2(1-\rho)}} * f(z) \in S^{*}(\rho) \quad(\rho<1) \tag{1.7}
\end{equation*}
$$

We note this class by $R(\rho)$ (see 10$]$). Clearly a function $f(z) \in A(1)$ is in the class $R(0)$ if and only if $f(z)$ is convex univalent in U and

$$
R\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)
$$

We need the following lemmas in order to derive our main results for the class $M_{p, \alpha, \beta}(\lambda ; h)$.

Lemma 1. Let $g(z)$ be analytic in U and $h(z)$ be analytic and convex univalent in U with $h(0)=g(0)$. If

$$
\begin{equation*}
g(z)+\frac{1}{\mu} z g^{\prime}(z) \prec h(z), \tag{1.8}
\end{equation*}
$$

where $\operatorname{Re} \mu \geq 0$ and $\mu \neq 0$, then

$$
g(z) \prec \widetilde{h}(z)=\mu z^{-\mu} \int_{0}^{z} t^{\mu-1} h(t) d t \prec h(z)
$$

and $\widetilde{h}(z)$ is the best dominant of (1.8).

Lemma 2. Let $\rho<1, f(z) \in S^{*}(\rho)$ and $g(z) \in R(\rho)$. Then, for any analytic function $F(z)$ in U,

$$
\frac{g *(f F)}{g * f}(U) \subset \overline{c o}(F(U))
$$

where $\overline{c o}(F(U))$ denotes the closed convex hull of $F(U)$.
Lemma 1 is due to Miller and Mocanu [9] (see also [2]) and Lemma 2 can be found in Ruscheweyh [10].

Lemma 3. (see [8]) Let $g(z)=1+\sum_{n=k}^{\infty} b_{n} z^{n} \quad(k \in N)$ be analytic in U. If $\operatorname{Re}\{g(z)\}>0 \quad(z \in U)$, then

$$
\operatorname{Re}\{g(z)\} \geq \frac{1-|z|^{k}}{1+|z|^{k}} \quad(k \in N ; z \in U)
$$

2. Main Results

Theorem 1. Let $0 \leq \lambda_{1}<\lambda_{2}$. Then

$$
M_{p, \alpha, \beta}\left(\lambda_{2} ; h\right) \subset M_{p, \alpha, \beta}\left(\lambda_{1} ; h\right)
$$

Proof. Let $0 \leq \lambda_{1}<\lambda_{2}$ and suppose that

$$
\begin{equation*}
g(z)=z^{-p} Q_{\beta}^{\alpha} f(z) \tag{2.1}
\end{equation*}
$$

for $f(z) \in M_{p, \alpha, \beta}\left(\lambda_{2} ; h\right)$. Then the function $g(z)$ is analytic in U with $g(0)=$ 1. Differentiating both sides of (2.1) with respect to z and using (1.5), we have

$$
\begin{align*}
& \left(1-\lambda_{2}\right) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda_{2}}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
& =g(z)+\frac{\lambda_{2}}{p} z g^{\prime}(z) \prec h(z) . \tag{2.2}
\end{align*}
$$

Hence an application of Lemma 1 yields

$$
\begin{equation*}
g(z) \prec h(z) . \tag{2.3}
\end{equation*}
$$

Noting that $0 \leq \frac{\lambda_{1}}{\lambda_{2}}<1$ and that $h(z)$ is convex univalent in U, it follows from (2.1) to (2.3) that

$$
\begin{aligned}
& \left(1-\lambda_{1}\right) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda_{1}}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
& =\frac{\lambda_{1}}{\lambda_{2}}\left(\left(1-\lambda_{2}\right) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda_{2}}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}\right)+\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) g(z) \\
& \prec h(z) .
\end{aligned}
$$

Thus $f(z) \in M_{p, \alpha, \beta}\left(\lambda_{1} ; h\right)$ and the proof of Theorem 1 is completed.

Theorem 2. Let $\lambda>0, \gamma>0$ and $f(z) \in M_{p, \alpha, \beta}(\lambda ; \gamma h+1-\gamma)$. If $\gamma \leq \gamma_{0}$, where

$$
\begin{equation*}
\gamma_{0}=\frac{1}{2}\left(1-\frac{p}{\lambda} \int_{0}^{1} \frac{u^{\frac{p}{\lambda}-1}}{1+u} d u\right)^{-1} \tag{2.4}
\end{equation*}
$$

then $f(z) \in M_{p, \alpha, \beta}(0 ; h)$. The bound γ_{0} is sharp when $h(z)=\frac{1}{1-z}$.

