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NON-OSCILLATION OF SOLUTIONS OF SECOND AND

THIRD ORDER DIFFERENCE EQUATIONS
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Abstract

In this paper, sufficient conditions are obtained for non-

oscillation of all solutions of a class of linear homogeneous second

order difference equations. These results are used to get sufficient

conditions for non-oscillation of all solutions of a class of linear ho-

mogeneous third order difference equations. An attempt is made

to obtain necessary conditions for non-oscillation of solutions of

second and third order difference equations. Many unsolved prob-

lems are stated.

1. Introduction

Linear difference equations of second order has been the subject of study

for last several years. A good deal of attention is paid to the oscillation/non-

oscillation of solutions of such equations. Although difference equations of

the form

yn+2 + pnyn+1 + qnyn = 0 (1.1)

are viewed as the discrete analogue of differential equations

y′′ + p(t)y′ + q(t)y = 0, (1.2)

all the properties of solutions of (1.2) cannot be carried over to (1.1). If p(t)
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and q(t) are continuous, then (1.2) can always be put in the self-adjoint form

(r1(t)y
′)′ + q1(t)y = 0.

However, (1.1) can be put in the self-adjoint form (see p.252, [5])

∆(p∗n−1∆yn−1) + q∗nyn = 0,

if qn > 0, where ∆ denotes the forward difference operator defined by ∆yn =

yn+1 − yn. We may note that the Fibonacci equation

yn+2 − yn+1 − yn = 0 (1.3)

cannot be put in the self-adjoint form. Linear difference equations of third

order is being studied vigorously in recent years. In this paper, sufficient

conditions are obtained for non-oscillation of all solutions of a class of linear

second order difference equations and these results are used to obtain suffi-

cient conditions for non-oscillation of linear third order difference equations.

By a solution of (1.1), we mean a sequence {yn}, n ≥ 0, of real numbers

which satisfies the recurrence relation (1.1). A solution {yn} of (1.1) is said

to be nontrivial if, for every integer N > 0, there exists an integer n0 > N

such that yn0
6= 0. By a solution of (1.1) we always mean a nontrivial

solution. A solution {yn} of (1.1) is said to be non-oscillatory if there exists

an integer N0 > 0 such that yn > 0 or < 0 for n ≥ N0; otherwise, {yn}
is called oscillatory. In that case, for every integer N > 0, we can find an

integer m > N such that ym−1ym ≤ 0. Equation (1.1) is said to be non-

oscillatory if all its solutions are non-oscillatory. It is said to be weakly non-

oscillatory if it admits a non-oscillatory solution. It is said to be oscillatory if

all its solutions are oscillatory. Such a definition is needed in view of the fact

that the Fibonacci equation (1.3) admits both oscillatory and non-oscillatory

solutions;{(1+
√

5
2 )n} is the positive solution and {(1−

√
5

2 )n} is the oscillatory

solution of (1.3). Such a situation does not arise in case of linear second order

ordinary differential equations or self-adjoint linear second order difference

equations in view of Sturm’s separation theorem. These definitions hold

good for linear third order difference equations. However, self-adjoint linear

third order difference equations are equations with constant coefficients (see

[7]) and Sturm’s separation like theorem is not available for linear third order

difference equations. There are third order difference equations all of whose
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solutions are non-oscillatory or oscillatory or where both oscillatory and non-

oscillatory solutions coexist. Moreover, a solution {yn} of (1.1) is said to

have a simple zero at n0 ≥ 0 if yn0
= 0. It is said to have a sign-changing

zero at n0 ≥ 1 if yn0−1yn0
< 0. The solution {yn} of (1.1) is said to have a

generalized zero at n0 if n0 ≥ 0 is a simple zero or n0 ≥ 1 is a sign-changing

zero.

