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EXPLICIT CLASSIFICATION OF PARALLEL

LORENTZ SURFACES

IN 4D INDEFINITE SPACE FORMS WITH INDEX 3

BY

BANG-YEN CHEN

Abstract

A Lorentz surface in an indefinite space form is called par-

allel if its second fundamental form is parallel. Such surfaces are

locally invariant under the reflection with respect to the normal

space at each point. Parallel surfaces are important in geometry

as well as in general relativity since extrinsic invariants of such

surfaces do not change from point to point. Parallel Lorentz sur-

faces in 4D Lorentzian space forms are classified in [16] by Chen

and Van der Veken. Moreover, explicit classification of parallel

Lorentz surfaces in 4D indefinite space forms with index 2 are ob-

tained recently in a series of papers by Chen, Dillen and Van der

Veken [12, 13, 14]. In this paper, we obtain the complete classi-

fication of parallel Lorentz surfaces in 4D indefinite space forms

with index 3. Consequently, the complete classification of parallel

Lorentz surfaces in 4D indefinite space forms are achieved.

1. Introduction

Let E
m
t denote the pseudo-Euclideanm-space with the canonical pseudo-

Euclidean metric of index t given by

g0 = −
t
∑

i=1

dx2
i +

m
∑

j=t+1

dx2
j , (1.1)
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where (x1, . . . , xm) is a rectangular coordinate system of E
m
t . We put

Sks (c) = {x ∈ E
k+1
s | 〈x, x〉 = c−1 > 0}, (1.2)

Hk
s (−c) = {x ∈ E

k+1
s+1 | 〈x, x〉 = −c−1 < 0}, (1.3)

where 〈 , 〉 is the indefinite inner product on E
k+1
t .

Sks (c) and Hk
s (−c) are complete pseudo-Riemannian manifolds with in-

dex s and of constant curvature c and −c, which are called pseudo k-sphere

and pseudo-hyperbolic k-space. These E
k
s , S

k
s and Hk

s are known as indefi-

nite space forms, and will be denoted by Rks . In particular, E
k
1 , S

k
1 and Hk

1

are called Minkowski, de Sitter and anti-de Sitter spacetimes respectively in

relativity theory.

Parallel surfaces are those which have parallel second fundamental form.

Such surfaces are locally invariant under the reflection with respect to the

normal space at each point (cf. [1, 2, 17, 23]). Moreover, extrinsic invariants

of a parallel surface do no change from point to point. Hence, parallel

surfaces form a natural and important family of surfaces in geometry as well

as in general relativity.

For the classification of parallel surfaces in Riemannian space forms, we

refer to [6, 17, 24]. Some special families of parallel surfaces in indefinite

space forms were studied in [18, 19, 21]. The full classification of parallel

Lorentz surfaces in 4D Lorentz space forms was achieved by B.Y. Chen and

J. Van der Veken [16]. Moreover, explicit classification of parallel Lorentz

surfaces in 4D indefinite space forms with index 2 are obtained recently in a

series of papers by B.Y. Chen, F. Dillen and J. Van der Veken [12, 13, 14].

In this paper, we obtain the complete classification of parallel Lorentz

surfaces in 4D indefinite space forms with index 3. Consequently, the com-

plete classification of parallel Lorentz surfaces in 4D indefinite space forms

are achieved.

Comparing results from [16] and the results obtained in this paper shows

that Lorentz surfaces in indefinite space form R4
3(c) with index 3 are quite

different from Lorentz surfaces in Lorentzian space forms R4
1(c) (see Remark

4.1 in particular).
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2. Preliminaries

2.1. Basic notations, formulae and definitions

Let Rms (c) denote an m-dimensional indefinite space form of constant

sectional curvature c and with index s. The curvature tensor R̃ of Rms (c) is

given by

R̃(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y }, (2.1)

where 〈 , 〉 is the inner product associated to the metric.

Let ψ : M2
1 → Rms (c) be an isometric immersion of a Lorentz surface

M2
1 into Rms (c). Denote by ∇ and ∇̃ the Levi-Civita connections on M2

1 and

Rms (c), respectively.

LetX and Y be vector fields tangent toM2
1 and ξ a normal vector field of

M2
1 in Rms (c). The formulae of Gauss and Weingarten give a decomposition

of the vector fields ∇̃XY and ∇̃Xξ into a tangent and a normal component

(cf. [3, 4, 22]):

∇̃XY = ∇XY + h(X,Y ), (2.2)

∇̃Xξ = −AξX +DXξ. (2.3)

These formulae define h, A and D, which are called the second fundamental

form, the shape operator and the normal connection, respectively.

For each normal vector ξ ∈ T⊥
x M

2
1 at x ∈M2

1 , the shape operator Aξ is

a symmetric endomorphism of the tangent plane TxM
2
1 . The shape operator

and the second fundamental form are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 . (2.4)

The mean curvature vector H of M2
1 in Rms (c) is defined by

H =
1

2
trace h. (2.5)

The equations of Gauss, Codazzi and Ricci are given respectively by

R(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y } +Ah(Y,Z)X −Ah(X,Z)Y, (2.6)
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(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.7)
〈

RD(X,Y )ξ, η
〉

= 〈[Aξ, Aη]X,Y 〉 (2.8)

for vector fields X,Y,Z tangent and ξ, η normal to M2
1 , where ∇h is defined

by

(∇Xh)(Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ), (2.9)

and RD is the curvature tensor associated to the normal connection D, i.e.,

RD(X,Y )ξ = DXDY ξ −DYDXξ −D[X,Y ]ξ. (2.10)

A normal vector field ξ is called parallel if Dξ = 0 holds identically.

A surface of a pseudo-Riemannian manifold is called totally geodesic if the

second fundamental form vanishes identically. It is called totally umbilical if

its second fundamental form satisfies h(X,Y ) = 〈X,Y 〉H.

By a CMC surface of a pseudo-Riemannian 3-manifold, we mean a sur-

face whose mean curvature vector H satisfies 〈H,H〉 = constant 6= 0.

2.2. A special coordinate system

Let M2
1 be a Lorentz surface. We may choose a local coordinate system

{x, y} on M2
1 such that the metric tensor is (cf. [15, 20])

g = −E2(x, y)(dx ⊗ dy + dy ⊗ dx) (2.11)

for some positive function E. The Levi-Civita connection of g satisfies

∇ ∂
∂x

∂

∂x
=

2Ex
E

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2Ey
E

∂

∂y
(2.12)

and the Gaussian curvature K is given by

K =
2EExy − 2ExEy

E4
. (2.13)

If we put

e1 =
1

E

∂

∂x
, e2 =

1

E

∂

∂y
, (2.14)
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then {e1, e2} forms a pseudo-orthonormal frame satisfying

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (2.15)

We define the connection 1-form ω by the equations:

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2. (2.16)

From (2.12) and (2.14) we find

∇e1e1 =
Ex
E2

e1, ∇e2e1 = −Ey
E2

e1,

∇e1e2 = −Ex
E2

e2, ∇e2e2 =
Ey
E2

e2.

(2.17)

By comparing (2.16) and (2.17), we get

ω(e1) =
Ex
E2

, ω(e2) = −Ey
E2

. (2.18)

It follows from (2.5) and (2.15) that the mean curvature vector of M2
1

is given by

H = −h(e1, e2). (2.19)

2.3. Reduction theorem of Erbacher-Magid

Reduction Theorem. ([21]) Let ψ : Mn
i → E

m
s be an isometric immersion

of a pseudo-Riemannian n-manifold Mn
i with index i into E

m
s . If the first

normal spaces are parallel, then there exists a complete (n+ k)-dimensional

totally geodesic submanifold E∗ such that ψ(M) ⊂ E∗, where k is the di-

mension of the first normal spaces.

The following is an easy consequence of the reduction theorem (see [9]).

Lemma 2.1. Let ψ : M2
1 → E

m
s be an isometric immersion of a Lorentz

surface M2
1 into E

m
s . If M2

1 is a parallel surface, then there exists a complete

(2+k)-dimensional totally geodesic submanifold E∗ ⊂ E
m
s such that ψ(M) ⊂

E∗, where k is the dimension of the first normal spaces.



316 B. Y. CHEN [September

3. Parallel Lorentz Surfaces in E
4
3

The following theorem provides the complete classification of parallel

Lorentz surfaces in E
4
3.