Proof. Let us define

$$
\begin{equation*}
g(z)=z^{-p} Q_{\beta}^{\alpha} f(z) \tag{2.5}
\end{equation*}
$$

for $f(z) \in M_{p, \alpha, \beta}(\lambda ; \gamma h+1-\gamma)$ with $\lambda>0$ and $\gamma>0$. Then we have

$$
\begin{aligned}
g(z)+\frac{\lambda}{p} z g^{\prime}(z) & =(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
& \prec \gamma h(z)+1-\gamma
\end{aligned}
$$

Hence an application of Lemma 1 yields

$$
\begin{equation*}
g(z) \prec \frac{\gamma p}{\lambda} z^{-\frac{p}{\lambda}} \int_{0}^{z} t \frac{p}{\lambda} h(t) d t+1-\gamma=(h * \psi)(z), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(z)=\frac{\gamma p}{\lambda} z^{-\frac{p}{\lambda}} \int_{0}^{z} \frac{t \frac{p}{\lambda}-1}{1-t} d t+1-\gamma \tag{2.7}
\end{equation*}
$$

If $0<\gamma \leq \gamma_{0}$, where $\gamma_{0}>1$ is given by (2.4), then it follows from (2.7)
that

$$
\begin{aligned}
\operatorname{Re} \psi(z) & =\frac{\gamma p}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1} \operatorname{Re}\left(\frac{1}{1-u z}\right) d u+1-\gamma \\
& >\frac{\gamma p}{\lambda} \int_{0}^{1} \frac{u^{\frac{p}{\lambda}-1}}{1+u} d u+1-\gamma \\
& \geq \frac{1}{2} \quad(z \in U) .
\end{aligned}
$$

Now, by using the Herglotz representation for $\psi(z)$, from (2.5) and (2.6) we arrive at

$$
z^{-p} Q_{\beta}^{\alpha} f(z) \prec(h * \psi)(z) \prec h(z)
$$

because $h(z)$ is convex univalent in U. This shows that $f(z) \in M_{p, \alpha, \beta}(0 ; h)$.
For $h(z)=\frac{1}{1-z}$ and $f(z) \in A(p)$ defined by

$$
z^{-p} Q_{\beta}^{\alpha} f(z)=\frac{\gamma p}{\lambda} z^{-\frac{p}{\lambda}} \int_{0}^{z} \frac{t^{\frac{p}{\lambda}-1}}{1-t} d t+1-\gamma
$$

it is easy to verify that

$$
(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}=\gamma h(z)+1-\gamma
$$

Thus $f(z) \in M_{p, \alpha, \beta}(\lambda ; \gamma h+1-\gamma)$. Also, for $\gamma>\gamma_{0}$, we have

$$
\operatorname{Re} e\left\{z^{-p} Q_{\beta}^{\alpha} f(z)\right\} \rightarrow \frac{\gamma p}{\lambda} \int_{0}^{1} \frac{u^{\frac{p}{\lambda}-1}}{1+u} d u+1-\gamma<\frac{1}{2} \quad(z \rightarrow-1)
$$

which implies that $f(z) \notin M_{p, \alpha, \beta}(0 ; h)$. Hence the bound γ_{0} cannot be increased when $h(z)=\frac{1}{1-z}$.

Theorem 3. Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$,

$$
\begin{equation*}
g(z) \in A(p) \text { and } \operatorname{Re}\left\{z^{-p} g(z)\right\}>\frac{1}{2} \quad(z \in U) \tag{2.8}
\end{equation*}
$$

Then

$$
\left.(f * g)(z) \in M_{p, \alpha, \beta}(\lambda ; h)\right) .
$$

Proof. For $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ and $g(z) \in A(p)$, we have

$$
\begin{align*}
& (1-\lambda) z^{-p} Q_{\beta}^{\alpha}(f * g)(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha}(f * g)(z)\right)^{\prime} \\
& =(1-\lambda)\left(z^{-p} g(z)\right) *\left(z^{-p} Q_{\beta}^{\alpha} f(z)\right)+\frac{\lambda}{p}\left(z^{-p} g(z)\right) *\left(z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}\right) \\
& \quad=\left(z^{-p} g(z)\right) * \psi(z) \tag{2.9}
\end{align*}
$$

where

$$
\begin{equation*}
\psi(z)=(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \prec h(z) \tag{2.10}
\end{equation*}
$$

