Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. **5** (2010), No. 2, pp. 215-224

SOME NOTES ON A CERTAIN CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE DZIOK-SRIVASTAVA OPERATOR

BY

JIN-LIN LIU

Abstract

The main object of the present paper is to investigate several further interesting properties of the class $V_{p,q,s}(\alpha_1; A, B)$ which was recently introduced and studied by Dziok and Srivastava [Appl.Math.Comput.103(1999)1-13].

1. Introduction and Definitions

For $p \in \mathbb{N} := \{1, 2, 3, ...\}$, we denote by A(p) the class of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $U := \{z \colon z \in C \text{ and } |z| < 1\}.$

Let f(z) and g(z) be analytic in U. We say that the function g(z) is subordinate to f(z) if there exists an analytic function $w : U \to U$ with w(0) = 0 such that g(z) = f(w(z)) for $z \in U$. This relation is denoted by $g(z) \prec f(z)$. In case f(z) is univalent in U we have that the subordination $g(z) \prec f(z)$ is equivalent to g(0) = f(0) and $g(U) \subset f(U)$.

Received September 22, 2008 and in revised form June 30, 2009.

AMS Subject Classification: Primary: 30C45; 26A33; Secondary: 33C20.

Key words and phrases: Analytic function, hadamard product, Dziok-Srivastava operator, generalized hypergeometric function, δ -neighborhood.

For analytic functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$,

by f * g we denote the Hadamard product (or convolution) of f and g, defined by

$$(f * g)(z) := \sum_{n=0}^{\infty} a_n b_n z^n.$$
 (1.2)

Making use of the Hadamard product (or convolution) given by (1.2), we now define the Dziok-Srivastava operator:

$$H_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s):A(p)\to A(p),$$

which was introduced and studied in a series of recent papers by Dziok and Srivastava ([2, 3, 4]; see also [5, 9, 10, 11]).

We recall that for $q, s \in N_0 = \mathbb{N} \cup 0$ with $q \leq s+1$ and complex parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s with $\beta_j \neq 0, -1, -2, \ldots$ for $j = 1, \ldots, s$, the generalized hypergeometric function ${}_qF_s(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$ is defined by

$${}_{q}F_{s}(\alpha_{1},\ldots,\alpha_{q};\beta_{1},\ldots,\beta_{s};z) = \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\cdots(\alpha_{q})_{n}}{(\beta_{1})_{n}\cdots(\beta_{s})_{n}} \cdot \frac{z^{n}}{n!}$$

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$(\lambda)_n = \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} = \begin{cases} 1 & , n=0\\ \lambda(\lambda+1)\cdots(\lambda+n-1) & , n \in \mathbb{N}. \end{cases}$$

Corresponding to a function $h_p(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$ defined by

$$h_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z)=z^p{}_qF_s(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z),$$

Dziok and Srivastava [2] considered a linear operator defined on A(p) by the following Hadamard product

$$H_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)f(z) = h_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z) * f(z), z \in U.$$

216

For convenience, we write

$$H_{p,q,s}(\alpha_1) = H_p(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s).$$

Thus, after some calculations, we have

$$z(H_{p,q,s}(\alpha_1)f(z))' = \alpha_1 H_{p,q,s}(\alpha_1 + 1)f(z) - (\alpha_1 - p)H_{p,q,s}(\alpha_1)f(z).$$
(1.3)

We observe that, for a function f of the form (1.1), we have

$$H_{p,q,s}(\alpha_1)f(z) = z^p + \sum_{n=p+1}^{\infty} \Gamma_n(\alpha_1)a_n z^n, \qquad (1.4)$$

where

$$\Gamma_n(\alpha_1) := \frac{(\alpha_1)_{n-p} \cdots (\alpha_q)_{n-p}}{(\beta_1)_{n-p} \cdots (\beta_s)_{n-p} (n-p)!}.$$
(1.5)

The Dziok-Srivastava operator $H_{p,q,s}(\alpha_1)$ includes various other linear operators which were considered in earlier works. In particular, for p = s = 1and q = 2, we obtain the liner operator

$$\mathscr{F}(\alpha_1, \alpha_2, \beta_1)f(z) = H_1(\alpha_1, \alpha_2; \beta_1)f(z),$$

which was defined by Hohlov [7]. Setting moreover $\alpha_2 = 1$, we obtain the Carlson-Shaffer operator

$$\mathscr{L}(\alpha_1,\beta_1)f(z) = H_1(\alpha_1,1;\beta_1)f(z),$$

which was introduced by Carlson and Shaffer [1].