Theorem 3.1. There are seven families of parallel Lorentz surfaces in the

pseudo-Euclidean 4-space E
4
3 with index 3:

(1) a totally geodesic Lorentz plane E
2
1;

(2) a flat minimal surface lying in a totally geodesic E
3
2 ⊆ E

4
3 defined by

(

0,
a2x2

2
,
x

2
− a4x2

6
+ y,

x

2
+
a4x2

6
− y

)

, a > 0;

(3) an anti-de Sitter space H2
1 (−b2) lying in a totally geodesic E

3
2 ⊆ E

4
3 as a

totally umbilical surface via (1.3);

(4) a non-minimal flat surface lying in a totally geodesic E
3
2 ⊆ E

4
3 defined by

 

0,
1

2b
cos

(√
2b

a
(a2x+by)

)

,
1

2b
sin

(√
2b

a
(a2x+by)

)

,
a2x − by

a
√

2b

!

, a, b > 0;

(5) a non-minimal flat surface lying in a totally geodesic E
3
2 ⊆ E

4
3 defined by

 

0,
a2x + by

a
√

2b
,

1

2b
cosh

(√
2b

a
(a2x−by)

)

,
1

2b
sinh

(√
2b

a
(a2x−by)

)

!

, a, b > 0;

(6) a non-minimal flat surface defined by

a√
2b

(

cos

(√
b(a3x+ by)

a5/2

)

, sin

(√
b(a3x+ by)

a5/2

)

,

cosh

(√
b(a3x− by)

a5/2

)

, sinh

(√
b(a3x− by)

a5/2

))

with a, b > 0;
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(7) a non-minimal flat surface defined by

(

4
√

δ2 + ϕ2 cos
(

λ(bx+
√

δ2+ϕ2y
)

√
2b

√

√

δ2 + ϕ2 + δ
,

4
√

δ2 + ϕ2 sin
(

λ(bx+
√

δ2+ϕ2y
)

√
2b

√

√

δ2 + ϕ2 + δ
,

4
√

δ2 + ϕ2 cosh
(

µ(bx−
√

δ2+ϕ2y
)

√
2b

√

√

δ2 + ϕ2 − δ
,

4
√

δ2 + ϕ2 sin
(

µ(bx−
√

δ2+ϕ2y
)

√
2b

√

√

δ2 + ϕ2 − δ

)

with δ, ϕ 6= 0, b > 0 and

λ =

√

b
√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
, µ =

√

b
√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
.

Conversely, every parallel Lorentz surface M2
1 in E

4
3 is congruent to an

open portion of one of the seven families of surfaces described above.

Proof. It follows from direct long computation that each surface described

in the theorem is a parallel Lorentz surface in E
4
3.

Conversely, assume that L : M2
1 → E

4
3 is a parallel immersion of a

Lorentz surface M2
1 into E

4
3. Then M2

1 has constant Gauss curvature K. We

choose a local coordinate system {x, y} on M2
1 satisfying (2.11). Then we

have (2.12)-(2.19).

If M2
1 is totally geodesic in E

4
3, we get case (1). So, let us assume that

M2
1 is non-totally geodesic in E

4
3.

Case (i): M2
1 is minimal in E

4
3 . In this case, we get h(e1, e2) = 0 according

to (2.19). So, we have

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (3.1)

for some normal vector fields ξ, η, not both zero. Since M2
1 is non-totally

geodesic, without loss of generality we may assume that ξ 6= 0. Let us choose

an orthonormal frame {e3, e4} such that e3 is in the direction of ξ. Hence,

we obtain

h(e1, e1) = αe3, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4 (3.2)

for some functions α, λ, µ with α > 0. Let us put α = a2 with a > 0.
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Since M2
1 is a parallel surface in E

4
3, we find from (2.9), (2.16) and (3.2)

that

De3 = De4 = 0, (3.3)

da = aω, dλ = −2λω, dµ = −2µω. (3.4)

Since a > 0, the first equation in (3.4) shows that ω is exact. Hence, M2
1 is

flat. Thus, we may choose E = 1, which gives ω = 0. Consequently, a, λ, µ

are constants.

Since M2
1 is flat, the equation of Gauss and (3.2) yield λ = 0. Also, by

applying (2.4) and (3.2), we find

Ae3 =

(

0 0

a2 0

)

, Ae4 =

(

0 µ

0 0

)

. (3.5)

By using equation (2.8) of Ricci and (3.5), we find µ = 0. Therefore, we

obtain

Lxx = a2e3, Lxy = 0, Lyy = 0. (3.6)

Also, it follows from De3 = 0 and (3.5) that

∇̃ ∂
∂x

e3 = −a2Ly, ∇̃ ∂
∂y

e3 = 0. (3.7)

After solving system (3.6)-(3.7), we get

L = c0 + c1x+ c2x
2 + c3

(

a4x2

6
− y

)

.

Therefore, by choosing suitable initial conditions, we obtain case (2).

Case (ii): M2
1 is non-minimal in E

4
3. In this case, we have h(e1, e2) 6= 0.

Thus, we may choose an orthonormal frame {e3, e4} such that e3 is in the

direction of h(e1, e2). So, we have

h(e1, e1) = βe3 + γe4, h(e1, e2) = be3, h(e2, e2) = δe3 + ϕe4 (3.8)

for some functions b, β, γ, δ, ϕ with b > 0. Because ∇̄h = 0, we derive from
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(2.16) and (3.8) that De3 = De4 = 0 and

db = 0, dβ = 2βω, dγ = 2γω, dδ = −2δω, dϕ = −2ϕω. (3.9)

From (2.4) and (3.8) we derive that

Ae3 =

(

b δ

β b

)

, Ae4 =

(

0 ϕ

γ 0

)

(3.10)

Since De3 = 0, the equation of Ricci and (3.10) give

δγ = βϕ. (3.11)

The equation of Gauss and (3.8) show that the Gauss curvature K is given

by

K = βδ + γϕ− b2. (3.12)

Case (ii.1): β = γ = δ = ϕ = 0. Equations (3.8) and (3.10) reduce to

h(e1, e1) = 0, h(e1, e2) = be3, h(e2, e2) = 0, (3.13)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 0

0 0

)

. (3.14)

Since De3 = 0, we see from (3.13) that the first normal bundle is a rank

3 parallel normal subbundle of the normal bundle. Therefore, Reduction

Theorem shows that M2
1 lies in a totally geodesic E

3
2 ⊂ E

4
3.

From De3 = 0 and (3.14) we get

∇̃ ∂
∂x

e3 = −bLx, ∇̃ ∂
∂y

e3 = −bLy, (3.15)

which implies that ∇̃X(L + b−1e3) = 0. Hence, we have L + b−1e3 = c0

for some vector c0, which yields 〈L− c0, L− c0〉 = −b−2. Therefore, after

applying a suitable translation, we obtain case (3).

Case (ii.2) At least one of β, γ, δ, ϕ is nonzero. In this case, (3.9) implies

that the connection form ω is an exact 1-form. Hence, M2
1 is flat. Thus, we
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may choose coordinates {x, y} with E = 1, so that we have ∂
∂x

= e1, ∂
∂y

= e2.

Hence, the metric tensor is given by

g = −(dx⊗ dy + dy ⊗ dx). (3.16)

Therefore, we see from (3.9) that β, γ, δ, ϕ are constant.

Case (ii.2.1): β = 0. It follows from (3.11) and (3.12) that ϕ = b2/γ

and δ = 0. Thus, (3.8) and (3.10) reduce to

h(e1, e1) = γe4, h(e1, e2) = be3, h(e2, e2) =
b2

γ
e4, (3.17)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 b2

γ

γ 0

)

. (3.18)

Replacing e4 by −e4 if necessary, we have γ > 0. So, we may put γ = a2

with a > 0. Thus, we have

Lxx = a2e4, Lxy = be3, Lyy =
b2

a2
e4. (3.19)

Moreover, since De3 = 0, we obtain from (3.18) that

∇̃ ∂
∂x

e3 = −bLx, ∇̃ ∂
∂y

e3 = −bLy,

∇̃ ∂
∂x

e4 = −a2Ly, ∇̃ ∂
∂y

e4 = − b
2

a2
Lx.

(3.20)

After solving system (3.19)-(3.20) we have that

L(x, y) = c0 + c1 cos

(√
b(a3x+ by)

a5/2

)

+ c2 sin

(√
b(a3x+ by)

a5/2

)

+ c3 cosh

(√
b(a3x− by)

a5/2

)

+ c4 sinh

(√
b(a3x− by)

a5/2

)

.

This gives case (6) after choosing suitable initial conditions.