In view of (2.8), the function $z^{-p} g(z)$ has the Herglotz representation

$$
\begin{equation*}
z^{-p} g(z)=\int_{|x|=1} \frac{d \mu(x)}{1-x z} \quad(z \in U) \tag{2.11}
\end{equation*}
$$

where $\mu(x)$ is a probability measure defined on the unit circle $|x|=1$ and

$$
\int_{|x|=1} d \mu(x)=1
$$

Since $h(z)$ is convex univalent in U, it follows from (2.9) to (2.11) that

$$
\begin{aligned}
& (1-\lambda) z^{-p} Q_{\beta}^{\alpha}(f * g)(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha}(f * g)(z)\right)^{\prime} \\
& =\int_{|x|=1} \psi(x z) d \mu(x) \prec h(z) .
\end{aligned}
$$

This shows that $(f * g)(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ and the theorem is proved.
Corollary 1. Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ be given by (1.1) and let

$$
s_{m}(z)=z^{p}+\sum_{n=1}^{m-1} a_{n} z^{n+p} \quad(m \in N \backslash\{1\})
$$

Then the function

$$
\sigma_{m}(z)=\int_{0}^{1} t^{-p} s_{m}(t z) d t
$$

is also in the class $M_{p, \alpha, \beta}(\lambda ; h)$.

Proof. We have

$$
\begin{equation*}
\sigma_{m}(z)=z^{p}+\sum_{n=1}^{m-1} \frac{a_{n}}{n+1} z^{n+p}=\left(f * g_{m}\right)(z) \quad(m \in N \backslash\{1\}) \tag{2.12}
\end{equation*}
$$

where

$$
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n} z^{n+p} \in M_{p, \alpha, \beta}(\lambda ; h)
$$

and

$$
g_{m}(z)=z^{p}+\sum_{n=1}^{m-1} \frac{z^{n+p}}{n+1} \in A(p)
$$

Also, for $m \in N \backslash\{1\}$, it is known from 11] that

$$
\begin{equation*}
\operatorname{Re} e\left\{z^{-p} g_{m}(z)\right\}=\operatorname{Re}\left\{1+\sum_{n=1}^{m-1} \frac{z^{n}}{n+1}\right\}>\frac{1}{2} \quad(z \in U) \tag{2.13}
\end{equation*}
$$

In view of (2.12) and (2.13), an application of Theorem 3 leads to $\sigma_{m}(z) \in$ $M_{p, \alpha, \beta}(\lambda ; h)$.

Theorem 4. Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$,

$$
g(z) \in A(p) \text { and } z^{-p+1} g(z) \in R(\rho) \quad(\rho<1)
$$

Then

$$
(f * g)(z) \in M_{p, \alpha, \beta}(\lambda ; h) .
$$

Proof. For $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ and $g(z) \in A(p)$, from (2.9) (used in the proof of Theorem 3) we can write

$$
\begin{align*}
& (1-\lambda) z^{-p} Q_{\beta}^{\alpha}(f * g)(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha}(f * g)(z)\right)^{\prime} \\
& =\frac{\left(z^{-p+1} g(z)\right) *(z \psi(z))}{\left(z^{-p+1} g(z)\right) * z} \quad(z \in U) \tag{2.14}
\end{align*}
$$

where $\psi(z)$ is defined as in (2.10).
Since $h(z)$ is convex univalent in U,

$$
\psi(z) \prec h(z), z^{-p+1} g(z) \in R(\rho) \text { and } z \in S^{*}(\rho) \quad(\rho<1)
$$

it follows from (2.14) and Lemma 2 the desired result.
Taking $\rho=0$ and $\rho=\frac{1}{2}$, Theorem 4 reduces to the following.

Corollary 2. Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ and let $g(z) \in A(p)$ satisfy either of the following conditions:
(i) $z^{-p+1} g(z)$ is convex univalent in U
or
(ii) $z^{-p+1} g(z) \in S^{*}\left(\frac{1}{2}\right)$.