There are some results concerning necessary and sufficient conditions

for non-oscillation of (1.2) in [14]. It seems that there are not many results

available in the literature concerning necessary and sufficient conditions for

oscillation/non-oscillation of (1.1). Oscillation/nonoscillation of solutions of

self-adjoint linear second order homogeneous difference equations is briefly

discussed in [1, p.320]. The equations considered in this work are more

general than self-adjoint equations. Moreover, simple observation of the

equation can predict the nonoscillation of all solutions of the equation by

our results. But the result concerning nonoscillation of solutions in [1] re-

quires computation. In [2, 4], sufficient conditions for non-oscillation of a

class of self-adjoint second order linear difference equations are obtained.

However, neither the methods nor the results in these papers can be used to

obtain sufficient conditions for non-oscillation of third order linear difference

equations. In [5], some sufficient conditions for oscillation and necessary

conditions for nonoscillation of self-adjoint second order linear homogeneous

difference equations are given. However, our conditions are different from

those conditions. In [15], linear third order difference equations with con-

stant coefficients of the form

yn+3 + ryn+2 + qyn+1 + pyn = 0, n ≥ 0, (1.4)

is studied in great detail and some of the results concerning oscillation of

(1.4) are generalized to corresponding third order difference equations with

variable coefficients in [9, 10]. However, no result in [15] concerning nonoscil-

lation of (1.4) could yet be generalized to variable coefficients. In the fol-

lowing we state some of these results which will be used in Section 3 to

verify that the examples cited satisfy them although the nonoscillation re-

sults obtained in this paper for equations with variable coefficients are not

the generalization of these results.



440 N. PARHI [December

Proposition 1.1. Suppose that p < 0, q = r2

3 , r 6= 0 and

p − qr

3
+

2r3

27
= 0. (1.5)

Then (1.4)is nonoscillatory.

Proposition 1.2. Let p < 0, q < r2

3 , r < 0 and

0 < p − qr

3
+

2r3

27
≤ 2

3
√

3
(
r2

3
− q)3/2

Then (1.4) is nonoscillatory.

Proposition 1.3. If p < 0, r < 0, p
r ≤ q < r2

3 and

2

3
√

3
(
r2

3
− q)3/2 ≥ qr

3
− p − 2r3

27
> 0,

then (1.4) is nonoscillatory.

Proposition 1.4. If p < 0, 0 < q < r2

3 , r < 0 and (1.5) holds, then (1.4)

is nonoscillatory.

Due to non-availability of results providing sufficient conditions for nonoscil-

lation of all solutions of

yn+3 + rnyn+2 + qnyn+1 + pnyn = 0,

several authors obtained sufficient conditions for the existence of a nonoscil-

latory solution of the equation. Usually it is done through fixed point the-

orems. Then the equation is called nonoscillatory. In this paper, sufficient

conditions are obtained for nonoscillation of all solutions of a class of linear

third order difference equations.

2. Nonoscillation of Second Order Difference Equations

In this section, we obtain sufficient conditions as well as necessary con-

ditions for nonoscillation of a class of difference equations of second order.

These results are used to obtain sufficient conditions for nonoscillation of
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third order difference equations in Section 3. We begin with a result from

[11]. For completeness, the proof of the theorem is given.

Theorem 2.1. If qn < 0 and pn does not change sign for large n, then each

of the equations

yn+2 + pnyn+1 + qnyn = 0, n ≥ 0, (2.1)

and

xn+2 − pnxn+1 + qnxn = 0, n ≥ 0, (2.2)

admits both oscillatory and nonoscillatory solutions.

Proof. Setting yn = (−1)nxn, n ≥ 0, we obtain

yn+2 + pnyn+1 + qnyn = (−1)n(xn+2 − pnxn+1 + qnxn).

Hence {yn} is a solution of (2.1) if and only if {xn} is a solution of (2.2).

Moreover, if (2.1) has a nonoscillatory solution, then (2.2) has an oscillatory

solution and vice versa. Thus, to complete the proof of the theorem, it is

enough to show that each of (2.1) and (2.2) admits a nonoscillatory solution.

We consider three cases, viz, pn ≥ 0, or pn ≡ 0 or pn ≤ 0 for n ≥ n0 > 0.