Case (ii.2.2): β 6= 0. If δ = 0, it follows from (3.11) and (3.12) that K =

b2 = 0, which is impossible. Thus, we must have δ 6= 0.

Case (ii.2.2.1): γ = 0. It follows from (3.11) that ϕ = 0. Thus, we find from
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K = 0 and (3.12) that βδ = b2. Therefore, (3.8) and (3.10) reduce to

h(e1, e1) = βe3, h(e1, e2) = be3, h(e2, e2) =
b2

β
e3, (3.21)

Ae3 =

(

b b2

β

β b

)

, Ae4 =

(

0 0

0 0

)

. (3.22)

Thus, we have

Lxx = βe3, Lxy = be3, Lyy =
b2

β
e3. (3.23)

Moreover, since De3 = 0, we obtain from (3.22) that

∇̃ ∂
∂x

e3 = −bLx − βLy, ∇̃ ∂
∂y

e3 = −b
2

β
Lx − bLy. (3.24)

If β > 0, we put β = a2, a > 0. Then, after solving system (3.23)-(3.24),

we get

L = c1(a
2x−by) + c2 cos

(√
2b(a2x+by)

a

)

+ c3 sin

(√
2b(a2x+by)

a

)

,

which gives case (4) after choosing suitable initial conditions.

Similarly, if β < 0, then after putting β = −a2 and solving system

(3.23)-(3.24), we obtain case (5).

Case (ii.2.2.2): γ 6= 0. Since β 6= 0, we find from (3.11) that ϕ 6= 0. Thus, it

follows from K = 0 and (3.12) that

β =
b2δ

δ2 + ϕ2
, γ =

b2ϕ

δ2 + ϕ2
. (3.25)

Consequently, (3.8) and E = 1 imply that

Lxx =
b2(δe3 + ϕe4)

δ2 + ϕ2
, Lxy = be3, Lyy = δe3 + ϕe4. (3.26)
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Moreover, it follows from De3 = 0, (3.10), and (3.25) that

∇̃ ∂
∂x

e3 = −bLx −
b2δ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e3 = −δLx − bLy,

∇̃ ∂
∂x

e4 = − b2ϕ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e4 = −ϕLx.
(3.27)

After solving system (3.26)-(3.27), we obtain

L(x, y) =c0 + c1 cos
(

λ(bx+
√

δ2+ϕ2y
)

+ c2 sin
(

λ(bx+
√

δ2+ϕ2y
)

+ c3 cosh
(

µ(bx−
√

δ2+ϕ2y
)

+ c4 sinh
(

µ(bx−
√

δ2+ϕ2y
)

with δ, ϕ 6= 0, b > 0 and

λ =

√

b
√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
, µ =

√

b
√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
.

This gives case (7) after choosing suitable initial conditions. �

4. Parallel Lorentz Surfaces in S4
3(1)

Let ψ : M2
1 → Sms (1) (resp. ψ : M2

1 → Hm
s (−1)) be an isometric

immersion of a Lorentz surface M2
1 into Sms (1) (resp. Hm

s (−1)). Denote by

L = ι ◦ ψ : M2
1 → E

m+1
s (resp. M2

1 → E
m+1
s+1 ) the composition of ψ and

ι : Sms (1) ⊂ E
m+1
s via (1.2) (resp. ι : Hm

s (−1) ⊂ E
m+1
s+1 via (1.3)).

Denote by h andD the second fundamental form and the normal connec-

tion of M2
1 in Sms (1) or in Hm

s (−1). Let h̃ and D̃ be the second fundamental

form and the normal connections of M2
1 in E

m+1
s or of M2

1 in E
m+1
s+1 .

It is easy to verify that ψ is a parallel immersion if and only if L = ι◦ψ
is a parallel immersion. Moreover, it follows from Lemma 1 of [5] that the

mean curvature vector HL of L and the mean curvature vector Hψ are related

by

HL = Hψ − ǫL, (4.1)

with ǫ = 1 or ǫ = −1 depending on ψ : M2
1 → Sms (1) or ψ : M2

1 → Hm
s (−1),

respectively.
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The following result was obtained in [16].

Theorem 4.1. Let M2
1 is a Lorentz parallel surface in S4

1(1) ⊂ E
5
1. Then

M2
1 is congruent to an open part of one of the following two types of surfaces:

(1) a totally umbilical de Sitter space S2
1 given by

(

a sinhu, a cosh u cos v, a cosh u sin v, b, 0
)

, a2 + b2 = 1;

(2) a flat surface S1
1 × S1 given by

(

a sinhu, a cosh u, b cos v, b sin v, c
)

, a2 + b2 + c2 = 1.

Conversely, each surface defined above is a Lorentzian parallel surface

in S4
1(1).

Now, we give the complete classification of parallel Lorentz surfaces in

the pseudo 3-sphere S4
3(1) with index 3.

Theorem 4.2. There are twenty-one families of parallel Lorentz surfaces

in S4
3(1) ⊂ E

5
3 :

(1) a totally geodesic de Sitter space S2
1(1) ⊂ S4

3(1);

(2) a flat minimal surface of a totally geodesic S3
2(1) given by

(

0, cos

(

a2x− y√
2a

)

sinh

(

a2x+ y√
2a

)

, sin

(

a2x− y√
2a

)

sinh

(

a2x+ y√
2a

)

,

cos

(

a2x− y√
2a

)

cosh

(

a2x+ y√
2a

)

, sin

(

a2x− y√
2a

)

cosh

(

a2x+ y√
2a

)

)

, a > 0;

(3) a totally umbilical flat surface of a totally geodesic S3
2(1) given by

(

0, x + xy, y − xy, x− y + xy, 1 + xy
)

;

(4) a totally umbilical de Sitter space S2
1(c2) lying in a totally geodesic S3

2(1)
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given by

(

0,
xy − 1

c(x+ y)
,
2
√

1 − c2 y

c2(x+ y)
,
xy + 1

c(x+ y)
, 1 − 2y

c2(x+ y)

)

, c ∈ (0, 1);

(5) a totally umbilical anti-de Sitter space H2
1 (−c2) lying in a totally geodesic

S3
2(1) given by

 

0,
1

c
tanh

(cx+ cy√
2

)

,
1

c
cosh

(cx− cy√
2

)

sech
(cx+ cy√

2

)

,

1

c
sinh

(cx− cy√
2

)

sech
(cx+ cy√

2

)

,
√

1 + c2

c

!

, c > 0;

(6) a CMC flat surface lying in a totally geodesic S3
2(1) given by

 

0,
“

ax

2
+

y

a

”

cos(ax),
“

ax

2
+

y

a

”

sin(ax), sin(ax) −
“

ax

2
+

y

a

”

cos(ax),

cos(ax) +
“ax

2
+

y

a

”

sin(ax)

!

, a > 0;

(7) a CMC flat surface lying in a totally geodesic S3
2(1) given by

(

0,
(ax

2
− y

a

)

sinh(ax), sinh(ax) −
(ax

2
− y

a

)

cosh(ax),
(ax

2
− y

a

)

cosh(ax),

cosh(ax) −
(ax

2
− y

a

)

sinh(ax)

)

, a > 0;

(8) a CMC flat surface lying in a totally geodesic S3
2(1) given by

(

0,
sinu sinh v√

1 − c2
,
cos u sinh v√

1 − c2
, cos u cosh v +

b sinu sinh v√
1 − c2

,

sinu cosh v − b cos u sinh v√
1 − c2

)

with

u =

√
1 + c(a2x−(1−c)y)√

2a
, v =

√
1−c(a2x+ (1 + c)y)√

2a
, a > 0, 0 < |c| < 1;
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(9) a non-minimal flat surface given by

 

xy− c2y4

24
,
6x+ 3y−c2y3

6
,
cy2

2
,
6x−3y−c2y3

6
, 1 + xy− c2y4

24

!