Then

$$
(f * g)(z) \in M_{p, \alpha, \beta}(\lambda ; h)
$$

Theorem 5. Let $\lambda \geq 0$ and

$$
\begin{equation*}
f_{j}(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, j} z^{n+p} \in M_{p, \alpha, \beta}\left(\lambda ; h_{j}\right) \quad(j=1,2) \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{j}(z)=\beta_{j}+\left(1-\beta_{j}\right) \frac{1+z}{1-z} \quad \text { and } \quad \beta_{j}<1 \tag{2.16}
\end{equation*}
$$

If $f(z) \in A(p)$ is defined by

$$
\begin{equation*}
Q_{\beta}^{\alpha} f(z)=Q_{\beta}^{\alpha} f_{1}(z) * Q_{\beta}^{\alpha} f_{2}(z) \tag{2.17}
\end{equation*}
$$

then $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$, where

$$
\begin{equation*}
h(z)=\beta_{3}+\left(1-\beta_{3}\right) \frac{1+z}{1-z} \tag{2.18}
\end{equation*}
$$

and the parameter β_{3} is given by

$$
\beta_{3}= \begin{cases}1-4\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left(1-\frac{p}{\lambda} \int_{0}^{1} \frac{u \frac{p}{\lambda}-1}{1+u} d u\right) & (\lambda>0) \tag{2.19}\\ 1-2\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) & (\lambda=0)\end{cases}
$$

The bound β_{3} is the best possible.

Proof. We consider the case when $\lambda>0$. By setting

$$
F_{j}(z)=(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f_{j}(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f_{j}(z)\right)^{\prime} \quad(j=1,2)
$$

for $f_{j}(z) \quad(j=1,2)$ given by (2.15), we find that

$$
\begin{equation*}
F_{j}(z)=1+\sum_{n=1}^{\infty} b_{n, j} z^{n} \prec \beta_{j}+\left(1-\beta_{j}\right) \frac{1+z}{1-z} \quad(j=1,2) \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\beta}^{\alpha} f_{j}(z)=\frac{p}{\lambda} z^{-\frac{p(1-\lambda)}{\lambda}} \int_{0}^{z} t^{\frac{p}{\lambda}-1} F_{j}(t) d t \quad(j=1,2) . \tag{2.21}
\end{equation*}
$$

Now, if $f(z) \in A(p)$ is defined by (2.17), we find from (2.21) that

$$
\begin{align*}
Q_{\beta}^{\alpha} f(z) & =Q_{\beta}^{\alpha} f_{1}(z) * Q_{\beta}^{\alpha} f_{2}(z) \\
& =\left(\frac{p}{\lambda} z^{p} \int_{0}^{1} u^{\frac{p}{\lambda}-1} F_{1}(u z) d u\right) *\left(\frac{p}{\lambda} z^{p} \int_{0}^{1} u^{\frac{p}{\lambda}-1} F_{2}(u z) d u\right) \\
& =\frac{p}{\lambda} z^{p} \int_{0}^{1} u^{\frac{p}{\lambda}-1} F(u z) d u, \tag{2.22}
\end{align*}
$$

where

$$
\begin{equation*}
F(z)=\frac{p}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1}\left(F_{1} * F_{2}\right)(u z) d u . \tag{2.23}
\end{equation*}
$$

Also, by using (2.20) and the Herglotz theorem, we see that

$$
\operatorname{Re}\left\{\left(\frac{F_{1}(z)-\beta_{1}}{1-\beta_{1}}\right) *\left(\frac{1}{2}+\frac{F_{2}(z)-\beta_{2}}{2\left(1-\beta_{2}\right)}\right)\right\}>0 \quad(z \in U),
$$

which leads to

$$
\operatorname{Re}\left\{\left(F_{1} * F_{2}\right)(z)\right\}>\beta_{0}=1-2\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) \quad(z \in U) .
$$

According to Lemma 3, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\left(F_{1} * F_{2}\right)(z)\right\} \geq \beta_{0}+\left(1-\beta_{0}\right) \frac{1-|z|}{1+|z|} \quad(z \in U) . \tag{2.24}
\end{equation*}
$$