Let pn ≥0 for n ≥n0. For each integer k≥2, let {y(k)
n } be a solution of (2.1)

with y
(k)
k > 0 and y

(k)
k+1 > 0. Then y

(k)
n > 0 for n ∈ {1, 2, . . . , k − 1} because

−qnyn = yn+2 + pnyn+1. Let {{z(1)
n }, {z(2)

n }} be a basis of the solution space

of (2.1). It is possible to obtain sequences {c1k} and {c2k} such that

y(k)
n = c1kz(1)

n + c2kz(2)
n

with c2
1k + c2

2k = 1. As {ci,k}, i = 1, 2, is a bounded sequence, there exists

a subsequence {ci,kj
} such that ci,kj

→ ci for j → ∞. Setting yn = c1z
(1)
n +

c2z
(2)
n , we obtain {yn} is a solution of (2.1), y

(kj)
n → yn as j → ∞ and yn > 0

for n ≥ 1. Thus (2.1) has a positive solution. Writing (2.2) as

xn+2 = pnxn+1 − qnxn,

we observe that it admits a positive solution {xn} with x1 = 0 and x2 > 0.
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If pn ≤ 0, then one may proceed as above by considering (2.2) first and

then (2.1). If pn ≡ 0, then (2.1) and (2.2) reduce to an equation of the form

un+2 + qnun = 0

which admits a positive solution {un} with u1 > 0 and u2 > 0. Thus the

theorem is proved. �

Remark. Similar results are there in [8]. The Fibonacci Eq. (1.3) illustrates

Theorem 2.1.

Theorem 2.2. If an + 1 > 0, then all solutions of

∆2yn − an∆yn = 0, n ≥ 0,

that is,

yn+2 − (an + 2)yn+1 + (an + 1)yn = 0 (2.3)

are non-oscillatory.

Proof. The Eq.(2.3) can be put in the self-adjoint form. In view of Theorem

6.5 ([5], p.261), it is enough to show that (2.3) admits a nonoscillatory

solution. Let {yn} be a solution of (2.3) with yn0
= 0 and yn0+1 > 0

for some integer n0 ≥ 0. Writing (2.3) as

yn+2 − yn+1 = (an + 1)(yn+1 − yn), (2.4)

we observe that

yn0+2 − yn0+1 = (an0
+ 1)(yn0+1 − yn0

) = (an0
+ 1)yn0+1 > 0

implies that yn0+2 > yn0+1 > 0. Similarly,

yn0+3 − yn0+2 = (an0+1 + 1)(yn0+2 − yn0+1) > 0

implies that yn0+3 > yn0+2 > 0. Proceeding as above we obtain yn > 0 for

n ≥ n0 + 1. Thus the proof of the theorem is complete. �

Remark. If an + 1 ≡ 0 for n ≥ 0, then (2.3) reduces to a first order

equation. If an + 1 < 0, for large n, then (2.3) admits both oscillatory and
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nonoscillatory solutions due to Theorem 2.1. If an + 1 ≥ 0 but not ≡ 0,

n ≥ 0, then (2.3) cannot be put in the self-adjoint form and hence Theorem

6.5 in [5] cannot be applied. We have the following theorem in this case:

Theorem 2.3. If an + 1 ≥ 0, then all solutions of (2.3) are nonoscillatory

and these solutions are monotonic increasing or monotonic decreasing.

Proof. We may observe that, {−yn} is a solution of (2.3) if {yn} is its

solution. If possible, let {yn} be an oscillatory solution of (2.3). Hence, for

every integer N > 0, we can find an integer n0 ≥ N such that yn0−1yn0
≤ 0.

Let yn0
= 0. Then yn0+1 6= 0 since {yn} is a nontrivial solution. We may

take, without any loss of generality, that yn0+1 > 0. Writing (2.3) as (2.4)

