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Abstract

We study pairs of commuting symmetries of a Riemann

surface of genus g ≥ 2, assuming that one of them is fixed point

free. We find necessary and sufficient conditions for an integer p to

be the degree of hyperellipticity of their product, being given the

number of ovals and separabilities of the symmetries. In the last

part of the paper, using well known formula on the number m of

points fixed by the conformal involution of a Riemann surface, we

find all possible values of m that can be attained for the product

of our symmetries.

1. Introduction

Let X be a compact Riemann surface of genus g ≥ 2. By a symmetry of

X we mean an antiholomorphic involution σ of X. By the classical result of

Harnack, the set of fixed points of σ consists of at most g + 1 disjoint simple

closed curves, which are called ovals. If σ has g + 1 − q ovals then we shall

call it an (M − q)-symmetry, according to Natanzon’s terminology from [9].

Furthermore, σ is called separating or non-separating if X \ Fix(σ) has two
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or one connected component respectively. The surface X is p-hyperelliptic if

X admits a conformal involution ρ such that its orbit space X/ρ has genus

p. Such an involution is called a p-hyperelliptic involution.

The study of symmetries of Riemann surfaces is important due to the

categorical equivalence under which a compact, connected Riemann surface

X corresponds to a smooth, complex, projective and irreducible algebraic

curve CX . Furthermore, a Riemann surface X admits a symmetry σ if and

only if the corresponding curve CX has a real form CX(σ) and two such

symmetries give rise to the real forms non-isomorphic over the reals R, if

and only if they are not conjugate in the group Aut±(X) of all, including

antiholomorphic, automorphisms of X. Finally, the set Fix(σ) of points fixed

by σ is homeomorphic to a smooth projective model of the corresponding

real form CX(σ) and in this paper we focus our attention on curves having

two real forms one of which has no R-rational points. The latter are known

in the literature as the purely imaginary curves and they correspond to fixed

point free symmetries of Riemann surfaces.

The aim of this paper is to solve some of the problems brought up by

Bujalance and Costa in [2], which were also studied in [5, 8], for the case

of at least one of the symmetries being fixed point free and fill in this way

some of the gaps existing in the literature of the topic. In [8] we studied

the necessary and sufficient conditions for an integer p to be the degree of

hyperellipticity of the product of two (M − q)- and (M − q′)-symmetries,

with given separabilities, on a Riemann surface of genus g ≥ q + q′ + 1.

Here we assume that our symmetries commute and that q′ = g + 1, which

means that one of the symmetries, say σ, is a fixed point free symmetry,

hence in particular σ is a non-separating symmetry. Taking into account

separability of the (M − q)-symmetry τ , we give necessary and sufficient

conditions for an integer p to be the degree of hyperellipticity of στ . Later,

we remind the well known formula on the number m of points fixed by a p-

hyperelliptic involution on a Riemann surface of genus g and, as a byproduct

of our studies, we obtain necessary and sufficient conditions for an integer

m to be the number of points fixed by στ .

For our considerations we recall some of the results given by Izquierdo

and Singerman in [6] and following their terminology, we shall say that a

Riemann surface of genus g admits the pair (0, t)2, if it admits a pair of

commuting symmetries σ, τ where σ is fixed point free and τ has t ovals.
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2. Preliminaries

We shall prove our results using theory of non-euclidean crystallographic

groups (NEC groups in short), by which we mean discrete and cocompact

subgroups of the group G of all, including orientation reversing, isometries of

the hyperbolic plane H. The algebraic structure of such a group Λ is coded

in the signature:

s(Λ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1
), . . . , (nk1, . . . , nksk

)}), (1)

where the brackets (ni1, . . . , nisi
) are called the period cycles, the integers

nij are the link periods, mi - the proper periods and finally h is the orbit

genus of Λ.