Now it follows from (2.22) to (2.24) that

$$
\begin{aligned}
& \operatorname{Re}\left\{(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime}\right\}=\operatorname{Re} e\{F(z)\} \\
& \quad=\frac{p}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1} \operatorname{Re}\left\{\left(F_{1} * F_{2}\right)(u z)\right\} d u \\
& \quad \geq \frac{p}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1}\left(\beta_{0}+\left(1-\beta_{0}\right) \frac{1-u|z|}{1+u|z|}\right) d u \\
& \quad>\beta_{0}+\frac{p\left(1-\beta_{0}\right)}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1} \frac{1-u}{1+u} d u \\
& \quad=1-4\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left(1-\frac{p}{\lambda} \int_{0}^{1} \frac{u^{\frac{p}{\lambda}-1}}{1+u} d u\right) \\
& \quad=\beta_{3} \quad(z \in U)
\end{aligned}
$$

which proves that $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$ for the function $h(z)$ given by (2.18).
In order to show that the bound β_{3} is sharp, we take the functions $f_{j}(z) \in A(p) \quad(j=1,2)$ defined by

$$
\begin{equation*}
Q_{\beta}^{\alpha} f_{j}(z)=\frac{p}{\lambda} z^{-\frac{p(1-\lambda)}{\lambda}} \int_{0}^{z} t^{\frac{p}{\lambda}-1}\left(\beta_{j}+\left(1-\beta_{j}\right) \frac{1+t}{1-t}\right) d t \quad(j=1,2) \tag{2.25}
\end{equation*}
$$

for which we have

$$
\begin{aligned}
F_{j}(z) & =(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f_{j}(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f_{j}(z)\right)^{\prime} \\
& =\beta_{j}+\left(1-\beta_{j}\right) \frac{1+z}{1-z} \quad(j=1,2)
\end{aligned}
$$

and

$$
\left(F_{1} * F_{2}\right)(z)=1+4\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) \frac{z}{1-z}
$$

Hence, for $f(z) \in A(p)$ given by (2.17), we obtain

$$
\begin{aligned}
& (1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
& =\frac{p}{\lambda} \int_{0}^{1} u^{\frac{p}{\lambda}-1}\left(1+4\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) \frac{u z}{1-u z}\right) d u \\
& \rightarrow \beta_{3} \quad(\text { as } z \rightarrow-1)
\end{aligned}
$$

Finally, for the case when $\lambda=0$, the proof of Theorem 5 is simple, and so we choose to omit the details involved.

Theorem 6. Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{\mu+p}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\operatorname{Re} \mu>-p) \tag{2.26}
\end{equation*}
$$

is in the class $M_{p, \alpha, \beta}(\lambda ; \widetilde{h})$, where

$$
\widetilde{h}(z)=(\mu+p) z^{-(\mu+p)} \int_{0}^{z} t^{\mu+p-1} h(t) d t \prec h(z) .
$$

Proof. For $f(z) \in A(p)$ and $\operatorname{Re} \mu>-p$, we find from (2.26) that $F(z) \in$ $A(p)$ and

$$
\begin{equation*}
(\mu+p) f(z)=\mu F(z)+z F^{\prime}(z) . \tag{2.27}
\end{equation*}
$$

Define $G(z)$ by

$$
\begin{equation*}
z^{p} G(z)=(1-\lambda) Q_{\beta}^{\alpha} F(z)+\frac{\lambda}{p} z\left(Q_{\beta}^{\alpha} F(z)\right)^{\prime} . \tag{2.28}
\end{equation*}
$$

Differentiating both sides of (2.28) with respect to z, we get

$$
\begin{equation*}
z G^{\prime}(z)+p G(z)=(1-\lambda) z^{-p} Q_{\beta}^{\alpha}\left(z F^{\prime}(z)\right)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha}\left(z F^{\prime}(z)\right)\right)^{\prime} . \tag{2.29}
\end{equation*}
$$

Furthermore, it follows from (2.27) to (2.29) that

$$
\begin{align*}
& (1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
& =(1-\lambda) z^{-p} Q_{\beta}^{\alpha}\left(\frac{\mu F(z)+z F^{\prime}(z)}{\mu+p}\right)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha}\left(\frac{\mu F(z)+z F^{\prime}(z)}{\mu+p}\right)\right)^{\prime} \\
& =\frac{\mu}{\mu+p} G(z)+\frac{1}{\mu+p}\left(z G^{\prime}(z)+p G(z)\right) \\
& =G(z)+\frac{z G^{\prime}(z)}{\mu+p} . \tag{2.30}
\end{align*}
$$

Let $f(z) \in M_{p, \alpha, \beta}(\lambda ; h)$. Then, by (2.30),

$$
G(z)+\frac{z G^{\prime}(z)}{\mu+p} \prec h(z) \quad(\operatorname{Re} \mu>-p)
$$

and so it follows from Lemma 1 that

$$
G(z) \prec \widetilde{h}(z)=(\mu+p) z^{-(\mu+p)} \int_{0}^{z} t^{\mu+p-1} h(t) d t \prec h(z)
$$