we obtain

yn0+2 − yn0+1 = (an0
+ 1)yn0+1 ≥ 0

which implies that yn0+2 ≥ yn0+1 > 0. Similarly,

yn0+3 − yn0+2 = (an0+1 + 1)(yn0+2 − yn0+1) ≥ 0

implies that yn0+3 ≥ yn0+2 > 0. Proceeding as above we obtain yn > 0 for

n ≥ n0 + 1, a contradiction to the assumption that {yn} is oscillatory. Let

yn0
6= 0. Without any loss of generality, we may assume that yn0

> 0. Then

yn0−1 ≤ 0. From (2.4) we obtain

yn0+1 − yn0
= (an0−1 + 1)(yn0

− yn0−1) ≥ 0

which implies that yn0+1 ≥ yn0
> 0. Similarly,

yn0+2 − yn0+1 = (an0
+ 1)(yn0+1 − yn0

) ≥ 0

in view of the above inequality. Hence yn0+2 ≥ yn0+1 > 0. Proceeding as

above we get yn > 0 for n ≥ n0, a contradiction. Hence all solutions of

(2.3) are nonoscillatory. Let {yn} be a nonoscillatory solution of (2.3). For

some m ≥ 0, ym+1 − ym ≥ 0 or < 0. From (2.4) it follows that {yn} is

monotonically increasing for n ≥ m in the former case and is monotonically

decreasing in the latter case. Thus the theorem is proved. �
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Remark. If an + 1 ≡ 0, then (2.3) is reduced to the first order equation

yn+2 − yn+1 = 0. Thus yn0
> 0 implies that yn > 0 for n ≥ n0 + 1 and

yn0
< 0 implies that yn < 0 for n ≥ n0 + 1.

Example 1. All solutions of △2yn−△yn = 0 are nonoscillatory by Theorem

2.2. Indeed, {{1n}, {2n}} is a basis of the solution space of the equation. On

expansion, the above equation takes the form yn+2−3yn+1+2yn = 0. As per

the notations in [2, 3], cn+1 = 1, bn+1 = 3 and cn = 2. Hence the assumption

bnbn+1 ≥ 4c2
n is not satisfied. Further, the condition bn ≥ max{cn−1, 4cn}

fails to hold. Thus Theorem 6 and its Corollary 1 in [2] cannot be applied to

this example. Similarly, the nonoscillation results in [3] cannot be applied

to this problem.

Example 2. All solutions of △2yn − (−1)n△yn = 0 are nonoscillatory by

Theorem 2.3. In particular, yn = 1 is a positive solution of the equation.

Theorem 2.2 cannot be applied to this example. Results in [2, 3] cannot

be applied to this example also because the equation cannot be put in the

self-adjoint form.

Remark. Although Theorem 2.3 is stronger than Theorem 2.2, both are

retained because the method of proof is different. Moreover, Theorem 2.2

demonstrates that the results in [2, 3] cannot be applied to certain situations

to which it can be applied even if the equation can be put in the self-adjoint

form.

Corollary 2.4. If an ≥ 0, n ≥ 0 and α > 0 is a ratio of odd integers, then

all solutions of

△2yn − an(△yn)α = 0, n ≥ 0,

that is ,

yn+2 − 2yn+1 + yn − an(yn+1 − yn)α = 0

are nonoscillatory.

One may complete the proof of the corollary by proceeding as in the

proof of Theorem 2.3 after writing the given equation in the form

yn+2 − yn+1 = an(yn+1 − yn)α + (yn+1 − yn)
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Theorem 2.5. If bn ≥ 0 and an − bn + 1 ≥ 0, then all solutions of

△2yn − an△yn − bnyn = 0, n ≥ 0,

that is,

yn+2 − (2 + an)yn+1 + (an − bn + 1)yn = 0 (2.5)

are nonoscillatory.

The proof is similar to that of Theorem 2.3 if (2.5) is written as

yn+2 − yn+1 = (an − bn + 1)(yn+1 − yn) + bnyn+1

Example 3. All solutions of

△2yn +
1

2
△yn − 1

3
yn = 0

are nonoscillatory. Indeed, {{(9+
√

57
12 )n}, {(9−

√
57

12 )n}} is a basis of the solu-

tion space of the equation.

Theorem 2.6. If bn ≤ 0 and an + bn − 1 ≥ 0, n ≥ 0, then all solutions of

(2.5) are nonoscillatory.

Proof. We may note that bn ≤ 0 and an + bn − 1 ≥ 0 imply that an ≥ 1.