A group Λ with signature (1) has the presentation with the following

generators, called canonical generators :

x1, . . . , xr, ei, cij , 1 ≤ i ≤ k, 0 ≤ j ≤ si and a1, b1, . . . , ah, bh if the sign is +

or d1, . . . , dh otherwise,

and relators:

xmi

i , i = 1, . . . , r, c2
ij−1, c

2
ij , (cij−1cij)

nij , ci0e
−1
i cisi

ei, i = 1, . . . , k, j = 1, . . . , si

and

x1 . . . xre1 . . . eka1b1a
−1
1 b−1

1 . . . ahbha−1
h b−1

h or x1 . . . xre1 . . . ekd
2
1 . . . d2

h,

according to whether the sign is + or −. The elements xi are elliptic transfor-

mations, ai, bi hyperbolic translations, di glide reflections and cij hyperbolic

reflections. Reflections cij−1, cij are said to be consecutive. Every element

of finite order in Λ is conjugate either to a canonical reflection or to a power

of some canonical elliptic element xi, or to a power of the product of two

consecutive canonical reflections.

Now an abstract group with such a presentation can be realized as an

NEC group Λ if and only if the value

2π
(

εh + k − 2 +

r
∑

i=1

(

1 −
1

mi

)

+
1

2

k
∑

i=1

si
∑

j=1

(

1 −
1

nij

))

,
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where ε = 2 or 1 according to the sign being + or −, is positive. This value

turns out to be the hyperbolic area µ(Λ) of an arbitrary fundamental region

for such a group and we have the following Hurwitz-Riemann formula

[Λ : Λ′] = µ(Λ′)/µ(Λ)

for a subgroup Λ′ of finite index in an NEC group Λ.

Now NEC groups having no orientation reversing elements are classical

Fuchsian groups. They have signatures (g; +; [m1, . . . ,mr]; {−}), which shall

be abbreviated as (g; m1, . . . ,mr). Given an NEC group Λ, the subgroup Λ+

of Λ consisting of the orientation preserving elements is called the canonical

Fuchsian subgroup of Λ and for a group with signature (1) it has, by [11],

signature

(εh + k − 1; m1,m1, . . . ,mr,mr, n11, . . . , nksk
). (2)

A torsion free Fuchsian group Γ is called a surface group and it has

signature (g;−). In such a case H/Γ is a compact Riemann surface of genus g

and conversely, each compact Riemann surface can be represented as such an

orbit space for some Γ. Furthermore, given a Riemann surface so represented,

a finite group G is a group of automorphisms of X if and only if G = Λ/Γ

for some NEC group Λ.

The following result from [4] is crucial for the paper

Theorem 2.1. Let X = H/Γ be a Riemann surface with the group G of all

automorphisms of X, let G = Λ/Γ for some NEC group Λ and let θ : Λ → G

be the canonical epimorphism. Then the number of ovals of a symmetry τ

of X equals
∑

[C(G, θ(ci)) : θ(C(Λ, ci))],

where the sum is taken over a set of representatives of all conjugacy classes

of canonical reflections whose images under θ are conjugate to τ .

For a symmetry τ we shall denote by ‖τ‖ the number of its ovals. The

index wi = [C(G, θ(ci)) : θ(C(Λ, ci))] will be called a contribution of ci to

‖θ(ci)‖.
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3. Existence of Given Pairs of Symmetries

Let X be a Riemann surface of genus g ≥ 2, having a fixed point free

symmetry σ and an (M − q)-symmetry τ and let us assume that these sym-

metries commute. Now X = H/Γ, σ and τ are the images of orientation

reversing elements of Λ and G = Z2 ⊕ Z2 = 〈σ, τ〉 = Λ/Γ for some Fuchsian

surface group Γ being a normal subgroup of an NEC-group Λ with signature

(h;±; [2, r. . ., 2]; {(−)k}). (3)

Let θ : Λ → G = Λ/Γ denote the canonical projection and let Γσ and Γτ be

the inverse images of the groups generated by σ and τ , respectively. These

are the subgroups of Λ of index 2. By (2) they have neither proper periods

nor link periods and the separability of τ depends on the sign in signature of

Γτ ; for the sign +, symmetry τ is separating and for the sign − it is a non-

separating one. Furthermore, the number of ovals of τ equals the number of

empty period cycles in Γτ . The product στ is a p-hyperelliptic involution,

where p is the orbit genus of Λ+. In this part of the paper we shall use the

Lemma below, which follows easily from the Theorem 2.1

Lemma 3.1. Let G = Z2
2 = Λ/Γ be the group of automorphisms of a

Riemann surface X = H/Γ generated by two symmetries σ, τ of which σ is

fixed point free and let C be an empty period cycle of Λ. Then reflection ci

corresponding to C contributes to ‖τ‖ with 1 oval if θ(ei) 6= 1 and with 2

ovals otherwise.

