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Abstract

We extend the recent results of Hussain and Cho [Weak Contractions, Common Fixed

Points, and Invariant Approximations, Journal of Inequalities and Applications, vol. 2009,

Article ID 390634, 10 pages, 2009] to the Banach pair (T, f) where set of fixed points of f

satisfies Dotson’s convexity condition which is more general than the starshapedness.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space

(X, ‖.‖). The set

PM (u) = {x ∈ M : ‖x− u‖ = dist(u,M)}

is called the set of best approximants to u ∈ X out of M, where

dist(u,M) = inf{‖y − u‖ : y ∈ M}.

We denote N and cl(M) (resp., wcl(M)) by the set of positive integers and

the closure (resp., weak closure) of a set M in X, respectively. Let f, T :

M → M be mappings. The set of fixed points of T is denoted by F (T ). A

point x ∈ M is a coincidence point (resp., common fixed point) of f and T

if fx = Tx (resp., x = fx = Tx). The set of coincidence points of f and T

is denoted by C(f, T ).

The pair {f, T} is said to be:
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(1) commuting if Tfx = fTx for all x ∈ M,

(2) compatible if limn→∞ ‖Tfxn − fTxn‖ = 0 whenever {xn} is a se-

quence such that limn→∞ Txn = limn→∞ fxn = t for some t in M ,

(3) weakly compatible if they commute at their coincidence points, i.e.,if

fTx = Tfx whenever fx = Tx,

(4) a Banach operator pair if the set F (f) is T -invariant, namely, T (F (f)) ⊆

F (f).

Obviously, the commuting pair (T, f) is a Banach operator pair, but

converse is not true in general (see [8, 10]). If (T, f) is a Banach operator

pair, then (f, T ) need not be a Banach operator pair (see Example 1[8]).

The set M is said to be q-starshaped with q ∈ M if the segment [q, x] =

{(1 − k)q + kx : 0 ≤ k ≤ 1} joining q to x is contained in M for all x ∈ M.

The mapping f defined on a q-starshaped set M is said to be affine if

f((1− k)q + kx) = (1− k)fq + kfx, ∀x ∈ M.

Suppose that the set M is q-starshaped with q ∈ F (f) and is both T -

and f -invariant. Then T and f are said to be:

(5) Cq-commuting ([17, 18]) if fTx = Tfx for all x ∈ Cq(f, T ), where

Cq(f, T ) = ∪{C(f, Tk) : 0 ≤ k ≤ 1} where Tkx = (1− k)q + kTx,

(6) pointwise R-subweakly commuting ([2]) if, for given x ∈ M, there

exists a real number R > 0 such that ‖fTx− Tfx‖ ≤ Rdist(fx, [q, Tx]),

(7) R-subweakly commuting on M ([15]) if, for all x ∈ M, there exists a

real number R > 0 such that ‖fTx− Tfx‖ ≤ Rdist(fx, [q, Tx]).

Following important extension of the concept of starshapedness was de-

fined by Dotson [7] and has been studied by many authors.

Definition 1.1.(Dotson’s convexity) Let M be subset of a normed space X

and F = {hx}x∈M a family of functions from [0, 1] intoM such that hx(1) = x

for each x ∈ M. The family F is said to be contractive [7, 11, 22, 24] if there

exists a function ϕ : (0, 1) → (0, 1) such that for all x, y ∈ M and all

t ∈ (0, 1), we have ‖hx(t)− hy(t)‖ ≤ ϕ(t)‖x− y‖. The family F is said to be

jointly (weakly) continuous if t → t0 in [0,1] and x → xo (x ⇀ x0) inM , then
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hx(t) → hx0
(t0) (hx(t) ⇀ hx0

(to)) in M(here ⇀ denotes weak convergence).

We observe that if M ⊂ X is q-starshaped and hx(t) = (1 − t)q + tx,

(x ∈ M ; t ∈ [0, 1]), then F = {hx}x∈M is a contractive jointly continuous

and jointly weakly continuous family with ϕ(t) = t. Thus the class of subsets

of X with the property of contractiveness and joint continuity contains the

class of starshaped sets which in turn contains the class of convex sets (see

[7, 12, 22, 24]).