Many interesting subclasses of analytic functions, associated with the Dziok-Srivastava operator $H_{p,q,s}(\alpha_1)$ and its many special cases, were investigated recently by (for example) Dziok and Srivastava [2, 3, 4], Gangadharan et al. [5], Liu [9], Liu and Srivastava [10, 11] and others (see also [8, 13, 15, 16, 17]).

Let $p, q, s \in N$ and suppose that the parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s are positive real numbers. Also let

$$0 < B < 1$$
 and $-B \le A < B$.

217

2010]

We denote by $V_{p,q,s}(\alpha_1; A, B)$ the class of functions $f \in A(p)$ of the form

$$f(z) = z^p - \sum_{n=p+1}^{\infty} a_n z^n \quad , z \in U,$$
 (1.6)

[June

where $a_n \ge 0, n \in \mathbb{N}$, which also satisfy the following condition

$$\alpha_1 \frac{H_{p,q,s}(\alpha_1 + 1)f(z)}{H_{p,q,s}(\alpha_1)f(z)} + p - \alpha_1 \prec p \frac{1 + Az}{1 + Bz}.$$
(1.7)

The class $V_{p,q,s}(\alpha_1; A, B)$ was first introduced and studied by Dziok and Srivastava [2]. Many interesting properties such as coefficients estimates, distortion theorems, extreme points, and the radii of convexity and starlikeness for the class $V_{p,q,s}(\alpha_1; A, B)$ were given by Dziok and Srivastava [2]. In the present sequel to these earlier works, we shall derive some interesting characteristics of the δ -neighborhood associated with the class $V_{p,q,s}(\alpha_1; A, B)$.

2. Main results

We begin by recalling each of the following lemmas which will be required in our present investigation.

Lemma 1. (Dziok and Srivastava [2]). A function f of the form (1.6) belongs to $V_{p,q,s}(\alpha_1; A, B)$ if and only if

$$\sum_{n=p+1}^{\infty} ((B+1)n - (A+1)p)\Gamma_n(\alpha_1)a_n \le p(B-A),$$
 (2.1)

where $\Gamma_n(\alpha_1)$ is defined by Eq.(1.5).

1

Making use of the same method by Liu and Srivastava [10, 12], we immediately have:

Lemma 2. Let $\lambda > -p$. If $f \in V_{p,q,s}(\alpha_1; A, B)$, then the function F(z) defined by

$$F(z) = \frac{\lambda + p}{z^{\lambda}} \int_0^z t^{\lambda - 1} f(t) dt$$
(2.2)

also belongs to $V_{p,q,s}(\alpha_1; A, B)$.

218

2010]

219

Following the earlier works (see [6, 14]; see also [10, 12]), we now define the δ -neighborhood of a function $f \in A(p)$ for $\delta \ge 0, 0 < B < 1$ and $-B \le A < B$ by

$$N_{\delta,A,B}(f) = \begin{cases} g \in A(p) : g(z) = z^p - \sum_{n=p+1}^{\infty} b_n z^n & (b_n \ge 0) \text{ and} \end{cases}$$

$$\sum_{n=p+1}^{\infty} \frac{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)}{p(B-A)} |b_n - a_n| \le \delta \right\}.$$
 (2.3)

Theorem 1. If $f \in V_{p,q,s}(\alpha_1 + 1; A, B)$, then

$$N_{\delta,A,B}(f) \subset V_{p,q,s}(\alpha_1; A, B), \tag{2.4}$$

where $\delta := \frac{1}{\alpha_1+1}$. The result is sharp in the sense that the number δ cannot be increased.