If possible, let {yn} be an oscillatory solution of (2.5). Hence, for every

integer N > 0, there exists an integer n0 > N such that yn0−1yn0
≤ 0. Let

yn0
= 0. Then yn0+1 6= 0. Without any loss of generality, we may assume

that yn0+1 > 0. Putting (2.5) in the form

yn+2 − 2yn+1 = an(yn+1 − yn) − (1 − bn)yn (2.6)

we get yn0+2−2yn0+1 = an0
yn0+1 > 0 which implies that yn0+2 > 2yn0+1 > 0

and yn0+2 − yn0+1 > yn0+1. Similarly

yn0+3 − 2yn0+2 = an0+1(yn0+2 − yn0+1) − (1 − bn0+1)yn0+1

> an0+1yn0+1 − (1 − bn0+1)yn0+1

= (an0+1 + bn0+1 − 1)yn0+1

≥ 0
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implies that yn0+3 > 2yn0+2 > 0 and yn0+3 − yn0+2 > yn0+2. Proceeding as

above we obtain yn > 0 for n ≥ n0 + 1, a contradiction.

Let yn0
6= 0. We may take, without any loss of generality, yn0

> 0.

Hence yn0−1 ≤ 0. From (2.6) we get

yn0+1 − 2yn0
= an0−1(yn0

− yn0−1) − (1 − bn0−1)yn0−1

> 0

Hence yn0+1 > 2yn0
> 0 and yn0+1 − yn0

> yn0
. Similarly,

yn0+2 − 2yn0+1 = an0
(yn0+1 − yn0

) − (1 − bn0
)yn0

> an0
yn0

− (1 − bn0
)yn0

= (ano
+ bn0

− 1)

≥ 0

implies that yn0+2 > 2yn0+1 > 0 and yn0+2 − yn0+1 > yn0+1. Proceeding as

above we obtain yn > 0 for n ≥ n0, a contradiction. Thus the proof of the

theorem is complete. �

Example 4. All solutions of

△2yn − 3△yn + 2yn = 0, n ≥ 0,

are nonoscillatory. The set {{3n}, {2n}} is a basis of the solution space of

the equation.

Remark. It may be easily seen that all solutions of (2.5) are oscillatory

if an ≤ −2 and an − bn + 1 ≥ 0. Taking into account the assumptions in

Theorems 2.1, 2.5 and 2.6, we notice that there is no result in the following

cases: (i) −1 < an < 1, bn < 0, (ii) −2 < an < −1 and (iii) an + bn < 1,

an > 1.

In applications, we often come across equations of the form (2.1). In

the following, we state two results in terms of coefficient sequences {pn}
and {qn} which follow from Theorems 2.5 and 2.6 respectively. Comparing

Eqs.(2.1) and (2.5), we obtain pn = −(an + 2) and qn = an − bn + 1. Hence

an = −(pn + 2), bn = −(pn + qn + 1) and an + bn − 1 = −(2pn + qn + 4).
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Theorem 2.7. If pn + qn + 1 ≤ 0 and qn ≥ 0 , then all solutions of (2.1)

are nonoscillatory.

Theorem 2.8. If pn + qn + 1 ≥ 0 and 2pn + qn + 4 ≤ 0, then all solutions

of (2.1) are nonoscillatory.

Remark. We may note that pn + qn + 1 ≥ 0 and 2pn + qn + 4 ≤ 0 imply

that pn + 3 ≤ 0 and hence qn ≥ 2.

Theorem 2.9. Let pn and qn do not change sign for large n. If all solutions

of (2.1) are nonoscillatory, then pn < 0 and qn ≥ 0 for large n.