, 0 6= c ∈ R;

(10) a non-minimal flat surface given by

1

2c2
p

c4+p2

(

c(2c2x+ c4y + p2y) cos(cy), c(2c2x+ c4y + p2y) sin(cy),

2p
√

c4+p2, 2(c4 + p2) sin(cy) − c(2c2x+ c4y + p2y) cos(cy),

2(c4 + p2) cos(cy) + c(2c2x+ c4y + p2y) sin(cy)
)

, c > 0, p ∈ R;

(11) a non-minimal flat surface given by

1

2c2
p

c4+p2

(

2p
√

c4+p2, 2(c4 + p2) sinh(cy) + c(2c2x+ c4y − p2y) cosh(cy),

c(2c2x− c4y − p2y) sinh(cy), c(2c2x− c4y − p2y) cosh(cy),

2(c4 + p2) cosh(cy) + c(2c2x− c4y − p2y) sinh(cy)
)

, c > 0, p ∈ R;

(12) a non-minimal flat surface given by

 

rx2

2
,
r2x3−6y

4
−x

3
,
r2x4−24xy

24
,
r2x3−6y

4
+
x

3
, 1− r2x4−24xy

24

)

, r ∈ R;

(13) a non-minimal flat surface given by

1

c2

 

p

1 − c4, cos
(a2cx− c3y√

2a

)

sinh
(a2cx+ c3y√

2a

)

,

sin
(a2cx− c3y√

2a

)

sinh
(a2cx+ c3y√

2a

)

, sin
(a2cx− c3y√

2a

)

cosh
(a2cx+ c3y√

2a

)

,

cos
(a2cx− c3y√

2a

)

cosh
(a2cx+ c3y√

2a

)

)

, a, c > 0;
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(14) a non-minimal flat surface given by

1
√

2c2

„

cos
(

acx+
c3y

a

)

, sin
(

acx+
c3y

a

)

, cosh
(

acx− c3y

a

)

, sinh
(

acx− c3y

a

)

√

2(1 + c4)
)

, a, c > 0;

(15) a CMC flat surface lying in a totally geodesic S3
2(1) given by

(

0,

√

b−
√
b2 − 1 cos

(

√

b+
√
b2 − 1

(

ax+
√
b2−1
a y

))

4
√

4(b2 − 1)
,

√

b−
√
b2 − 1 sin

(

√

b+
√
b2 − 1

(

ax+
√
b2−1
a y

))

4
√

4(b2 − 1)
,

√

b+
√
b2 − 1 cos

(

√

b−
√
b2 − 1

(

ax−
√
b2−1
a y

))

4
√

4(b2 − 1)
,

√

b+
√
b2 − 1 sin

(

√

b−
√
b2 − 1

(

ax−
√
b2−1
a y

))

4
√

4(b2 − 1)

)

with a > 0, b > 1;

(16) a non-minimal flat surface given by

(

p

a2
,
a4+ p2+2a(2a2x+ (a4+p2)y) tan(ay)

2a2
√

2(a4 + p2) sec(ay)
,

(a4+p2) tan(ay)−2a(2a2x+(a4+p2)y)

2a2
√

2(a4+p2) sec(ay)
,

3(a4+p2) tan(ay)−2a(2a2x+(a4+p2)y)

2a2
√

2(a4+p2) sec(ay)
,

3a4+3p2 + 2a(2a2x+ (a4+p2)y) tan(ay)

2a2
√

2(a4 + p2) sec(ay)

)

with a, p > 0;

(17) a non-minimal flat surface given by

(

p

a2
,
a4+ p2+2a(2a2x− (a4+p2)y) tanh(ay)

2a2
√

2(a4 + p2)sech (ay)
,
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3(a4+p2) tanh(ay)+2a(2a2x−(a4+p2)y)

2a2
√

2(a4+p2)sech (ay)
,

(a4+p2) tanh(ay)+2a(2a2x−(a4+p2)y)

2a2
√

2(a4+p2)sech (ay)
,

3a4+3p2 + 2a(2a2x− (a4+p2)y) tanh(ay)

2a2
√

2(a4 + p2)sech (ay)

)

with a, p > 0;

(18) a non-minimal flat surface given by

(

βϕ
√

δ2+ϕ2−β2ϕ2
,
cos u sinh v√

1 − b2
,
sinu sinh v√

1 − b2
,

√
1−b2

√

δ2+ϕ2 cos u cosh v+βδ sinu sinh v)√
1 − b2

√

δ2 + ϕ2 − β2ϕ2
,

√
1 − b2

√

δ2 + ϕ2 sinu cosh v − βδ cos u sinh v)√
1 − b2

√

δ2 + ϕ2 − β2ϕ2

)

with β, ϕ 6= 0, b ∈ (0, 1) and

u =

√
1−b2

[

βδx−
√

δ2+ϕ2−β2ϕ2x+(δ2+ϕ2)y
]

√

2δ2 + 2ϕ2

√

√

δ2 + ϕ2 − β2ϕ2 − βδ
,

v =

√
1−b2

[

βδx+
√

δ2+ϕ2−β2ϕ2x+(δ2+ϕ2)y
]

√

2δ2 + 2ϕ2

√

√

δ2 + ϕ2 − β2ϕ2 + βδ
;

(19) a non-minimal flat surface given by

(

√√
b2−1(δ2+ϕ2)−bδ

√

δ2+ϕ2

4
√
b2−1

√

2(β2ϕ2−δ2−ϕ2)
cos u,

√√
b2−1(δ2+ϕ2)−bδ

√

δ2+ϕ2

4
√
b2−1

√

2(β2ϕ2−δ2−ϕ2)
sinu,

√√
b2−1(δ2+ϕ2)+bδ

√

δ2+ϕ2

4
√
b2−1

√

2(β2ϕ2−δ2−ϕ2)
cosh v,

√√
b2−1(δ2+ϕ2)+bδ

√

δ2+ϕ2

4
√
b2−1

√

2(β2ϕ2−δ2−ϕ2)
sinh v,

βϕ
√

β2ϕ2−δ2−ϕ2

)
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with β, ϕ 6= 0, bδ <
√

(b2 − 1)(δ2 + ϕ2), b > 1 and

u =

√√
b2 − 1

√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
(
√

b2 − 1x+
√

δ2 + ϕ2y),

v =

√√
b2 − 1

√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
(
√

b2 − 1x−
√

δ2 + ϕ2y);

(20) a non-minimal flat surface given by

(

βϕ
√

δ2+ϕ2−β2ϕ2
,

4
√

δ2+ϕ2

√

bδ−
√

(b2−1)(δ2+ϕ2)
4
√
b2 − 1

√

2(δ2 + ϕ2 − β2ϕ2)
cos u,

4
√

δ2+ϕ2

√

bδ−
√

(b2−1)(δ2+ϕ2)
4
√
b2 − 1

√

2(δ2 + ϕ2 − β2ϕ2)
sinu,

4
p

δ2+ϕ2

q

bδ+
p

(b2
−1)(δ2+ϕ2)

4
√

b2
− 1
p

2(δ2 + ϕ2
− β2ϕ2)

cos v,

4
√

δ2+ϕ2

√

bδ+
√

(b2−1)(δ2+ϕ2)
4
√
b2 − 1

√

2(β2ϕ2 − δ2 − ϕ2)
sin v

)

with β, ϕ 6= 0, bδ >
√

(b2 − 1)(δ2 + ϕ2), b > 1 and

u =

√

bδ +
√
b2 − 1

√

δ2 + ϕ2

√

δ2 + ϕ2
(
√

b2 − 1x+
√

δ2 + ϕ2y),

v =

√

bδ −
√
b2 − 1

√

δ2 + ϕ2

√

δ2 + ϕ2
(
√

b2 − 1x−
√

δ2 + ϕ2y);

(21) a non-minimal flat surface given by

(

1

2
√
b2−1

cos

(√
2((b2−1)x−br2y)√

br

)

,
1

2
√
b2−1

sin

(√
2((b2−1)x−br2y)√

br

)

,

((b2−1)x−br2y)2
2b
√
b2−1

√
4b2−3r2

,
(b2−1)x−br2y√

2b
√
b2−1r

,
b(4b2−3)r2−((b2−1)x−br2y)2

2b
√
b2−1

√
4b2−3r2

)

,

b > 1, r > 0.

Conversely, every parallel Lorentz surface M2
1 in S4

3(1) is congruent to
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an open portion of one of the 21 families of surfaces described above.

Proof. It follows from direct long computation that each surface described

in the theorem is a parallel Lorentz surface in S4
3(1).

Conversely, assume that ψ : M2
1 → S4

3(1) is an isometric immersion of a

Lorentz surface M2
1 into S4

3(1). If M is totally geodesic in S4
3(1), we obtain

case (1). So, let us assume that M2
1 is non-totally geodesic in S4

3(1).

Let us choose a local coordinate system {x, y} on M2
1 which satisfies

(2.11). Then we have (2.12)-(2.19).