Therefore we conclude that

$$
F(z) \in M_{p, \alpha, \beta}(\lambda ; \widetilde{h}) \subset M_{p, \alpha, \beta}(\lambda ; h)
$$

Theorem 7. Let $f(z) \in A(p)$ and $F(z)$ be defined as in Theorem 6. If

$$
\begin{equation*}
(1-\gamma) z^{-p} Q_{\beta}^{\alpha} F(z)+\gamma z^{-p} Q_{\beta}^{\alpha} f(z) \prec h(z) \quad(\gamma>0), \tag{2.31}
\end{equation*}
$$

then $F(z) \in M_{p, \alpha, \beta}(0 ; \widetilde{h})$, where Re $\mu>-p$ and

$$
\widetilde{h}(z)=\frac{\mu+p}{\gamma} z^{-\frac{\mu+p}{\gamma}} \int_{0}^{z} t^{\frac{\mu+p}{\gamma}-1} h(t) d t \prec h(z)
$$

Proof. Let us define

$$
\begin{equation*}
G(z)=z^{-p} Q_{\beta}^{\alpha} F(z) \tag{2.32}
\end{equation*}
$$

Then $G(z)$ is analytic in U, with $G(0)=1$, and

$$
\begin{equation*}
z G^{\prime}(z)=-p G(z)+z^{-p+1}\left(Q_{\beta}^{\alpha} F(z)\right)^{\prime} . \tag{2.33}
\end{equation*}
$$

Making use of (2.27), (2.31), (2.32) and (2.33), we deduce that

$$
\begin{aligned}
& (1-\gamma) z^{-p} Q_{\beta}^{\alpha} F(z)+\gamma z^{-p} Q_{\beta}^{\alpha} f(z) \\
& =(1-\gamma) z^{-p} Q_{\beta}^{\alpha} F(z)+\frac{\gamma}{\mu+p}\left(\mu z^{-p} Q_{\beta}^{\alpha} F(z)+z^{-p+1}\left(Q_{\beta}^{\alpha} F(z)\right)^{\prime}\right) \\
& =G(z)+\frac{\gamma}{\mu+p} z G^{\prime}(z) \prec h(z)
\end{aligned}
$$

for $\operatorname{Re} \mu>-p$ and $\gamma>0$. Therefore an application of Lemma 1 yields the assertion of Theorem 7 .

Theorem 8. Let $F(z) \in M_{p, \alpha, \beta}(\lambda ; h)$. If the function $f(z)$ is defined by

$$
\begin{equation*}
F(z)=\frac{\mu+p}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\mu>-p) \tag{2.34}
\end{equation*}
$$

then

$$
\sigma^{-p} f(\sigma z) \in M_{p, \alpha, \beta}(\lambda ; h)
$$

where

$$
\begin{equation*}
\sigma=\sigma_{p}(\mu)=\frac{\sqrt{1+(\mu+p)^{2}}-1}{\mu+p} \in(0,1) . \tag{2.35}
\end{equation*}
$$

The bound σ is sharp when

$$
\begin{equation*}
h(z)=\gamma+(1-\gamma) \frac{1+z}{1-z} \quad(\gamma \neq 1) \tag{2.36}
\end{equation*}
$$

Proof. For $F(z) \in A(p)$, it is easy to verify that

$$
F(z)=F(z) * \frac{z^{p}}{1-z} \text { and } z F^{\prime}(z)=F(z) *\left(\frac{z^{p}}{(1-z)^{2}}+(p-1) \frac{z^{p}}{1-z}\right)
$$

Hence, by (2.34), we have

$$
\begin{equation*}
f(z)=\frac{\mu F(z)+z F^{\prime}(z)}{\mu+p}=(F * g)(z) \quad(z \in U ; \mu>-p) \tag{2.37}
\end{equation*}
$$

where

$$
\begin{equation*}
g(z)=\frac{1}{\mu+p}\left((\mu+p-1) \frac{z^{p}}{1-z}+\frac{z^{p}}{(1-z)^{2}}\right) \in A(p) . \tag{2.38}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
\operatorname{Re}\left\{z^{-p} g(z)\right\}>\frac{1}{2} \quad(|z|<\sigma) \tag{2.39}
\end{equation*}
$$

where $\sigma=\sigma_{p}(\mu)$ is given by (2.35). Setting

$$
\frac{1}{1-z}=\operatorname{Re}^{i \theta} \quad(R>0) \quad \text { and } \quad|z|=r<1
$$

we see that

$$
\begin{equation*}
\cos \theta=\frac{1+R^{2}\left(1-r^{2}\right)}{2 R} \quad \text { and } \quad R \geq \frac{1}{1+r} \tag{2.40}
\end{equation*}
$$