Proof. Let θ : Λ → G denote the canonical epimorphism. The centralizer of

any element in G has order 4. Since ci and ei belong to C(Λ, ci), we have

that wi = 1 if θ(ei) 6= 1 and wi = 2 otherwise. �

First we shall prove the following easy fact concerning existence of pairs

(0, g + 1 − q)2 on a Riemann surface of genus g. The result below can be

found in [6], however there is an error in the Case 2 of the proof (see p. 13

of [6]), which we fix here.

Proposition 3.2.(see also Theorem 3.2, 4.8 and 4.9 in [6]) There exists a

Riemann surface of genus g admitting the pair (0, g + 1 − q)2 if and only if

q is even.
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Proof. Let us assume first that X is a Riemann surface of genus g, admitting

a pair (0, g + 1 − q)2. Now Aut(X) = G = 〈σ, τ〉 = Z2
2 = Λ/Γ for some

surface Fuchsian group Γ and an NEC group Λ with signature (3). Also,

the canonical epimorphism θ : Λ → G takes all the canonical reflections to

τ and the canonical elliptic generators to στ . Observe that an integer r has

the same parity as the number k′ of period cycles Ci for which θ(ei) 6= 1, as

the relation θ(x1 . . . xre1 . . . ek) = 1 holds in G. Now, by Lemma 3.1, each

of the empty period cycles Ci contributes with 1 or 2 ovals to symmetry τ ,

depending on if θ(ei) 6= 1 or not. Hence, the number of ovals g + 1 − q has

the same parity as k′. Moreover, by the Hurwitz-Riemann formula we have

π(g − 1) = µ(Λ)

= 2π(εh − 2 + r/2 + k)

and so g = 2εh + r − 3 + 2k. This means that g has parity different than r.

Hence g and g + 1 − q have different parity and so q must be even.

The proof of sufficient condition can be found in [6], but we remind

it here for the completeness of the proof. Assume first that g is odd and

consider an NEC group Λ with signature

(1;−; [2, q. . ., 2]; {(−)(g+1−q)/2}).

Define an epimorphism θ : Λ → G = Z2⊕Z2 = 〈σ, τ〉 by taking the canonical

elliptic generators to στ , canonical reflections to τ and generators ei to 1.

Then by the Hurwitz-Riemann formula for Γ = ker θ, X = H/Γ is a Riemann

surface of genus g admitting a pair (0, g + 1 − q)2 by Lemma 3.1. This also

fixes an error in Case 2 on page 13 in [6].

Let now g be even. Consider an NEC group Λ with signature

(0; +; [2, q+2. . . , 2]; {(−)(g+2−q)/2})

and an epimorphism θ : Λ → G = Z2 ⊕ Z2 = 〈σ, τ〉 given by θ(e1) = θ(xi) =

στ for all i, θ(ci) = τ for all i and θ(ei) = 1 for i > 1. Again by the Hurwitz-

Riemann formula for Γ = ker θ, X = H/Γ is a Riemann surface of genus g

admitting a pair (0, g + 1 − q)2 by Lemma 3.1. �

Observe that for q = g + 1 from the above Proposition it follows that
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Corollary 3.3. A Riemann surface of genus g admits the pair of fixed point

free commuting symmetries if and only if g is odd.