Case (i): M2
1 is minimal in S4

3(1). In this case, we get h(e1, e2) = 0. So, we

have

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (4.2)

for some normal vector fields ξ, η, not both zero. Without loss of generality,

we may assume that ξ 6= 0. Let us choose an orthonormal frame {e3, e4}
such that e3 is in the direction of ξ. Hence, we obtain

h(e1, e1) = αe3, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4 (4.3)

for some functions α, λ, µ with α > 0. Let us put α = a2 with a > 0.

Since M2
1 is a parallel surface in S4

3(1), we find from (2.9), (2.16) and

(4.3) that De3 = De4 = 0 and

da = aω, dλ = −2λω, dµ = −2µω. (4.4)

Since a > 0, the first equation in (4.4) shows that ω is exact. Hence, M2
1 is

flat due to the structure equation. Therefore, we may choose E = 1, which

gives ω = 0. Consequently, we see from (4.4) that a, λ, µ are constants.

It follows from (2.14), (4.3), and the formula of Gauss that the immersion

L = ι ◦ ψ : M2
1 → S4

3(1) ⊂ E
5
3 satisfies

Lxx = a2e3, Lxy = L, Lyy = λe3 + µe4. (4.5)
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SinceM2
1 is flat, we find from the equation of Gauss and (4.5) that a2λ = −1.

Also, by applying (2.4) and (4.3), we find

Ae3 =

(

0 − 1
a2

a2 0

)

, Ae4 =

(

0 µ

0 0

)

. (4.6)

By using equation (2.8) of Ricci and (3.4), we obtain µ = 0. Therefore,

(4.5) becomes

Lxx = a2e3, Lxy = L, Lyy = − e3
a2
. (4.7)

Also, it follows from De3 = 0 and (4.6), we have that

∇̃ ∂
∂x

e3 = −a2Ly, ∇̃ ∂
∂y

e3 =
Lx
a2
. (4.8)

After solving system (4.7)-(4.8), we get

L(x, y) = cosh

(

a2x+ y√
2a

)(

c1 cos

(

a2x− y√
2a

)

+ c2 sin

(

a2x− y√
2a

))

+ sinh

(

a2x+ y√
2a

)(

c3 cos

(

a2x− y√
2a

)

+ c4 sin

(

a2x− y√
2a

))

.

Hence, after choosing suitable initial conditions, we obtain case (2).

Case (ii): M2
1 is non-minimal in S4

3(1). In this case, we have h(e1, e2) 6= 0.

Thus, we may choose an orthonormal frame {e3, e4} such that e3 is in the

direction of h(e1, e2). So, we have

h(e1, e1) = βe3 + γe4, h(e1, e2) = be3, h(e2, e2) = δe3 + ϕe4 (4.9)

for some functions b, β, γ, δ, ϕ with b > 0. Since ∇̄h = 0, we obtain from

(2.16) and (4.9) that De3 = De4 = 0, and

db = 0, dβ = 2βω, dγ = 2γω, dδ = −2δω, dϕ = −2ϕω. (4.10)

From (2.4) and (4.9) we have

Ae3 =

(

b δ

β b

)

, Ae4 =

(

0 ϕ

γ 0

)

. (4.11)
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Since De3 = 0, the equation of Ricci and (4.11) give

δγ = βϕ. (4.12)

So, (4.9) and the equation of Gauss imply that the Gauss curvature K is

given by

K = 1 − b2 + βδ + γϕ. (4.13)

Case (ii.1): β = γ = δ = ϕ = 0. Equations (4.9) and (4.11) reduce to

h(e1, e1) = 0, h(e1, e2) = be3, h(e2, e2) = 0, (4.14)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 0

0 0

)

. (4.15)

Case (ii.1.1): b = 1. In this case, M is flat. So, we may choose co-

ordinates {x, y} such that ∂/∂x = e1, ∂/∂y = e2. Thus, we have g =

−(dx ⊗ dy + dy ⊗ dx). Therefore, the immersion L : M2
1 → S4

3(1) ⊂ E
5
2

satisfies

Lxx = 0, Lxy = e3 + L, Lyy = 0. (4.16)

Moreover, since De3 = 0, we obtain from (4.15) that

∇̃ ∂
∂x

e3 = −Lx, ∇̃ ∂
∂y

e3 = −Ly. (4.17)

Hence, after solving system (4.16)-(4.17), we obtain

L(x, y) = c1 + c2x+ c3y + c4xy,

which yields case (3).

Case (ii.1.2): b ∈ (0, 1). Since K = 1 − b2 > 0, we put K = c2 with

c ∈ (0, 1). Let us choose coordinates {x, y} such that

∂

∂x
=

√
2e1

c(x+ y)
,

∂

∂y
=

√
2e2

c(x+ y)
. (4.18)



332 B. Y. CHEN [September

So, the metric tensor is given by

g =
−2

c2(x+ y)2
(dx⊗ dy + dy ⊗ dx), (4.19)

and hence the Levi-Civita connection satisfies

∇ ∂
∂x

∂

∂x
=

−2

x+ y
∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

−2

x+ y
∂

∂y
. (4.20)

Thus, (4.9), (4.19) and (4.20) imply that

Lxx = − 2Lx
x+ y

, Lxy =
2
√

1 − c2e3 + 2L

c2(x+ y)2
, Lyy = − 2Ly

x+ y
. (4.21)

Moreover, since De3 = 0, we obtain from (4.11) that

∇̃ ∂
∂x

e3 = −
√

1 − c2Lx, ∇̃ ∂
∂y

e3 = −
√

1 − c2Ly. (4.22)

After solving system (4.21)-(4.22) we obtain

L(x, y) = c0 +
c1 + c2y + c3xy

x+ y
.

Therefore, after choosing suitable initial conditions, we obtain case (4).

Case (ii.1.3): b > 1. Since K = 1− b2, we put K = −c2 with c > 0. We

choose coordinates {x, y} such that

∂

∂x
= sech

(

cx + cy
√

2

)

e1,
∂

∂y
= sech

(

cx + cy
√

2

)

e2. (4.23)

So, the metric tensor is given by

g = −sech 2
(

cx + cy
√

2

)

(dx⊗ dy + dy ⊗ dx) (4.24)

and the Levi-Civita connection satisfies

∇ ∂
∂x

∂

∂x
= −

√
2c tanh

(

cx + cy
√

2

)

∂

∂x
,

∇ ∂
∂x

∂

∂y
= 0,

∇ ∂
∂y

∂

∂y
= −

√
2c tanh

(

cx + cy
√

2

)

∂

∂y
.

(4.25)
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Thus, we obtain from (4.9), (4.24) and (4.25) that

Lxx = −
√

2c tanh
(

cx + cy
√

2

)

Lx,

Lxy = sech 2
(

cx + cy
√

2

)

(
√

1 + c2e3 + L),

Lyy = −
√

2c tanh
(

cx + cy
√

2

)

Ly.

(4.26)

Moreover, since De3 = 0, we have

∇̃ ∂
∂x

e3 = −
√

1 + c2Lx, ∇̃ ∂
∂y

e3 = −
√

1 + c2Ly. (4.27)

After solving system (4.26)-(4.27) we obtain

L = c0 + c1 sinh(
√

2 cy) − c2 cosh(
√

2 cy)

+
(

c3 − c1 cosh(
√

2 cy) + c2 sinh(
√

2 cy)
)

tanh
(cx+ cy√

2

)

.

Thus, after choosing suitable initial conditions, we obtain case (5).

Case (ii.2) At least one of β, γ, δ, ϕ is nonzero. In this case, (4.10) implies

that ω is an exact 1-form. Hence, M2
1 is flat. So, we may choose coordinates

{x, y} such that E = 1, so that we have ∂
∂x

= e1, ∂
∂y

= e2. Hence, the metric

tensor is given by

g = −(dx⊗ dy + dy ⊗ dx). (4.28)

Therefore, (4.10) implies that β, γ, δ, ϕ are constant.

Case (ii.2.1): β = 0. It follows from (4.12) that γδ = 0. Thus, we have

either γ = 0 or δ = 0.

Case (ii.2.1.1): γ = 0. In this case, it follows from (4.13) that b = 1.