Proof. If all solutions of (2.1) are nonoscillatory, then qn ≥ 0 for large n in

view of Theorem 2.1. If qn ≡ 0, then (2.1) reduces to a first order equation

yn+2 +pnyn+1 = 0. Hence 0 <
yn+2

yn+1
= −pn implies that pn < 0 for large n. If

{yn} is a nonoscillatory solution of (2.1), then we may take, without any loss

of generality, that yn > 0 for n ≥ n0 > 0. Hence 0 < yn+1 = −pnyn+1− qnyn

for n ≥ n0 implies that 0 ≤ qnyn < −pnyn and pnyn+1 < −qnyn ≤ 0. From

either inequality, it follows that pn < 0 for large n. Thus the theorem is

proved. �

Remark. We observe that pn + qn + 1 ≤ 0 and qn ≥ 0 imply that pn ≤
−(1 + qn) < 0. It indicates a gap −(1 + qn) < pn < 0 between Theorem

2.7 concerning sufficient conditions and Theorem 2.9 concerning necessary

conditions for nonoscillation of (2.1). It seems that all solutions of (2.1) are

oscillatory for qn ≥ 0 and −(1 + qn) < pn < 0. For example, all solutions of

yn+2 − yn+1 + yn = 0 are oscillatory because the roots of its characteristic

equation λ2 − λ + 1 = 0 are given by λ1 = (1+i
√

3)
2 and λ2 = (1−i

√
3)

2 .

Theorem 2.10. Let {an+1} and {an+2} do not change sign. All solutions

of (2.3) are nonoscillatory if and only if an + 1 ≥ 0.

Proof. If an+1 ≥ 0, then all solutions of (2.3) are nonoscillatory by Theorem

2.3. On the other hand, if all solutions of (2.3) are nonoscillatory , then

an + 1 ≥ 0 and −(an + 2) < 0, that is, an + 1 ≥ 0 and an + 2 > 0. Hence

an + 1 ≥ 0. This completes the proof of the theorem. �
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3. Nonoscillation of Third Order Difference Equations

Nonoscillation of solutions of difference equations of third order is dealt

with in this section. Although many results concerning oscillation are known

[9, 10, 12, 13], very few results on nonoscillation [12, 13] are available in the

literature.

Theorem 3.1. If bn ≥ 0 and an − bn + 1 ≥ 0, then all solutions of

△3yn − an△2yn − bn△yn = 0,

that is,

yn+3 − (3 + an)yn+2 + (3 + 2an − bn)yn+1 − (1 + an − bn)yn = 0 (3.1)

are nonoscillatory.

Proof. Let {yn} be a solution of (3.1). Setting zn = △yn in (3.1), we get

△2zn − an△zn − bnzn = 0

Hence {zn} is a solution of (2.5). From Theorem 2.5 it follows that zn > 0

or < 0 for n ≥ n0, that is, △yn > 0 or < 0 for n ≥ n0. Hence {yn} is

nonoscillatory. Since {yn} is an arbitrary solution of (3.1), then all solutions

of (3.1) are nonoscillatory. Thus the theorem is proved. �

Theorem 3.2. If an ≥ 0, then all solutions of

△3yn − an(△2yn)α = 0 (3.2)

are nonoscillatory, where α > 0 is a ratio of odd integers.

The proof follows from Corollary 2.4 if we put zn = △yn in (3.2) and

proceed as in the proof of Theorem 3.1.

Theorem 3.3. If bn ≤ 0 and an + bn − 1 ≥ 0, then all solutions of (3.1)

are nonoscillatory.
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It follows from Theorem 2.6.

Example 5. Consider

△3yn − 3△2yn − 2△yn = 0,

that is,

yn+3 − 6yn+2 + 7yn+1 − 2yn = 0 (3.3)

From Theorem 3.1 it follows that all solutions of (3.3) are nonoscillatory.

The set {{1n}, {(5+
√

17
2 )n}, {(5−

√
17

2 )n}} of solutions of (3.3) is a basis of the

solution space of (3.3). Moreover, from Proposition 1.3 it follows that all

solutions of (3.3) are nonoscillatory.

Example 6. All solutions of

△3yn − 3△2yn + 2△yn = 0,

that is,

yn+3 − 6yn+2 + 11yn+1 − 6yn = 0

are nonoscillatory because {{1n}, {2n}, {3n}} is a basis of the solution space

of the equation. This fact also follows from Theorem 3.3 and Proposition

1.4.