Suppose that H = {hx}x∈M is a family of functions from [0, 1] into M

having the property that for each sequence {kn} in (0, 1], with kn → 1, we

have

hx(kn) = knx. (∗)

We observe that H ⊆ F and it has the additional property that it is contrac-

tive and jointly continuous.

Example 1.2.([4, 16, 23]) Any subspace, a convex set with 0, a starshaped

subset with center 0 and a cone of a normed linear space have a family of

functions associated with them which satisfy condition (∗).

Definition 1.3.([12, 22]) Let T be a selfmap of the set M having a family

of functions F = {hx}x∈M as defined above. Then T is said to satisfy the

property (KHT ), if T (hx(t)) = hTx(t) for all x ∈ M and t ∈ [0, 1].

Example 1.4. An affine map T defined on q-starshaped set with Tq = q

satisfies the property (KHT ). For this note that each q-starshaped set M

has a contractive jointly continuous family of functions F = {hx}x∈M defined

by hx(t) = tx + (1 − t)q, for each x ∈ M and t ∈ [0, 1]. Thus hx(1) = x

for all x ∈ M . Also, if the selfmap T of M is affine and Tq = q, we have

T (hx(t)) = T (tx+ (1− t)q) = tTx+ (1− t)q = hTx(t) for all x ∈ M and all

t ∈ [0, 1]. Thus T satisfies the property (KHT ).

Recently, Chen and Li [8] introduced the class of Banach operator pairs,

as a new class of noncommuting maps and it has been further studied by

Akbar and Khan [1], Hussain [10], Hussain and Cho [14], Khan and Akbar

[20, 21] and Pathak and Hussain [26]. In this paper, we improve and extend

the recent common fixed point and invariant best approximation results of
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Hussain and Cho [14] and Chen and Li [8], to the class of (f, θ, L)− weak

contractions where F (f) need not be starshaped.

2. Main Results

Let (X, d) be a metric space. A mapping T : X → X is called a weak

contraction if there exists two constants θ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx), ∀x, y ∈ X. (2.1)

Due to the symmetry of the distance, the weak contraction condition

(2.1) includes the following:

d(Tx, Ty) ≤ θd(x, y) + Ld(x, Ty), ∀x, y ∈ X, (2.2)

which is obtained from (2.1) by formally replacing d(Tx, Ty), d(x, y) by

d(Ty, Tx), d(y, x), respectively, and then interchanging x and y.

Consequently, in order to check the weak contraction of T , it is necessary

to check both (2.1) and (2.2). Obviously, a Banach contraction satisfies (2.1)

and hence is a weak contraction. Some examples of weak contractions are

given in [5, 6].

Let f be a self-mapping on X. A mapping T : X −→ X is said to be

f -weak contraction or (f, θ, L)-weak contraction if there exists two constants

θ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ θd(fx, fy) + Ld(fy, Tx), ∀x, y ∈ X. (2.3)

Berinde [5] introduced the notion of a (θ, L)-weak contraction and proved

that a lot of the well-known contractive conditions do imply the (θ, L)-weak

contraction. The concept of (θ, L)-weak contraction does not ask θ + L to

be less than 1 as happens in many kinds of fixed point theorems for the con-

tractive conditions (see [9]) that involve one or more of the displacements

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx). For more details, we refer to

[5, 6, 14] and references cited in these papers.
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We shall need the following recent result;

Lemma 2.1.(Theorem 2.4[14]). Let M be a nonempty subset of a met-

ric space (X, d) and let T, f be self-mappings of M. Assume that F (f) is

nonempty, clT (F (f)) ⊆ F (f), cl(T (M)) is complete and T is a (f, θ, L)-

weak contraction. Then M ∩ F (T ) ∩ F (f) 6= ∅.

We shall denote by Y Tx
q = {hTx(k) : 0 ≤ k ≤ 1} where q = hTx(0).

The following result properly contains Theorems 3.2−3.3 of [8], Theorem

2.11 in [10] and Theorem 2.2 in [26] and improves Theorem 2.2 of [3] and

Theorem 6 of [19].