Thus, (4.9) and (4.11) reduce to

h(e1, e1) = 0, h(e1, e2) = e3, h(e2, e2) = δe3 + ϕe4, (4.29)

Ae3 =

(

1 δ

0 1

)

, Ae4 =

(

0 ϕ

0 0

)

. (4.30)
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Thus, we have

Lxx = 0, Lxy = e3 + L, Lyy = δe3 + ϕe4. (4.31)

Moreover, since De3 = 0, we obtain from (4.30) that

∇̃ ∂
∂x

e3 = −Lx, ∇̃ ∂
∂y

e3 = −δLx − Ly,

∇̃ ∂
∂x

e4 = 0, ∇̃ ∂
∂y

e4 = −ϕLx.
(4.32)

Case (ii.2.1.1.1): δ = 0. After solving system (4.31)-(4.32) we have

L(x, y) = c0 + c1xy + c2x+ c3y + c4y
2 − 1

6
c2ϕ

2y3 − 1

24
c1ϕ

2y4,

which yields case (9) after choosing suitable initial conditions.

Case (ii.2.1.1.2): δ = c2, c > 0. After solving system (4.31)-(4.32), we

obtain

L(x, y) = c0 + ((2c2x+c4y+ϕ2y)c1+c4) cos(cy)

+ ((2c2x+c4y+ϕ2y)c2+c3) sin(cy)

which yields case (10).

Case (ii.2.1.1.3): δ = −c2, c > 0. After solving system (4.31)-(4.32) we

obtain

L(x, y) = c0 + (c1+(2c2x−c4y−ϕ2y)c2) cosh(cy)

+ (c3+(2c2x−c4y−ϕ2y)c4) sinh(cy).

This gives case (11).

Case (ii.2.1.2): γ 6= 0 and δ = 0. From (4.13) we get ϕ = (b2 − 1)/γ. Hence,

(4.9), (4.11) and (4.12) give

h(e1, e1) = γe4, h(e1, e2) = be3, h(e2, e2) =
b2 − 1

γ
e4, (4.33)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 b2−1
γ

γ 0

)

. (4.34)
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Thus, we have

Lxx = γe4, Lxy = be3 + L, Lyy =
b2 − 1

γ
e4. (4.35)

Moreover, since De3 = 0, we obtain from (4.34) that

∇̃ ∂
∂x

e3 = −bLx, ∇̃ ∂
∂y

e3 = −bLy,

∇̃ ∂
∂x

e4 = −γLy, ∇̃ ∂
∂y

e4 =
1 − b2

γ
Lx.

(4.36)

Case (ii.2.1.2.1): b = 1. In this case, after solving system (4.35)-(4.36), we

obtain

L(x, y) = c0 + c1x+ c2x
2 + c3(γ

2x3 − 6y) + c4x(γx
3 − 24y).

So, after choosing suitable initial conditions, we get case (12).

Case (ii.2.1.2.2): b ∈ (0, 1). If we put b =
√

1 − c4 and a4 = γ2, then after

solving system (4.35)-(4.36), we obtain

L(x, y) = c0 + cos
(a2cx− c3y√

2a

){

c1 cosh
(a2cx+ c3y√

2a

)

+ c2 sin
(a2cx+ c3y√

2a

)}

+ sinh
(a2cx− c3y√

2a

){

c3 cosh
(a2cx+ c3y√

2a

)

+ c4 sinh
(a2cx+ c3y√

2a

)}

,

which gives case (13).

Case (ii.2.1.2.3): b > 1. If we put b =
√

1 + c4 and a4 = γ2, then after

solving system (4.35)-(4.36), we obtain

L(x, y) = c0 + c1 cosh
(

acx− c3y

a

)

+ c2 sinh
(

acx− c3y

a

)

+ c3 cos
(

acx+
c3y

a

)

+ c4 sin
(

acx+
c3y

a

)

.

Consequently, after choosing suitable initial conditions, we get case (14).

Case (ii.2.2): β 6= 0. We divide this into several cases.

Case (ii.2.2.1): δ = 0. It follows from (4.12) that ϕ = 0. Thus, we find from
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K = 0 and (4.13) that b = 1. Therefore, (4.9) reduces to

h(e1, e1) = βe3 + γe4, h(e1, e2) = e3, h(e2, e2) = 0. (4.37)

Consequently, after interchanging x and y, this case falls into Case (ii.2.1.1).

Case (ii.2.2.2): δ 6= 0 and γ = 0. It follows from (4.12) that ϕ = 0. Thus,

we find from K = 0 and (4.13) that βδ = b2 − 1. Therefore, (4.9) and (4.11)

reduce to

h(e1, e1) = βe3, h(e1, e2) = be3, h(e2, e2) =
b2 − 1

β
e3, (4.38)

Ae3 =

(

b 1−b2
β

β b

)

, Ae4 =

(

0 0

0 0

)

. (4.39)

Thus, we have

Lxx = βe3, Lxy = be3 + L, Lyy =
b2 − 1

β
e3. (4.40)

Moreover, since De3 = 0, we obtain from (4.39) that

∇̃ ∂
∂x

e3 = −bLx − βLy, ∇̃ ∂
∂y

e3 =
b2 − 1

β
Lx − bLy. (4.41)

Case (ii.2.2.2.1): b = 1. If β > 0, we put β = a2, a > 0. Then after solving

system (4.40)-(4.41) we get

L(x, y) =

(

c1 + c2

(

x+
2y

a2

))

cos(ax) +

(

c3 + c4

(

x+
2y

a2

))

sin(ax),

which gives case (6).

If β < 0, we put β = −a2, a > 0. Then after solving system (4.40)-(4.41)

we obtain

L(x, y) =

(

c1 + c2

(

x− 2y

a2

))

cosh(ax) +

(

c3 + c4

(

x− 2y

a2

))

sinh(ax),

which gives case (7).

Case (ii.2.2.2.2): b ∈ (0, 1). If we put |β| = a2, a > 0, then after solving
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system (4.40)-(4.41), we get

L(x, y) = c1 cos

(
√

1 + b(a2x−y+by)√
2a

)

cosh

(
√

1 − b(a2x+y+by)√
2a

)

+ c2 cos

(
√

1 + b(a2x−y+by)√
2a

)

sinh

(
√

1 − b(a2x+y+by)√
2a

)

+ c3 sin

(
√

1 + b(a2x−y+by)√
2a

)

cosh

(
√

1 − b(a2x+y+by)√
2a

)

+ c4 sin

(
√

1 + b(a2x−y+by)√
2a

)

sinh

(
√

1 − b(a2x+y+by)√
2a

)

,

which gives case (8) after choosing suitable initial conditions.

Case (ii.2.2.2.3): b > 1. After solving system (4.40)-(4.41), we obtain case

(15).

Case (ii.2.2.3): δ, γ 6= 0. Since β 6= 0, we find from (4.12) that ϕ 6= 0. Thus,

it follows from K = 0 and (4.13) that

β =
(b2 − 1)δ

δ2 + ϕ2
, γ =

(b2 − 1)ϕ

δ2 + ϕ2
. (4.42)

Consequently, (4.9) and E = 1 imply that

Lxx =
b2 − 1

δ2 + ϕ2
(δe3 + ϕe4), Lxy = be3 + L, Lyy = δe3 + ϕe4. (4.43)

Moreover, it follows from De3 = 0, (4.11), and (4.42) that

∇̃ ∂
∂x

e3 = −bLx +
(1 − b2)δ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e3 = −δLx − bLy,

∇̃ ∂
∂x

e4 =
(1 − b2)ϕ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e4 = −ϕLx.
(4.44)

Case (ii.2.2.3.1): b = 1. We divide this into two cases.

If δ > 0, we put δ = a2 with a > 0. Then after solving system (4.43)-
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(4.44) we obtain

L(x, y) =c0 + c1 cos(ay) + c2 sin(ay) + c3{2a(2a2x+ (a4 + ϕ2)y) cos(ay)

− 3(a4 + ϕ2) sin(ay)}
+ c3{3(a4 + ϕ2) cos(ay) + 2a(2a2x+ (a4 + ϕ2)y) sin(ay)}.

This gives Case (16) after choosing suitable initial conditions.

Similarly, if δ < 0, then after solving system (4.43)-(4.44) and choosing

suitable initial conditions, we obtain case (17).

Case (ii.2.2.3.2): b ∈ (0, 1). After solving system (4.43)-(4.44), we obtain

L(x, y) = c0 + cos u(c1 cosh v + c2 sinh v) + sinu(c3 cosh v + c4 sinh v)

with

u =

√
1−b2

[

βδx−
√

δ2+ϕ2−β2ϕ2x+(δ2+ϕ2)y
]

√

2δ2 + 2ϕ2

√

√

δ2 + ϕ2 − β2ϕ2 − βδ
,

v =

√
1−b2

[

βδx+
√

δ2+ϕ2−β2ϕ2x+(δ2+ϕ2)y
]

√

2δ2 + 2ϕ2

√

√

δ2 + ϕ2 − β2ϕ2 + βδ
.

