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POISSON’S EQUATION AND GENERALIZED FUNCTIONS

BY

DENNIS NEMZER

Abstract

Solutions of Poisson’s equation in the space of Boehmians

are investigated. In particular, given that the forcing function is

a Boehmian with compact support, necessary and sufficient con-

ditions are established for Poisson’s equation to have a solution

with compact support.

1. Introduction

In this note, we will be concerned with a space of generalized functions

known as Boehmians (see [3]). The space of Schwartz distributions [7] can

be identified with a proper subspace of Boehmians.

Consider Poisson’s equation

∆u = f, (1.1)

where ∆ = ∂2

∂x2

1

+ . . .+ ∂2

∂x2

d

and f ∈ E ′(Rd), the space of distributions on R
d

with compact supports.

Notice that the Dirac delta measure δ ∈ E ′(Rd) and ∆E = δ, where

E is the fundamental solution of (1.1). However, E does not have compact

support. This raises the question; when does (1.1) have a solution in E ′(Rd)?

The following, which is a special case of Theorem 8.4 in [6], gives a

complete answer to the above question for the space of distributions.
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Theorem 1.1. Let f ∈ E ′(Rd). Then (1.1) has a solution in E ′(Rd) if

and only if
bf(z1,...,zd)
z2
1
+...+z2

d

is an entire function, where f̂ is the Fourier transform

of f . When this condition is satisfied, (1.1) has a unique solution u in E ′(Rd);

the support of this u lies in the convex hull of the support of f .

The space of Boehmians contains objects which have compact supports

but are not distributions. Thus, it is natural to ask; is there a similar theorem

for Boehmians?

In [5], a conjecture for the space of Boehmians similar to Theorem 1.1

was proposed by the author for d ≥ 3. In this note, we will establish the

validity of this conjecture.

The proof of Theorem 1.1 relies on the Paley-Wiener theorem for distri-

butions [6]. The proof of the corresponding result, Theorem 3.1, for Boehmi-

ans would be simplified if a Paley-Wiener theorem for Boehmians were avail-

able. Moreover, the case for d = 2 would most likely be included. J. Burzyk

[2] did prove a Paley-Wiener theorem for Boehmians for d = 1.

2. Some Preliminaries

Let C(Rd) denote the space of all continuous functions on R
d, and let

D(Rd) denote the subspace of C(Rd) of all infinitely differentiable functions

with compact support. If x, y ∈ R
d, then x = (x1, x2, . . . , xd),

y = (y1, y2, . . . , yd), x · y = x1y1 + x2y2 + . . .+ xdyd, and ||x|| =
√
x · x .

A sequence ϕn ∈ D(Rd) is called a delta sequence provided:

(i)
∫
ϕn = 1 for all n ∈ N,

(ii)
∫
|ϕn| ≤M for some constant M and all n ∈ N,

(iii) For every ε > 0, there exists nε ∈ N such that ϕn(x) = 0 for ||x|| > ε

and n > nε.

A pair of sequences (fn, ϕn) is called a quotient of sequences if fn ∈
C(Rd) for n ∈ N, {ϕn} is a delta sequence, and fk ∗ ϕm = fm ∗ ϕk for all

k,m ∈ N, where ∗ denotes convolution:

(f ∗ ϕ)(x) =

∫

Rd

f(x− u)ϕ(u)du, (2.1)
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Two quotients of sequences (fn, ϕn) and (gn, ψn) are said to be equiv-

alent if fk ∗ ψm = gm ∗ ϕk for all k,m ∈ N. A straightforward calculation

shows that this is an equivalence relation. The equivalence classes are called

Boehmians. The space of all Boehmians will be denoted by β(Rd) and a typ-

ical element of β(Rd) will be written as F =
[
fn

ϕn

]
. A function f ∈ C(Rd) can

be identified with the Boehmian
[
f∗ϕn

ϕn

]
, where {ϕn} is any delta sequence.

It is convenient to view C(Rd) as a subspace of β(Rd).

For ψ ∈ D(Rd) and F =
[
fn

ϕn

]
∈ β(Rd), F ∗ ψ is defined as

F ∗ ψ =

[
fn ∗ ψ
ϕn

]
. (2.2)

Definition 2.1. A sequence {Fn} ∈ β(Rd) is said to be δ-convergent

to F ∈ β(Rd), denoted δ-limn→∞ Fn = F , if there exists a delta sequence

{ϕn} such that for for all k, n ∈ N, Fn ∗ ϕk, F ∗ ϕk ∈ C(Rd) and, for each

k ∈ N, Fn ∗ ϕk → F ∗ ϕk uniformly on compact sets as n→ ∞.