Remark. We may note that the results in Section 2 cannot be applied to

the following third order difference equations:

△3yn − an△2yn − bn△yn − cnyn = 0,

that is,

yn+3 − (3 + an)yn+2 + (3 + 2an − bn)yn+1 − (1 + an + cn − bn)yn = 0, (3.4)

where cn 6= 0.

Remark. The equation

yn+3 + rnyn+2 + qnyn+1 + pnyn = 0 (3.5)
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can be put in the form (3.4) if and only if an = −(3+rn), bn = −(3+2rn+qn)

and cn = −(1+rn +qn+pn). Hence cn = 0 if and only if pn +qn +rn+1 = 0.

Corollary 3.4. If 3 + 2rn + qn ≤ 0, rn + qn ≥ 0 and pn + qn + rn + 1 = 0,

then all solutions of (3.5) are nonoscillatory.

This follows from Theorem 3.1 and the above remark.

Corollary 3.5. If 3+2rn +qn ≥ 0, 7+3rn +qn ≤ 0 and pn+qn+rn+1 = 0,

then all solutions of (3.5) are nonoscillatory.

This follows from Theorem 3.3 and the above remark.

Example 7. Consider

yn+3 −
13

12
yn+2 +

3

8
yn+1 −

1

24
yn = 0 (3.6)

This can be put in the form

△3yn +
23

12
△2yn +

29

24
△yn +

1

4
yn = 0

As {{ 1
2n }, { 1

3n }, { 1
4n }} forms a basis of the solution space of (3.6), then all

solutions of (3.6) are nonoscillatory. All the conditions of Proposition 1.3

are satisfied. Hence all solutions of (3.6) are nonoscillatory. We may note

that Propositions 1.1, 1.2 and 1.4 cannot be applied to this example.

Let {un} be a positive solution of (3.4). The assumption yn = unxn

transforms (3.4) into an equation of the form

△3xn − An△2xn − Bn△xn = 0, (3.7)

where

An = − 1

un+3
(3△un+2 − anun+2) = − 1

un+3
(3un+3 − (an + 3)un+2)

and

Bn = − 1

un+3
(3△2un+1 − 2an△un+1 − bnun+1)
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= − 1

un+3
[3un+3 − 2(an + 3)un+2 + (3 + 2an − bn)un+1]

Equation (3.4) may be written as

yn+3 = Rnyn+2 + Qnyn+1 + Pnyn, (3.8)

where Rn = 3+an, Qn = (bn −2an −3) and Pn = 1+an + cn − bn. Equation

(3.8) can be solved in the closed form (see [6]) in terms of the coefficients

Pn, Qn and Rn and hence in terms of the known sequences {an}, {bn} and

{cn}. Then the solution {un}of (3.4) is known in terms of an, bn and cn.

Thus we have the following theorems:

Theorem 3.6. If Bn ≥ 0 and An − Bn + 1 ≥ 0, then all solutions of (3.4)

are nonoscillatory.

Proof. From Theorem 3.1 it follows that all solutions of (3.7) are nonoscil-

latory. Since yn = unxn and un > 0, then all solutions of (3.4) are nonoscil-

latory. Thus the theorem is proved. �

Theorem 3.7. If Bn ≤ 0 and An + Bn − 1 ≥ 0, then all solutions of (3.4)

are nonoscillatory.

The proof follows from Theorem 3.3 if we proceed as in the proof of

Theorem 3.6.

Remark. We may note that

An − Bn + 1 =
1

un+3
[un+3 − (an + 3)un+2 + (3 + 2an − bn)un+1]

and

An + Bn − 1 = − 1

un+3
[7un+3 − 3(an + 3)un+2 + (3 + 2an − bn)un+1]

Remark.(i) In Example 7, an = −23
12 , bn = −29

24 and cn = −1
4 . For this

example, we take un = 1
3n > 0. Then

3un+3 − 2(an + 3)un+2 + (3 + 2an − bn)un+1 =
1

3n+1
[
1

3
− 13

8
+

9

24
]
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= − 1

72 × 3n+1
< 0.

implies that Bn > 0. Further,

un+3 − (an + 3)un+2 + (3 + 2an − bn)un+1 =
1

3n+1
[
1

9
− 13

36
+

9

24
]

=
1

8 × 3n+1
> 0

implies that An −Bn +1 > 0. From Theorem 3.6 it follows that all solutions

of (3.6) are nonoscillatory which is already established in two different ways

in Example 7.