This gives case (18) after choosing suitable initial conditions.

Case (ii.2.2.3.3): b > 1. We divide this into three cases.

Case (ii.2.2.3.3.1): bδ <
√

(b2 − 1)(δ2 + ϕ2). In this case, after solving sys-

tem (4.43)-(4.44), we obtain

L(x, y) = c0 + c1 cos u+ c2 sinu+ c3 cosh v + c4 sinh v

with β, δ, ϕ 6= 0, b > 1 and

u =

√√
b2 − 1

√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
(
√

b2 − 1x+
√

δ2 + ϕ2y),

v =

√√
b2 − 1

√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
(
√

b2 − 1x−
√

δ2 + ϕ2y).

Hence, after choosing suitable initial conditions, we have case (19).
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Case (ii.2.2.3.3.2): bδ >
√

(b2 − 1)(δ2 + ϕ2). In this case, after solving sys-

tem (4.43)-(4.44), we obtain

L(x, y) = c0 + c1 cos u+ c2 sinu+ c3 cos v + c4 sin v

with β, δ, ϕ 6= 0, b > 1 and

u =

√

bδ +
√
b2 − 1

√

δ2 + ϕ2

√

δ2 + ϕ2
(
√

b2 − 1x+
√

δ2 + ϕ2y),

v =

√

bδ −
√
b2 − 1

√

δ2 + ϕ2

√

δ2 + ϕ2
(
√

b2 − 1x−
√

δ2 + ϕ2y).

Hence, after choosing suitable initial conditions, we have case (20).

Case (ii.2.2.3.3.3): bδ =
√

(b2 − 1)(δ2 + ϕ2). In this case, we have δ > 0.

Let us put δ = r2 with r > 0. Then, after solving system (4.43)-(4.44), we

obtain

L(x, y) = c0 + c1((b
2 − 1)x− br2y)2 + c2

(

x+
br2y

b2 − 1

)

+ c3 cos
(

√
2((b2 − 1)x− br2y)√

br

)

+ c4 sin
(

√
2((b2 − 1)x− br2y)√

br

)

.

Hence, we have case (21) after choosing suitable initial conditions. �

Remark 4.1. After comparing Theorems 4.1 and 4.2, we see that there

are essential difference between Lorentz surfaces in Lorentzian space forms

R4
1(c) and in indefinite space forms R4

3(c) with index 3.

5. Parallel Lorentz Surfaces in H4
3 (−1)

Now, we provide the classification of all parallel Lorentz surfaces in the

pseudo-hyperbolic 4-space H4
3 (−1) with index 3.

Theorem 5.1. There are six families of parallel Lorentz surfaces in H4
3 (−1)

⊂ E
5
4:

(1) a totally geodesic anti-de Sitter space H2
1 (−1) ⊂ H4

3 (−1);
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(2) a flat minimal surface in a totally geodesic H3
2 (−1) ⊂ H4

3 (−1) defined by

1√
2

(

sin
(

ax+
y

a

)

, cos
(

ax+
y

a

)

, cosh
(

ax−y
a

)

, sinh
(

ax− y

a

)

, 0

)

, a > 0;

(3) a totally umbilical anti-de Sitter space H2
1 (−c2) in a totally geodesic

H3
2 (−1) ⊂ H4

3 (−1) given by

1

c

(

0,
√

c2 − 1, tanh
(cx+ cy√

2

)

, sinh(
√

2cy) tanh
(cx+ cy√

2

)

− cosh(
√

2cy),

sinh(
√

2cy) − cosh(
√

2cy) tanh
(cx+ cy√

2

)

)

, c > 1;

(4) a CMC flat surface in a totally geodesic H3
2 (−1) given by

(√√
1+b2−b√

2
4
√

1 + b2
cos
(

√√
1+b2+b(a2x+

√
1+b2y)

a

)

,

√√
1+b2−b√

2
4
√

1+b2
sin
(

√√
1+b2+b(a2x+

√
1+b2y)

a

)

,

√√
1+b2+b√

2
4
√

1 + b2
cosh

(

√√
1+b2−b(a2x−

√
1+b2y)

a

)

,

√√
1+b2+b√

2
4
√

1+b2
sin
(

√√
1+b2−b(a2x−

√
1+b2y)

a

)

)

with a, b, c > 0;

(5) a non-minimal flat surface given by

1√
2
√

1 + b2

(

√
2b, cos

(

kx+
k3

γ2
y
)

, sin
(

kx+
k3

γ2
y
)

,

cosh
(

kx− k3

γ2
y
)

, sinh
(

kx− k3

γ2
y
)

)

, k =
4
√

(1 + b2)γ2, b, γ > 0;
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(6) a non-minimal flat surface given by

(

bϕ
√

δ2+(1+b2)ϕ2
,

√√
1+b2(δ2+ϕ2)−bδ

√

δ2+ϕ2

√
2

4
√

1+b2
√

δ2+(1+b2)ϕ2
cos
(

λ(
√

1+b2x+
√

δ2+ϕ2y
)

,

√√
1+b2(δ2+ϕ2)−bδ

√

δ2+ϕ2

√
2

4
√

1+b2
√

δ2+(1+b2)ϕ2
sin
(

λ(
√

1+b2x+
√

δ2+ϕ2y
)

,

√√
1+b2(δ2+ϕ2)+bδ

√

δ2+ϕ2

√
2

4
√

1+b2
√

δ2+(1+b2)ϕ2
cosh

(

µ(
√

1+b2x−
√

δ2+ϕ2y
)

,

√√
1+b2(δ2+ϕ2)+bδ

√

δ2+ϕ2

√
2

4
√

1+b2
√

δ2+(1+b2)ϕ2
sinh

(

µ(
√

1+b2x−
√

δ2+ϕ2y
)

)

with δ, ϕ 6= 0, b > 0 and

λ =

√√
1 + b2

√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
, µ =

√√
1 + b2

√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
.

Conversely, every parallel Lorentz surface M2
1 in H4

3 (−1) is congruent

to an open portion of one of the six families of surfaces described above.

Proof. It follows from direct long computation that each surface described

in the theorem is a parallel Lorentz surface in H4
3 (−1).

Conversely, assume that ψ : M → H4
3 (−1) is an isometric immersion

of a Lorentz surface M2
1 into H4

3 (−1). If M is totally geodesic in H4
3 (−1),

we obtain case (1). So, let us assume that M2
1 is non-totally geodesic in

H4
3 (−1).

Let us choose a local coordinate system {x, y} on M2
1 which satisfies

(2.11). Then we have (2.12)-(2.19).

Case (i): M2
1 is minimal in H4

3 (−1) . In this case, we get h(e1, e2) = 0. So,

we have

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (5.1)
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for some normal vector fields ξ, η, not both zero. Without loss of generality,

we may assume that ξ 6= 0. Let us choose orthonormal frame {e3, e4} such

that e3 is in the direction of ξ. Hence, we obtain

h(e1, e1) = αe3, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4 (5.2)

for some functions α, λ, µ with α > 0. Let us put α = a2 with a > 0.

Since M2
1 is a parallel surface in H4

3 (−1), we find from (2.9), (2.16) and

(5.2) that

De3 = De4 = 0, (5.3)

da = aω, dλ = −2λω, dµ = −2µω. (5.4)

Since a > 0, the first equation in (5.4) shows that ω is exact. Hence, M2
1 is

flat. Thus, we may choose E = 1, which gives ω = 0. Consequently, a, λ, µ

are constants.

Since M2
1 is flat, the equation of Gauss and (5.2) yield a2λ = 1. Also,

by applying (2.4) and (5.2), we find

Ae3 =

(

0 1
a2

a2 0

)

, Ae4 =

(

0 µ

0 0

)

. (5.5)

By using Eqs. (2.8) of Ricci and (5.5), we obtain µ = 0. Therefore, we

obtain

Lxx = a2e3, Lxy = −L, Lyy =
e3
a2
. (5.6)

Also, it follows from De3 = 0 and (5.5), we have

∇̃ ∂
∂x

e3 = −a2Ly, ∇̃ ∂
∂y

e3 = −Lx
a2
. (5.7)

After solving system (5.6)-(5.7), we get

L(x, y) = c1 sin
(

ax+
y

a

)

+ c2 cos
(

ax+
y

a

)

+ c3 cosh
(

ax− y

a

)

+ c4 sinh
(

ax− y

a

)

.