4. Degree of Hyperellipticity of the Product

Recall, that by the degree of hyperellipticity of an involution ρ we un-

derstand the genus of the orbit space X/ρ. In [8] we gave the necessary

and sufficient conditions for a Riemann surface of genus g to admit a pair of

commuting symmetries with given numbers of ovals, separabilities and the

degree of hyperellipticity of the product, assuming that both symmetries

have ovals. Here we shall deal the case when at least one of the symmetries

in the pair is a fixed point free symmetry.

The result below, which follows easily from [3], is crucial for the next

part of the paper

Let Λ′ be a normal subgroup of an NEC-group Λ. A canonical generator

of Λ is proper (with respect to Λ′) if it does not belong to Λ′. The elements

of Λ expressable as a composition of proper generators of Λ′ are the words

of Λ (with respect to Λ′). With these notations we have.

Lemma 4.1.(c.f. Theorem 2.1.3) Let us suppose that Λ′ is a normal subgroup

of Λ and [Λ : Λ′] is even. If Λ has sign +, then Λ′ has sign + if and only if

no orientation reversing word belongs to Λ′. If Λ has the sign −, then Λ′ has

the sign − if and only if either a glide reflection of the canonical generators

of Λ or an orientation reversing word belongs to Λ′.

Now we shall prove the following Lemma, concerning separability of the

symmetry, which is the analogue of Lemma 3.2 from [8] for the case of one

symmetry in the pair being fixed point free.

Lemma 4.2. Let X = H/Γ be a Riemann surface of genus g, admitting a

pair (0, g +1− q)2. Let G = Λ/Γ be the group generated by these symmetries

and let θ : Λ → G denote the canonical projection. Then, the following

conditions hold:

(1) Symmetry τ is separating if and only if one of the following holds

(a) sgn(Λ) = −, r = 0, θ(ei) = 1, θ(dj) = σ for all i and j;

(b) sgn(Λ) = +, and r > 0 or θ(ei) 6= 1, or θ(aj) 6= 1, or θ(bj) 6= 1 for

some i or j.
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(2) Symmetry τ is non-separating if and only if one of following holds

(a) sgn(Λ) = −, h > 1, θ(di) 6= θ(dj) for some i 6= j;

(b) sgn(Λ) = −, h ≥ 1, θ(di) = θ(dj) = σ for all i, j and r > 0;

(c) sgn(Λ) = −, h ≥ 1, θ(di) = θ(dj) = σ for all i, j and θ(ei) 6= 1 for

some i.

Proof. Let σ and τ be two commuting symmetries of a Riemann surface X

and let λ and λ′ be two orientation reversing elements of an NEC group Λ

with signature (3) such that θ(λ) = σ and θ(λ′) = τ .

Assume first that τ is separating. It is easy to see that if sgn(Λ) =

−, h > 0 then it must be θ(d1) = . . . = θ(dh) = σ, r = 0, θ(ei) = 1 for

all i. Indeed, otherwise we would have either a canonical glide reflection

or an orientation reversing word λx or λei in Γτ and so τ would be non-

separating. Now if sgn(Λ) = +, there are no canonical glide reflections in Λ,

hence there must be a canonical elliptic generator x, generator ei, ai or bi for

some i with nontrivial image under θ. Indeed, otherwise all the orientation

reversing elements in Λ would be mapped to λ′.

Conversely, if any of conditions (a),(b) holds, then τ must be separating

because no orientation reversing word belongs to Γτ .

Let now τ be non-separating. If none of the conditions required in

theorem holds we have two possible cases: {sgn(Λ) = +, r > 0 or θ(ei) 6= 1

for some i} or {sgn(Λ) = −, r = 0, θ(ei) = 1 for all i and θ(di) = θ(dj) for

all i, j}. In both cases τ would be separating by the first part of the proof.

Conversely, if condition (a) holds, then τ must be non-separating as one

of the canonical glide reflections belongs to Γτ . Similarly, if one of conditions

(b), (c) holds, then τ must be non-separating as we have an orientation

reversing word d1x or d1ei in Γτ . �

In the following Propositions we assume that σ and τ are commuting

fixed point free and (M − q)- symmetries of a Riemann surface X of genus

g. Observe that by Proposition 3.2 in such case q must be even. Let also

G = 〈σ, τ〉 = Λ/Γ for an NEC group Λ having signature (3) and στ be a

p-hyperelliptic involution.