Proof. It is easily seen from (1.7) that a function $g \in A(p)$ belongs to the class $V_{p,q,s}(\alpha_1; A, B)$ if and only of for $z \in U$ we have:

$$\frac{\alpha_1(H_{p,q,s}(\alpha_1+1)g(z) - H_{p,q,s}(\alpha_1)g(z))}{p(A-B)H_{p,q,s}(\alpha_1)g(z) - B\alpha_1(H_{p,q,s}(\alpha_1+1)g(z) - H_{p,q,s}(\alpha_1)g(z))} \neq \sigma$$
(2.5)

for any $\sigma \in \mathbb{C}$ with $|\sigma| = 1,$ which is equivalent to:

$$\frac{(g*h)(z)}{z^p} \neq 0 \quad , z \in U,$$
(2.6)

where we denoted by $h:U\to \mathbb{C}$ the function defined by

$$h(z) = z^{p} + \sum_{n=p+1}^{\infty} c_{n} z^{n}$$

= $z^{p} + \sum_{n=p+1}^{\infty} \frac{(n-p)(1+B\sigma) + p\sigma(B-A)}{p\sigma(A-B)} \Gamma_{n}(\alpha_{1}) z^{n}.$ (2.7)

We easily find from (2.7) that

$$|c_n| = \left| \frac{(n-p)(1+B\sigma) + p\sigma(B-A)}{p\sigma(A-B)} \Gamma_n(\alpha_1) \right|$$

$$\leq \frac{n(1+B) - p(1+A)}{p(B-A)} \Gamma_n(\alpha_1)$$

for any n > p. If $f \in V_{p,q,s}(\alpha_1 + 1; A, B)$ is given by (1.6), we obtain that

$$\left|\frac{(f*h)(z)}{z^{p}}\right| = \left|1 - \sum_{n=p+1}^{\infty} a_{n}c_{n}z^{n-p}\right|$$

$$\geq 1 - \sum_{n=p+1}^{\infty} \frac{n(1+B) - p(1+A)}{p(B-A)}\Gamma_{n}(\alpha_{1})a_{n}|z|^{n-p}$$

$$> 1 - \frac{\alpha_{1}}{\alpha_{1}+1}\sum_{n=p+1}^{\infty} \frac{n(1+B) - p(1+A)}{p(B-A)}\Gamma_{n}(\alpha_{1}+1)a_{n}$$

$$\geq 1 - \frac{\alpha_{1}}{\alpha_{1}+1} = \frac{1}{\alpha_{1}+1} := \delta$$

by appealing to Lemma 1.

Now, if we let

$$\varphi(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n \in N_{\delta}(f),$$

where $\delta = \frac{1}{\alpha_1 + 1}$, then

$$\left|\frac{(f(z) - \varphi(z)) * h(z)}{z^p}\right| = \left|\sum_{n=p+1}^{\infty} (a_n - b_n)c_n z^{n-p}\right|$$

$$\leq \sum_{\substack{n=p+1\\ p(B-A)}}^{\infty} \frac{n(1+B) - p(1+A)}{p(B-A)} \Gamma_n(\alpha_1)|a_n - b_n| \cdot |z|^{n-p}$$

$$< \delta$$

for any $z \in U$. Thus, for any complex number σ with $|\sigma| = 1$, we have

$$\frac{(\varphi \ast h)(z)}{z^p} \neq 0 \quad , z \in U,$$

220

which implies that $\varphi \in V_{q,s}(\alpha_1; A, B)$.

In order to see the sharpness of the assertion of the theorem, we consider the functions $f, g: U \to \mathbb{C}$ defined by

$$f(z) = z^{p} - \frac{p(B-A)}{((B+1)(p+1) - (A+1)p)\Gamma_{p+1}(\alpha_{1}+1)} z^{p+1}$$

and

2010]

$$g(z) = z^{p} - \left(\frac{p(B-A)}{((B+1)(p+1) - (A+1)p)\Gamma_{p+1}(\alpha_{1}+1)} + \frac{p(B-A)\delta'}{((B+1)(p+1) - (A+1)p)\Gamma_{p+1}(\alpha_{1})}\right)z^{p+1},$$

where $\delta' > \delta = \frac{1}{\alpha_1 + 1}$ are arbitrarily fixed. It is easy to see that we have $f \in V_{p,q,s}(\alpha_1 + 1; A, B)$ and $g \in N_{\delta',A,B}(f)$. Thus, by observing from Lemma 1 that the function g is not in the class $V_{p,q,s}(\alpha_1; A, B)$, it follows that the constant δ in the statement of the theorem cannot be increased, completing the proof of the theorem. \Box

Theorem 2. If the function f(z) is in the class $V_{p,q,s}(\alpha_1; A, B)$, then for any $\lambda > -p$ the function F(z) defined by (2.2) belongs to $N_1(f)$. The result is sharp in the sense that the constant 1 can not be decreased.