Hence, after choosing suitable initial conditions, we obtain case (2).
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Case (ii): M2
1 is non-minimal in H4

3 (−1). In this case, we have h(e1, e2) 6= 0.

Thus, we may choose an orthonormal frame {e3, e4} such that e3 is in the

direction of h(e1, e2). So, we have

h(e1, e1) = βe3 + γe4, h(e1, e2) = be3, h(e2, e2) = δe3 + ϕe4 (5.8)

for some functions b, β, γ, δ, ϕ with b > 0. Since ∇̄h = 0, we obtain from

(2.16) and (5.8) that De3 = De4 = 0, and

db = 0, dβ = 2βω, dγ = 2γω, dδ = −2δω, dϕ = −2ϕω. (5.9)

From (2.4) and (5.8) we have

Ae3 =

(

b δ

β b

)

, Ae4 =

(

0 ϕ

γ 0

)

. (5.10)

Since De3 = 0, the equation of Ricci and (5.10) give

δγ = βϕ. (5.11)

So, (5.8) and the equation of Gauss imply that the Gauss curvature K is

given by

K = βδ + γϕ− b2 − 1. (5.12)

Case (ii.1): β = γ = δ = ϕ = 0. Eqs. (5.8) and (5.10) reduce to

h(e1, e1) = 0, h(e1, e2) = be3, h(e2, e2) = 0, (5.13)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 0

0 0

)

. (5.14)

We find from (5.12) that K = −(b2 + 1). Let us put K = −c2 with c =
√
b2 + 1. We choose coordinates {x, y} such that

∂

∂x
= sech

(

cx + cy
√

2

)

e1,
∂

∂y
= sech

(

cx + cy
√

2

)

e2. (5.15)
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So, the metric tensor is given by

g = −sech 2
(

cx + cy
√

2

)

(dx⊗ dy + dy ⊗ dx) (5.16)

and the Levi-Civita connection satisfies

∇ ∂
∂x

∂

∂x
= −

√
2c tanh

(

cx + cy
√

2

)

∂

∂x
,

∇ ∂
∂x

∂

∂y
= 0,

∇ ∂
∂y

∂

∂y
= −

√
2c tanh

(

cx + cy
√

2

)

∂

∂y
.

(5.17)

Thus, we obtain from (5.8), (5.16) and (5.24) that

Lxx = −
√

2c tanh
(

cx + cy
√

2

)

Lx,

Lxy = sech 2
(

cx + cy
√

2

)

(
√

c2 − 1e3 − L),

Lyy = −
√

2c tanh
(

cx + cy
√

2

)

Ly.

(5.18)

Moreover, since De3 = 0, we have

∇̃ ∂
∂x

e3 = −
√

c2 − 1Lx, ∇̃ ∂
∂y

e3 = −
√

c2 − 1Ly. (5.19)

After solving system (5.18)-(5.19) we obtain

L = c0 + c1 cosh(
√

2 cy) + c2 sinh(
√

2 cy)

+
(

c3 − c2 cosh(
√

2 cy) − c1 sinh(
√

2 cy)
)

tanh
(cx+ cy√

2

)

.

Thus, after choosing suitable initial conditions, we obtain case (3).

Case (ii.2) At least one of β, γ, δ, ϕ is nonzero. In this case, (5.9) implies

that ω is an exact 1-form. Hence, M2
1 is flat. So, we may choose coordinates

{x, y} such that E = 1, so that we have ∂
∂x

= e1, ∂
∂y

= e2. Hence, the metric

tensor is given by

g = −(dx⊗ dy + dy ⊗ dx), (5.20)

Therefore, (5.9) implies that β, γ, δ, ϕ are constant.
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Case (ii.2.1): β = 0. It follows from (5.11) and (5.12) that ϕ = (1+b2)/γ

and δ = 0. Thus, (5.8) and (5.10) reduce to

h(e1, e1) = γe4, h(e1, e2) = be3, h(e2, e2) =
1 + b2

γ
e4, (5.21)

Ae3 =

(

b 0

0 b

)

, Ae4 =

(

0 1+b2

γ

γ 0

)

. (5.22)

Thus, we have

Lxx = γe4, Lxy = be3 − L, Lyy =
1 + b2

γ
e4. (5.23)

Moreover, since De3 = 0, we obtain from (5.22) that

∇̃ ∂
∂x

e3 = −bLx, ∇̃ ∂
∂y

e3 = −bLy,

∇̃ ∂
∂x

e4 = −γLy, ∇̃ ∂
∂y

e4 = −1 + b2

γ
Lx.

(5.24)

After solving system (5.23)-(5.24) we have

L(x, y) = c0 + c1 cos
(

kx+
k3

γ2
y
)

+ c2 sin
(

kx+
k3

γ2
y
)

+ c3 cosh
(

kx− k3

γ2
y
)

+ c4 sinh
(

kx− k3

γ2
y
)

with k = 4
√

(1 + b2)γ2. This yields case (5).

Case (ii.2.2): β 6= 0. If δ = 0, it follows from (5.11) and (5.12) that K =

b2 + 1 = 0, which is impossible. Thus, we must have δ 6= 0.

Case (ii.2.2.1): γ = 0. It follows from (5.11) that ϕ = 0. Thus, we find from

K = 0 and (5.12) that βδ = 1 + b2. Therefore, (5.8) and (5.10) reduce to

h(e1, e1) = βe3, h(e1, e2) = be3, h(e2, e2) =
1 + b2

β
e3, (5.25)

Ae3 =

(

b 1+b2

β

β b

)

, Ae4 =

(

0 0

0 0

)

. (5.26)
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Thus, we have

Lxx = βe3, Lxy = be3 − L, Lyy =
1 + b2

β
e3. (5.27)

Moreover, since De3 = 0, we obtain from (5.26) that

∇̃ ∂
∂x

e3 = −bLx − βLy, ∇̃ ∂
∂y

e3 = −1 + b2

β
Lx − bLy. (5.28)

Thus, after solving system (5.27)-(5.28), we get

L(x, y) = c1 cos

(√√
1+b2+b(a2x+

√
1 + b2y)

a

)

+c2 sin

(√√
1+b2+b(a2x+

√
1 + b2y)

a

)

+c3 cosh

(√√
1+b2−b(a2x−

√
1 + b2y)

a

)

+c4 sinh

(√√
1+b2−b(a2x−

√
1 + b2y)

a

)

which gives case (4) after choosing suitable initial conditions.

Case (ii.2.2.2): γ 6= 0. Since β 6= 0, we find from (5.11) that ϕ 6= 0. Thus, it

follows from K = 0 and (5.12) that

β =
(1 + b2)δ

δ2 + ϕ2
, γ =

(1 + b2)ϕ

δ2 + ϕ2
. (5.29)

Consequently, (5.8) and E = 1 imply that

Lxx =
1 + b2

δ2 + ϕ2
(δe3 + ϕe4), Lxy = be3 − L, Lyy = δe3 + ϕe4. (5.30)

Moreover, it follows from De3 = 0, (5.10), and (5.29) that

∇̃ ∂
∂x

e3 = −bLx −
(1 + b2)δ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e3 = −δLx − bLy,

∇̃ ∂
∂x

e4 = −(1 + b2)ϕ

δ2 + ϕ2
Ly, ∇̃ ∂

∂y

e4 = −ϕLx.
(5.31)
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After solving system (5.30)-(5.31), we obtain

L(x, y) = c0+cos
(

λ(
√

1+b2x+
√

δ2+ϕ2y
)

+c2 sin
(

λ(
√

1+b2x+
√

δ2+ϕ2y
)

+c3 cosh
(

µ(
√

1+b2x−
√

δ2+ϕ2y
)

+c4 sinh
(

µ(
√

1+b2x−
√

δ2+ϕ2y
)

with δ, ϕ 6= 0, b > 0 and

λ =

√√
1 + b2

√

δ2 + ϕ2 + bδ
√

δ2 + ϕ2
, µ =

√√
1 + b2

√

δ2 + ϕ2 − bδ
√

δ2 + ϕ2
.

This gives case (6) after choosing suitable initial conditions.

Remark 5.1. Parallel submanifolds in indefinite space forms have parallel

mean curvature vector. The complete classification of parallel space-like and

parallel Lorentz surfaces in indefinite space forms with arbitrary codimension

and arbitrary index are achieved in [7, 8, 11]. For the most updated survey

on submanifolds with parallel mean curvature vector, see [10].
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