Let Ω be an open subset of R
d. A Boehmian F is said to vanish on Ω,

provided that there exists a delta sequence {ϕn} such that F ∗ ϕn ∈ C(Rd)

for all n ∈ N, and F ∗ϕn → 0 uniformly on compact subsets of Ω as n→ ∞.

The support of a Boehmian F is the complement of the largest open set

on which F vanishes. The space of all Boehmians with compact support will

be denoted by βc(R
d).

A Boehmian F =
[
fn

ϕn

]
has compact support if and only if there exists

r > 0 such that supp fn ⊂ B(0, r) for all n ∈ N, where B(0, r) is the open

ball centered at the origin with radius r.

Convolution can be extended to β(Rd)×βc(Rd). Let F =
[
fn

ϕn

]
∈ β(Rd)

and G =
[
gn

ψn

]
∈ βc(Rd). Then F ∗G =

[
fn∗gn

ϕn∗ψn

]
∈ β(Rd).

Let F,G ∈ βc(R
d). T. K. Boehme [1] proved that

〈suppF ∗G〉 = 〈suppF 〉 + 〈suppG〉, (2.3)

where 〈 · 〉 denotes the convex hull.
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The Fourier transform of the Boehmian F =
[
fn

ϕn

]
∈ βc(R

d), denoted

F̂ , is the entire function given by

F̂ (z) = lim
n→∞

f̂n(z), z ∈ C
d (2.4)

where f̂n(z) =
∫

Rd fn(x)e
−ix·zdx.

Remarks.

(i) The limit in (2.4) exists and is independent of the representative.

(ii) The convergence in (2.4) is uniform on compact subsets of C
d.

Lemma 2.2. Let F =
[
fn

ϕn

]
∈ βc(R

d) and G ∈ β(Rd). Then,

δ-limn→∞(G ∗ fn) = G ∗ F .

Proof. Let G =
[
gn

ψn

]
. Since δ-limn→∞ fn = F (see [3]), there exists a

delta sequence {γn} such that for all k, n ∈ N, fn ∗ γk, F ∗ γk ∈ C(Rd) and,

for each k ∈ N, fn ∗ γk → F ∗ γk uniformly on compact sets as n→ ∞.

Now, let σn = γn∗ψn, n ∈ N. Then {σn} is a delta sequence and G∗σk =

gk ∗γk ∈ C(Rd), k ∈ N. And, (G∗fn)∗σk = gk ∗ (fn ∗γk) ∈ C(Rd), k, n ∈ N.

Moreover, for each k, (G ∗ fn) ∗ σk = gk ∗ (fn ∗ γk) → gk ∗ (F ∗ γk) =

(G ∗ F ) ∗ σk where the convergence is uniform on compact sets as n→ ∞.

That is, δ-limn→∞(G ∗ fn) = G ∗ F . �

3. The Main Result

Theorem 3.1. Let F ∈ βc(R
d), where d ≥ 3. Then there exists U ∈

βc(R
d) such that ∆U = F if and only if

bF (z1,...,zd)
z2
1
+...+z2

d

is an entire function.

When this condition is satisfied, 〈suppU〉 = 〈suppF 〉 and U ∈ βc(R
d) is

unique.

Proof. Let F =
[
fn

ϕn

]
∈ βc(Rd).

Suppose
bF (z1,...,zd)
z2
1
+...+z2

d

is entire. Then,
bfn(z1,...,zd)
z2
1
+...+z2

d

=
bF (z1,...,zd)bϕn(z1,...,zd)

z2
1
+...+z2

d

is

entire for all n ∈ N.
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Now, ∆(E ∗ fn) = fn, n ∈ N, where E is the fundamental solution for

the Laplacian. By Theorem 4.2 in [5] and Theorem 1.1, supp (E ∗ fn) is

compact for all n ∈ N. Also,

supp (E ∗ fn) ⊂ 〈supp fn〉 ⊂ clB(0, r), (3.1)

for some r > 0 and all n ∈ N. clB(0, r) denotes the closed ball centered at

the origin with radius r.