Proposition 4.3. If τ is separating, then q ≤ g, (g − 1 − q)/2 ≤ p ≤

(g + 1)/2. Furthermore, if g is even and q = g, then p is even.
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Proof. Obviously q ≤ g as τ has ovals. As the group Λ has signature of the

form (3) and p = εh + k − 1, by the Hurwitz-Riemann formula we get

π(g − 1) = µ(Λ)

= 2π(εh − 2 + k + r/2)

≥ 2π(p − 1 + r/2)

which gives p ≤ (g + 1)/2 as r ≥ 0. For the proof of the lower bound for p

observe that by Lemma 3.1 we have 2k ≥ g + 1− q. Hence p = εh + k− 1 ≥

h + (g + 1 − q)/2 − 1 = h + (g − 1 − q)/2. Observe now that if q = g, then

τ has 1 oval and so k = 1 with θ(e1) = στ for the canonical epimorphism

θ : Λ → G. Now, as τ is separating, by Lemma 4.2, we have that Λ has sign

+. Therefore p = 2h is even. �

Proposition 4.4. If τ is non-separating, then 0 < q ≤ g and (g+1−q)/2 ≤

p ≤ (g + 1)/2.

Proof. Clearly q must hold condition 0 < q ≤ g as τ has ovals and is non-

separating. The upper bound for p can be found in exactly the same way

as in the previous Proposition. To obtain the lower bound observe that

because τ is non-separating, from part (2) in Lemma 4.2 it follows that

sgn(Λ) = −, h ≥ 1. As before, we get p = h + k − 1 ≥ (g + 1 − q)/2 which

proves the Proposition. �

The next Theorems show that every value of p, within the ranges given

in the previous Propositions, can be attained. In order to simplify each

theorem’s proof we shall assume that an epimorphism θ : Λ → G will be

defined on canonical reflections c1, . . . , ck of Λ sending them to τ as by (3)

there are no nonempty period cycles in Λ. Observe also that it must be

θ(xi) = στ for arbitrary canonical elliptic generator xi of Λ. Unless directly

stated otherwise, we take θ(di) = σ for any canonical glide reflection and

θ(ai) = θ(bi) = 1 for all the canonical hyperbolic generators.

Theorem 4.5. Given g ≥ 2, q and p such that q ≤ g is even and (g − 1 −

q)/2 ≤ p ≤ (g + 1)/2 with p even for q = g, there exists a Riemann surface

of genus g having a fixed point free symmetry and a separating (M − q)-

symmetry, which commute and whose product is a p-hyperelliptic involution.
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Proof. Let first g be odd, p ≡ (g−1−q)/2 mod 2 and consider an NEC-group

Λ with signature

(h; +; [2, g+1−2p. . . , 2]; {(−)k}), (4)

where k = (g + 1 − q)/2, h = (p − (g − 1 − q)/2)/2. Then for p < (g + 1)/2

we have r > 0 and an epimorphism θ : Λ → G defined by θ(ei) = 1 for all

i gives rise to a configuration of fixed point free symmetry and separating

(M−q)-symmetry whose product is a p-hyperelliptic involution by Lemmata

3.1 and 4.2. Now if p = (g+1)/2 then h > 0 and we take θ(a1) = θ(b1) = στ

and also in such case we obtain the configuration in question.

Let now g be odd and p 6≡ (g − 1 − q)/2 mod 2 and consider an NEC-

group Λ with signature (4) where k = (g+3−q)/2, h = (p−(g+1−q)/2)/2.

Then an epimorphism θ : Λ → G defined by θ(e1) = θ(e2) = στ , θ(ei) = 1

for all i > 2 gives rise to a configuration of symmetries we looked for, by

Lemmata 3.1 and 4.2.

Assume now that g is even and p ≡ (g−q)/2 mod 2. Again, take an NEC

group Λ with signature (4) where k = (g + 2 − q)/2, h = (p − (g − q)/2)/2.