For $\mu>-p$ it follows from (2.38) and (2.40) that

$$
\begin{aligned}
2 \operatorname{Re} e\left\{z^{-p} g(z)\right\} & =\frac{2}{\mu+p}\left[(\mu+p-1) R \cos \theta+R^{2}\left(2 \cos ^{2} \theta-1\right)\right] \\
& =\frac{1}{\mu+p}\left[(\mu+p-1)\left(1+R^{2}\left(1-r^{2}\right)\right)+\left(1+R^{2}\left(1-r^{2}\right)\right)^{2}-2 R^{2}\right] \\
& =\frac{R^{2}}{\mu+p}\left[R^{2}\left(1-r^{2}\right)^{2}+(\mu+p+1)\left(1-r^{2}\right)-2\right]+1 \\
& \geq \frac{R^{2}}{\mu+p}\left[(1-r)^{2}+(\mu+p+1)\left(1-r^{2}\right)-2\right]+1 \\
& =\frac{R^{2}}{\mu+p}\left(\mu+p-2 r-(\mu+p) r^{2}\right)+1
\end{aligned}
$$

This evidently gives (2.39), which is equivalent to

$$
\begin{equation*}
\operatorname{Re} e\left\{z^{-p} \sigma^{-p} g(\sigma z)\right\}>\frac{1}{2} \quad(z \in U) \tag{2.41}
\end{equation*}
$$

Let $F(z) \in M_{p, \alpha, \beta}(\lambda ; h)$. Then, by using (2.37) and (2.41), an application of Theorem 3 yields

$$
\sigma^{-p} f(\sigma z)=F(z) *\left(\sigma^{-p} g(\sigma z)\right) \in M_{p, \alpha, \beta}(\lambda ; h)
$$

For $h(z)$ given by (2.36), we consider the function $F(z) \in A(p)$ defined by

$$
\begin{align*}
&(1-\lambda) z^{-p} Q_{\beta}^{\alpha} F(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} F(z)\right)^{\prime} \\
&=\gamma+(1-\gamma) \frac{1+z}{1-z} \quad(\gamma \neq 1) \tag{2.42}
\end{align*}
$$

Then, by (2.42), (2.28) and (2.30) (used in the proof of Theorem 6), we find that

$$
\begin{aligned}
&(1-\lambda) z^{-p} Q_{\beta}^{\alpha} f(z)+\frac{\lambda}{p} z^{-p+1}\left(Q_{\beta}^{\alpha} f(z)\right)^{\prime} \\
&=\gamma+(1-\gamma) \frac{1+z}{1-z}+\frac{z}{\mu+p}\left(\gamma+(1-\gamma) \frac{1+z}{1-z}\right)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma+\frac{(1-\gamma)\left(\mu+p+2 z-(\mu+p) z^{2}\right)}{(\mu+p)(1-z)^{2}} \\
& =\gamma \quad(z=-\sigma)
\end{aligned}
$$

Therefore we conclude that the bound $\sigma=\sigma_{p}(\mu)$ cannot be increased for each $\mu(\mu>-p)$.

References

1. M. K. Aouf, H. M. Hossen and A. Y. Lashin, An application of certain integral operator, J. Math. Anal. Appl., 248(2000), 475-481.
2. D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.
3. I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147.
4. J.-L. Liu, Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal. Appl., 294(2004), 96-103.
5. J.-L. Liu and S. Owa, Properties of certain integral operator, Inter. J. Math. Sci., 3(2004), 351-359.
6. J.-L. Liu, Certain integral operator and strongly starlike functions, Int. J. Math. Math. Sci., 30(2002), 569-574.
7. J.-L. Liu, On application of certain integral operator, Indian J. Math., 49(2007), 1-6.
8. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532-537.
9. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
10. S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de 1'Université de Montréal, Montréal, 1982.
11. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152.

Department of Mathematics, Yangzhou University, Yangzhou 225002, Jiangsu, P.R. China. E-mail: jlliu@yzu.edu.cn