By Lemma 2.2

δ- lim
n→∞

(E ∗ fn) = E ∗ F. (3.2)

(3.1) and (3.2) give

supp (E ∗ F ) ⊂ clB(0, r).

Thus, supp (E ∗ F ) is compact.

Since ∆(E ∗F ) = (∆E)∗F = δ∗F = F, U = E ∗F is the desired Boehmian.

For the other direction, let U ∈ βc(R
d) such that ∆U = F . Then,

U = E ∗ F (see [5]). Now,

E ∗ fn = E ∗ (F ∗ ϕn) = (E ∗ F ) ∗ ϕn = U ∗ ϕn ∈ βc(R
d), n ∈ N.

By above and the fact that for each n ∈ N, E ∗ fn ∈ D′(Rd), we obtain

E ∗ fn ∈ E ′(Rd), for all n ∈ N.

Also,

∆(E ∗ fn) = fn, n ∈ N.

Since fn ∈ E ′(Rd), Theorem 1.1 yields

f̂n(z1, . . . , zd)

z2
1 + . . . + z2

d

is entire , n ∈ N.

Now,
bF (z1,...,zd)
z2
1
+...+z2

d

=
bF (z1,...,zd)bϕn(z1,...,zd)

z2
1
+...+z2

d

1
bϕn(z1,...,zd) =

bfn(z1,...,zd)
z2
1
+...+z2

d

1
bϕn(z1,...,zd) ,

for all n ∈ N, provided ϕ̂n(z1, . . . , zd) 6= 0.
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Also,

f̂nϕ̂k = f̂kϕ̂n, for all k, n ∈ N.

This follows from

fn ∗ ϕk = fk ∗ ϕn, for all k, n ∈ N.

By the above and the fact that

ϕ̂n → 1 uniformly on compact sets as n→ ∞,

we see that

F̂ (z1, . . . , zd)

z2
1 + . . .+ z2

d

is entire.

Now assume that the condition is satisfied. We see from the previous part

of the proof that E ∗F is the unique solution in βc(R
d) and supp (E ∗ fn) is

compact for all n ∈ N. By (2.3) and Theorem 1.1, we obtain

supp (E ∗ fn) ⊂ 〈supp fn〉 = 〈supp (F ∗ ϕn)〉 = 〈suppF 〉 + 〈suppϕn〉,

for all n ∈ N.

So, given ε > 0, there exists nε ∈ N such that

supp (E ∗ fn) ⊂ 〈suppF 〉 +B(0, ε), (3.3)

for all n ≥ nε.

By Lemma 2.2,

δ- lim
n→∞

(E ∗ fn) = E ∗ F. (3.4)

(3.3) and (3.4) yield

supp (E ∗ F ) ⊂ 〈suppF 〉.

Therefore,

〈supp (E ∗ F )〉 ⊂ 〈suppF 〉. (3.5)

Since

suppF = supp∆(E ∗ F ) ⊂ supp (E ∗ F ),
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we have

〈suppF 〉 ⊂ 〈supp (E ∗ F )〉. (3.6)

So by (3.5) and (3.6),

〈supp (E ∗ F )〉 = 〈suppF 〉,

and the proof is complete. �

From the theorem we obtain a useful corollary which gives necessary

conditions for Poisson’s equation to have a solution in βc(R
d).

Corollary 3.2. Let F ∈ βc(R
d), d ≥ 3. If ∆U = F for some U ∈

βc(R
d), then

F̂ (0) =
∂F̂

∂zi
(0) =

∂2F̂

∂zi∂zj
(0) =

∂3F̂

∂zi∂zj∂zk
(0) = . . . =

∂dF̂

∂z1∂z2 . . . ∂zd
(0) = 0,

for i, j, k, . . . ∈ {1, 2, . . . , d} and i, j, k, . . . distinct.

Remarks. Let f ∈ E ′(Rd). Since there exist harmonic Boehmians

which are not distributions [4], there exist new solutions to Poisson’s equa-

tion ∆u = f . That is, there are solutions which are not distributions.

However, Theorem 3.1 together with Theorem 1.1 show there are no new

solutions in βc(R
d).

Recently, Theorem 3.1 has been proven for the case d = 2 (Poisson’s

Equation and Generalized Functions in the Plane, Bull. Pure Appl. Math.).
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