Proof. Suppose that the function f(z) is in the class $V_{p,q,s}(\alpha_1; A, B)$. Then it follows from (2.2) and Lemma 2 that

$$F(z) := z^p - \sum_{n=p+1}^{\infty} b_n z^n$$

= $z^p - \sum_{n=p+1}^{\infty} \frac{\lambda + p}{\lambda + n} a_n z^n \in V_{p,q,s}(\alpha_1; A, B).$ (2.8)

Since by hypothesis $f \in V_{p,q,s}(\alpha_1; A, B)$, we have

$$\sum_{n=p+1}^{\infty} \frac{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)}{p(B-A)} |b_n - a_n|$$

=
$$\sum_{n=p+1}^{\infty} \frac{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)}{p(B-A)} \cdot \frac{n-p}{\lambda+n} a_n$$

$$\leq \sum_{n=p+1}^{\infty} \frac{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)}{p(B-A)} a_n$$

$$\leq 1,$$

which shows that $F(z) \in N_1(f)$.

In order to see the sharpness for an arbitrarily fixed $n \ge p+1$, we consider the function $f: U \to \mathbb{C}$ defined by

$$f(z) = z^p - \frac{p(B-A)}{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)} z^n, \quad z \in U.$$

It is easy to see that $f \in V_{p,q,s}(\alpha_1; A, B)$, and from (2.2) we have

$$F(z) = \frac{\lambda + p}{z^{\lambda}} \int_0^z t^{\lambda - 1} f(t) dt$$

= $z^p - \frac{p(B - A)}{((B + 1)n - (A + 1)p)\Gamma_n(\alpha_1)} \cdot \frac{\lambda + p}{\lambda + n} z^n, \quad z \in U.$

We have

$$\frac{((B+1)n - (A+1)p)\Gamma_n(\alpha_1)}{p(B-A)}|b_n - a_n| = \frac{n-p}{\lambda+n},$$

which shows that the function F belongs to the class $N_{\delta,A,B}(f)$ for any $\delta \leq \frac{n-p}{n+\lambda}$. Since $\frac{n-p}{n+\lambda} \nearrow 1$ as $n \to \infty$, this shows that the statement of the theorem cannot be decreased, concluding the proof.

Acknowledgments

The present investigation is partly supported by Jiangsu Gaoxiao Natural Science Foundation (04KJB110154).

References

 B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.

2. J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, **103**(1999), 1-13.

3. J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed

222

argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5(2002), 115-125.

4. J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Transform. Spec. Funct.*, **14**(2003), 7-18.

5. A. Gangadharan, T. N. Shanmugam and H. M. Srivastava, Generalized hypergeometric functions associated with k-uniformly convex functions, *Comput. Math. Appl.* 44(2002), 1515-1526.

 A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8(1957), 598-601.

Yu. E. Hohlov, Operators and operations in the class of univalent functions, *Izv. Vysš. Učebn. Zaved. Matematika*, **10**(1978), 83-89.

8. Y. C. Kim and H. M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, *Complex Variables Theory Appl.*, **34**(1997), 293-312.

9. J.-L. Liu, Strongly starlike functions associated with the Dziok-Srivastava operator, *Tamkang J.Math.*, **35**(2004), 37-42.

10. J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, *Math. Comput. Modelling*, **38**(2004), 21-34.

11. J.-L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, *Appl. Math. Comput.*, **159**(2004), 485-493.

12. J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., **259**(2001), 566-581.

13. S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, *Canad. J. Math.*, **39**(1987), 1057-1077.

 S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.

15. H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, *Nagoya Math. J.*, **106**(1987), 1-28.

16. H. M. Srivastava and S. Owa(Eds.), *Univalent Functions, Fractional calculus, and Their Applications*, Halsted Press (Ellis Horwood Limited, Chichester), John wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.

17. H. M. Srivastava, S. Owa(Eds.), *Current Topics in Analytic Function Theory, World Scientific Publishing Company*, Singapore, New Jersey, London and Hong Kong, 1992.

Department of Mathematics, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.

E-mail: jlliu@yzu.edu.cn

224