Then an epimorphism θ : Λ → G defined by θ(e1) = στ , θ(ei) = 1 for all

i > 1 as above by Lemmata 3.1 and 4.2 gives rise to a configuration of fixed

point free symmetry and separating (M − q)-symmetry whose product is a

p-hyperelliptic involution.

Let finally g be even and p 6≡ (g−q)/2 mod 2 and let Λ be an NEC group

with signature (4) where k = (g + 4− q)/2, h = (p− (g + 2 − q)/2)/2. Then

an epimorphism θ : Λ → G defined by θ(ei) = στ for i ≤ 3 and θ(ei) = 1

for all i > 3 again leads to a configuration of fixed point free symmetry and

separating (M − q)-symmetry whose product is a p-hyperelliptic involution

by Lemmata 3.1 and 4.2. �

Theorem 4.6. Given g ≥ 2, q and p such that 0 < q ≤ g is even and

(g + 1 − q)/2 ≤ p ≤ (g + 1)/2, there exists a Riemann surface of genus g

having a fixed point free symmetry and a non-separating (M − q)-symmetry,

which commute and whose product is a p-hyperelliptic involution.

Proof. Let first g be odd and consider an NEC group Λ with signature

(h;−; [2, g+1−2p. . . , 2]; {(−)k}) (5)
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where h = p − (g − 1 − q)/2 and k = (g + 1 − q)/2. Now for p < (g + 1)/2

we have r > 0 and an epimorphism θ : Λ → G defined by θ(ei) = 1 for

all i gives rise to a configuration of fixed point free symmetry σ and non-

separating (M−q)-symmetry τ whose product is a p-hyperelliptic involution

by Lemmata 3.1 and 4.2. For p = (g + 1)/2 we have h ≥ 2 as q ≥ 2, hence

we may take epimorphism θ to be defined in the same way on all generators

except θ(d1) = τ . Again, we obtain the configuration in question.

Let now g be even and take an NEC group Λ with signature (5) for

h = p − (g − q)/2 and k = (g + 2 − q)/2. An epimorphism defined as

θ(e1) = στ and θ(ei) = 1 for i > 1 as above gives rise to the configuration

we looked for. �

Recall that the number m of points fixed by the p-hyperelliptic product

στ equals 2g + 2−4p. Using this formula we easily obtain all possible values

of m that might be realized as the number of points fixed by στ .

Corollary 4.7. If g is even, then m ≡ 2 mod 4, if g is odd then m ≡

0 mod 4. Moreover any integer µ ≤ 2g + 2 holding µ ≡ 2 mod 4 for even g

or µ ≡ 0 mod 4 for g odd can be realized as the number of points fixed by the

product of two commuting symmetries with one being fixed point fee.

Proof. For the proof of this Corollary we shall use the equality m = 2g+2−4p

for p being the degree of hyperellipticity of στ . If g = 2a then we get

m = 4(a − p) + 2 whence for g = 2a + 1 we get m = 4(a − p + 1).

Conversely, assume first that g is even and µ ≡ 2 mod 4 that is µ =

2g + 2 − 4a for some a. Consider an NEC-group Λ with signature

(a;−; [2, g+1−2a. . . , 2]; {(−)})

and an epimorphism θ : Λ → G = Z2
2 = 〈σ, τ〉 which takes all the canonical

glide reflections (if there are any) to σ, the canonical elliptic elements and

the generator e to στ and the canonical reflection to τ . This gives rise to

configuration of symmetries, whose product has µ fixed points.

Now if g is odd and µ = 2g + 2− 4a for some a, consider an NEC group

with the same signature as before and an epimorphism defined as above

except generator e, for which we take θ(e) = 1. �
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Observe, that in particular, on a Riemann surface of odd genus g it is

possible to construct a configuration of commuting fixed point free symme-

tries, whose product does not have fixed points. This is made by taking

a group Λ with signature ((g − 1)/2 + 2;−; [−]; {−}) and an epimorphism

θ : Λ → G = 〈σ, τ〉 which takes the canonical glide reflections alternatively

to σ and τ .
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