Theorem 2.2. Let M be a nonempty subset of a normed [resp. Banach]

space X and T, f be self-maps of M. Suppose that F (f) is nonempty and

has a contractive, jointly continuous [resp. jointly weakly continuous] family

of functions F = {hx}x∈F (f), clT (F (f)) ⊆ F (f)[resp. wclT (F (f)) ⊆ F (f)],

cl(T (M)) is compact [resp. wcl(T (M)) is weakly compact], T is continuous

[resp. weakly continuous] on M and there exists a constant L ≥ 0 such that

‖Tx− Ty‖ ≤ ‖fx− fy‖+ L.dist(fy, Y Tx
q ), for allx, y ∈ M (2.4)

Then M ∩ F (T ) ∩ F (f) 6= ∅.

Proof. For n ∈ N, let kn = n
n+1 . Define Tn : F (f) → F (f) by Tnx =

hTx(kn) for all x ∈ F (f). Since F (f) has a contractive family and

clT (F (f)) ⊆ F (f) [resp. wclT (F (f)) ⊆ F (f)], so clTn(F (f)) ⊆ F (f)] [resp.

wclTn(F (f)) ⊆ F (f)] for each n ≥ 1. By (2.4), and the contractiveness of

the family F = {hx}x∈F (f), we have

‖Tnx− Tny‖ = ‖hTx(kn)− hTy(kn)‖ = φ(kn)‖Tx− Ty‖

≤ φ(kn)(‖fx− fy‖+ L.dist(fy, Y Tx
q ))

≤ φ(kn)‖fx− fy‖+ φ(kn)L.‖fy − Tnx‖,

for each x, y ∈ F (f)) where φ(kn) ∈ (0, 1).

If cl(T (M)) is compact, for each n ∈ N, cl(Tn(M)) is compact and hence

complete. By Lemma 2.1, for each n ≥ 1, there exists xn ∈ F (f) such that

xn = fxn = Tnxn. The compactness of cl(T (M)) implies that there exists a
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subsequence {Txm} of {Txn} such that Txm → w ∈ cl(T (M)) as m → ∞.

Since {Txm} is a sequence in T (F (f)) and clT (F (f)) ⊆ F (f), therefore

w ∈ F (f). Further, the joint continuity of F implies that

xm = Tmxm = hTxm
(km) → hw(1) = w

as m → ∞. By the continuity of T , we obtain Tw = w. Thus, M ∩ F (T ) ∩

F (f) 6= ∅ proves the first case.

The weak compactness of wcl(T (M)) implies that wcl(Tn(M)) is weakly

compact and hence complete due to completeness of X. From Lemma 2.1,

for each n ≥ 1, there exists xn ∈ F (f) such that xn = fxn = Tnxn. The

weak compactness of wcl(T (M)) implies that there is a subsequence {Txm}

of {Txn} converging weakly to y ∈ wcl(T (M)) as m → ∞. Since {Txm} is

a sequence in T (F (f)), therefore y ∈ wcl(T (F (f))) ⊆ F (f) ∩ F (g). By the

joint weak continuity of F we obtain,

xm = Tmxm = hTxm
(km) ⇀ hy(1) = y

as m → ∞. By the weak continuity of T , we get Ty = y. Thus M ∩F (T )∩

F (f) 6= ∅. ���

Example 2.3. Let X = R, the set of real numbers be endowed with the

usual norm and M = [0, 1]. Define fx = x if x is rational in M and fx = 0

otherwise, and Tx = 1 for all x ∈ M . Then F (f) = {x : 0 ≤ x ≤ 1, x ∈

Q, the set of rationals}. Clearly, F (f) is not starshaped. Suppose that

F = {hx}x∈F (f) is a family of functions from [0, 1] into F (f), defined by

hx(t) =

{

tx for all x, t ∈ F (f)

0 for all x ∈ F (f) and t ∈ M \ F (f).

Clearly |hx(t)− hy(t)| ≤ t|x− y| for all x, y ∈ F (f) and t ∈ [0, 1]. Thus

the family F = {hx}x∈F (f) is a contractive family with φ(t) = t, t ∈ (0, 1).

Further, clT (F (f)) = {1} ⊆ F (f) and clT (F (f)) = {1} is compact. All the

conditions of Theorem 2.2 are satisfied and consequently T and f have a

common fixed point x = 1. However, it is interesting to note that the results

of Al- Thagafi [3], Chen and Li [8], Hussain and Cho [14] and Pathak and

Hussain [26] cannot be applied, since F (f) is not starshaped.
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Corollary 2.4. Let M be a nonempty subset of a normed [resp. Banach]

space X and T, f be self-maps of M. Suppose that F (f) is q-starshaped,

clT (F (f)) ⊆ F (f)[resp. wclT (F (f)) ⊆ F (f)], cl(T (M)) is compact [resp.

wcl(T (M)) is weakly compact], T is continuous [resp. weakly continuous] on

M and

(2.5) ‖Tx− Ty‖ ≤ ‖fx− fy‖+ L.dist(fy, [q, Tx]), for allx, y ∈ M

Then M ∩ F (T ) ∩ F (f) 6= ∅.