(ii) Considering Example 7 and un = 1
4n > 0, we obtain

3un+3 − 2(an + 3)un+2 + (3 + 2an − bn)un+1 =
1

4n+1
[
3

16
− 13

24
+

9

24
]

=
1

4n+1 × 48
> 0

Hence Bn < 0. Further, 7un+3 − 3(an + 3)un+2 + (3 + 2an − bn)un+1 =
1

4n+1 [ 7
16 − 13

16 + 9
24 ] = 0 implies that An + Bn − 1 = 0. Hence all solutions of

(3.6) are nonoscillatory by Theorem 3.7.

Remark. The substitution yn = unxn transforms (3.4) into an equation of

the form

△3xn − Bn△xn − Cnxn = 0, (3.9)

if {un} is a positive solution of the equation

3△zn+2 − anzn+2 = 0, (3.10)

where Bn = − 1
un+3

(3△2un+1−2an△un+1−bnun+1) and Cn = − 1
un+3

(△3un−
an△2un − bn△un − cnun) In (3.9), △2xn term is absent. Sometimes it is

useful to study such equations. Since {un} is a solution of (3.10), then

3un+3−(an+3)un+2 = 0. Hence un = 1
3un0

∏n−3
i=n0−2(ai+3), n ≥ n0+1, n0 >

0.

Theorem 3.8. If bn = 2(an + 2), then each of the equations (3.1) and

xn+3 + (3 + an)xn+2 + (3 + 2an − bn)xn+1 + (1 + an − bn)xn = 0 (3.11)
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admits both oscillatory and nonoscillatory solutions.

Proof. The substitution yn = (−1)nxn reduces (3.1) to (3.11). Hence {yn} is

a solution of (3.1) if and only if {xn} is a solution of (3.11). Clearly, {yn} =

{1} is a solution of (3.1).In view of the assumption bn = 2(an+2), {xn} = {1}
is a solution of (3.11). Hence both (3.1) and (3.11) admit nonoscillatory

solution {1} and oscillatory solution {(−1)n}. Thus the theorem is proved.

�

Corollary 3.9. If pn + rn = 0 and qn = −1, then (3.5) admits both oscilla-

tory and nonoscillatory solutions.

Proof. Equation (3.5) can be put in the form (3.1) for an = −3 − rn,

bn = −(3 + 2rn + qn) and pn + qn + rn + 1 = 0. As pn + rn = 0 and qn = −1

imply that bn = 2(an + 2), then the corollary follows from Theorem 3.6. �

Example 8. The equation

yn+3 + yn+2 − yn+1 − yn = 0

admits both oscillatory and nonoscillatory solutions by Corollary 3.7. Clearly,

{1n} and {(−1)n} are solutions of the equation.

Corollary 3.10. If all solutions of (3.1) are nonoscillatory, then bn 6=
2(an + 2).

This follows from Theorem 3.8.

Corollary 3.11. If all solutions of (3.5) are nonoscillatory, then pn+rn 6= 0

or qn 6= −1.

This follows from Corollary 3.7.

4. Summary

There are several problems which remain unresolved. The case that

{pn} in Theorem 2.1 is sign-changing could not be handled by the present

techniques. This would simplify the necessary and sufficient conditions for
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nonoscillation of linear second order difference equations. Sufficient condi-

tions for nonoscillation of all solutions of linear third order difference equa-

tions (3.5) which could be of the type given in Propositions 1.1−1.4 in case of

constant coefficients could not be formulated. Although necessary conditions

as well as sufficient conditions are obtained for nonoscillaton of solutions of

third order equations, neither conditions are both necessary and sufficient.

It is desirable to obtain easily verifiable sufficient conditions for nonoscilla-

tion of (3.4). It seems that the techniques employed here are not adequate

to handle nonoscillation of forced second/third order difference equations.
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