Remark 2.5. By comparing the results in [2, 11, 12, 22, 24] with the

Theorem 2.2 we notice that the property (KHT ) is key assumption in the

results of [2, 11, 12, 22, 24].

Corollary 2.6. Let M be a nonempty subset of a normed [resp. Banach]

space X,M has a contractive, jointly continuous [resp. jointly weakly continuous]

family of functions F = {hx}x∈M and T, f be self-maps of M. such that f

satisfies property (KHT ). Suppose that F (f) is nonempty, closed [resp.

weakly closed], cl(T (M)) is compact [resp. wcl(T (M)) is weakly compact], T

is continuous [resp. weakly continuous] on M . If (T, f) is Banach operator

pair and satisfies (2.4) for all x, y ∈ M, then M ∩ F (T ) ∩ F (f) 6= ∅.

Proof. Define Tn : M → M by Tnx = hTx(kn) for all x ∈ M . Since (T, f)

is a Banach operator pair, we have Tx ∈ F (f) for x ∈ F (f). Note that f

satisfies property (KHT ), so we have

f(Tnx) = f(hTx(kn)) = hfTx(kn) = hTx(kn) = Tnx.

This implies that Tnx ∈ F (f) for each x ∈ F (f). Thus for each n, (Tn, f) is

a Banach operator pair on M . Now the result follows from Theorem 2.2. ���

Let C = PM (u) ∩ C
f
M (u), where C

f
M (u) = {x ∈ M : fx ∈ PM (u)}.

Corollary 2.7. Let X be a normed [resp. Banach] space X and T, f

be self-maps of X. If u ∈ X, D ⊆ C, D0 := D ∩ F (f) is nonempty, has

a contractive, jointly continuous [resp. jointly weakly continuous] family

of functions F = {hx}x∈D0
, cl(T (D0)) ⊆ D0 [resp. wcl(T (D0)) ⊆ D0],

cl(T (D)) is compact [resp. wcl(T (D)) is weakly compact], T is continuous

[resp. weakly continuous] on D and (2.4) holds for all x, y ∈ D, then PM (u)∩

F (T ) ∩ F (f) 6= ∅.



92 F. AKBAR AND N. SULTANA [March

Corollary 2.8. Let X be a normed [resp. Banach] space X and T, f be

self-maps of X. If u ∈ X, D ⊆ PM (u), D0 := D ∩ F (f) is nonempty,

has a contractive, jointly continuous [resp. jointly weakly continuous] family

of functions F = {hx}x∈D0
, cl(T (D0)) ⊆ D0 [resp. wcl(T (D0)) ⊆ D0],

cl(T (D)) is compact [resp. wcl(T (D)) is weakly compact], T is continuous

[resp. weakly continuous] on D and (2.4) holds for all x, y ∈ D, then PM (u)∩

F (T ) ∩ F (f) ∩ F (g) 6= ∅.

Remark 2.9. Theorems 4.1 and 4.2 of Chen and Li [8] are particular cases

of Corollaries 2.7 and 2.8.

Remark 2.10. Locally bounded topological vector spaces provide active

area of research and have the following nice characterization.

A topological vector space X is Hausdorff locally bounded if and only

its topology is defined by some p-norm, 0 < p ≤ 1.

A p-norm on a linear space X is a real valued function ‖·‖p on X with

0 < p ≤ 1, satisfying the following conditions:

(i) ‖x‖p ≥ 0 and ‖x‖p = 0 ⇔ x = 0

(ii) ‖λx‖p = |λ|p ‖x‖p

(iii) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X and all scalars λ. The pair (X, ‖·‖p) is called a p-normed

space. It is a metric space with a translation invariant metric dp defined by

dp (x, y) = ‖x− y‖p for all x, y ∈ X. If p = 1, we obtain the concept of a

normed space.

All of the results (Theorem 2.2–Corollary 2.8) and those proved by Hus-

sain and Cho [14] for normed(Banach) spaces hold for the p-normed(complete

p-normed) spaces. Thus from Corollary 2.13 in [14] we obtain following re-

cent result.

Corollary 2.11.([25], Theorem 2.2) Let T and f be selfmaps on an Opial

p-normed space X and M a subset of X such that T (∂M) ⊂ M , x0 ∈

F (f) ∩ F (T ). Suppose that D = PM (x0) is nonempty, weakly compact and

q-starshaped. Assume that f is affine, continuous, D = fD, fq = q and

T is f -nonexpansive on D ∪ {x0}. If T and f are commuting maps, then

PM (x0) ∩ F (T ) ∩ F (f) 6= ∅.
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Definition 2.12. A subset C of a linear space X is said to have the property

(N) with respect to T [13, 16, 17] if,

(i) T : C → C,

(ii) (1 − kn)q + knTx ∈ C, for some q ∈ C and a fixed sequence of real

numbers kn(0 < kn < 1) converging to 1 and for each x ∈ C.

Hussain et al. [16] noted that each q-starshaped set C has the property

(N) but converse does not hold, in general.

Remark 2.13. All of the results of Hussain and Cho [14] (Th. 2.7–Cor.

2.13) remain valid, provided the q-starshapedness of the sets F (f) and D0,

is replaced by the property (N). Consequently, recent results due to Hussain

and Cho [14], Hussain, O’Regan and Agarwal [16] and Khan et al. [22] are

improved. Here we sketch the proof of Theorem 2.7 of Hussain and Cho [14]

under property (N), others follow similarly.

Theorem 2.14. Let M be a nonempty subset of a normed (resp., Banach)

spaceX and let T, f be self-mappings ofM. Suppose that clT (F (f)) ⊆ F (f)

(resp., wclT (F (f)) ⊆ F (f)), cl(T (M)) is compact (resp., wcl(T (M)) is

weakly compact and either I − T is demi-closed at 0 or X satisfies Opial’s

condition, where I stands for the identity mapping) and there exists a con-

stant L ≥ 0 such that

‖Tx− Ty‖ ≤ ‖fx− fy‖+ L.dist(fy, [q, Tx]), ∀x, y ∈ M. (2.5)

If F (f) has the property (N) w.r.t. T , then M ∩ F (T ) ∩ F (f) 6= ∅.

Proof. As T (F (f)) ⊆ F (f) and F (f) has the property (N) w.r.t. T , for

each n ∈ N, we can define Tn : F (f) → F (f) by Tnx = (1−kn)q+knTx for all

x ∈ F (f) and a fixed sequence {kn} of real numbers (0 < kn < 1) converging

to 1. Since F (f) has the property (N) w.r.t. T and clT (F (f)) ⊆ F (f) (resp.,

wclT (F (f)) ⊆ F (f)), we have clTn(F (f)) ⊆ F (f) (resp., wclTn(F (f)) ⊆

F (f)) for each n ∈ N. Also, by the inequality (2.6),

‖Tnx− Tny‖ = kn‖Tx− Ty‖

≤ kn‖fx− fy‖+ knL.dist(fy, [q, Tx])

≤ kn‖fx− fy‖+ Ln.‖fy − Tnx‖
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for all x, y ∈ F (f), Ln := knL and 0 < kn < 1. Thus, for n ∈ N, Tn is a

(f, kn, Ln)-weak contraction, where Ln ≥ 0.

If cl(T (M)) is compact, then, for each n ∈ N, cl(Tn(M)) is compact and

hence complete. By Lemma 2.1, for each n ∈ N, there exists xn ∈ F (f) such

that xn = fxn = Tnxn. Rest of the proof is similar to that of Theorem 2.7

of [14] and so is omitted. ���

Example 2.15. Let X = R and M = {0, 1, 1 − 1
n+1 : n ∈ N} be endowed

with the usual norm. Define T (x) = 0 for each x ∈ M . Clearly, M is not

starshaped but has property (N) w.r.t T [16], for q = 0 and kn = 1 − 1
n+1 .

Let f be defined by f1 = 0 = f0 and f(1− 1
n+1) = 1 for all n ∈ N. Clearly,

(T, f) is a Banach operator pair and 0 is their common fixed point.
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