DOTSON'S CONVEXITY, BANACH OPERATOR PAIR AND WEAK CONTRACTIONS

F. AKBAR ${ }^{1, a}$ AND N. SULTANA ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
${ }^{a}$ E-mail: ridaf75@yahoo.com
III

Abstract

We extend the recent results of Hussain and Cho [Weak Contractions, Common Fixed Points, and Invariant Approximations, Journal of Inequalities and Applications, vol. 2009, Article ID 390634, 10 pages, 2009] to the Banach pair (T, f) where set of fixed points of f satisfies Dotson's convexity condition which is more general than the starshapedness.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space $(X,\|\cdot\|)$. The set

$$
P_{M}(u)=\{x \in M:\|x-u\|=\operatorname{dist}(u, M)\}
$$

is called the set of best approximants to $u \in X$ out of M, where

$$
\operatorname{dist}(u, M)=\inf \{\|y-u\|: y \in M\} .
$$

We denote \mathbb{N} and $\operatorname{cl}(M)$ (resp., $w c l(M))$ by the set of positive integers and the closure (resp., weak closure) of a set M in X, respectively. Let f, T : $M \rightarrow M$ be mappings. The set of fixed points of T is denoted by $F(T)$. A point $x \in M$ is a coincidence point (resp., common fixed point) of f and T if $f x=T x$ (resp., $x=f x=T x$). The set of coincidence points of f and T is denoted by $C(f, T)$.

The pair $\{f, T\}$ is said to be:

[^0](1) commuting if $T f x=f T x$ for all $x \in M$,
(2) compatible if $\lim _{n \rightarrow \infty}\left\|T f x_{n}-f T x_{n}\right\|=0$ whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} f x_{n}=t$ for some t in M,
(3) weakly compatible if they commute at their coincidence points, i.e.,if $f T x=T f x$ whenever $f x=T x$,
(4) a Banach operator pair if the set $F(f)$ is T-invariant, namely, $T(F(f)) \subseteq$ $F(f)$.

Obviously, the commuting pair (T, f) is a Banach operator pair, but converse is not true in general (see [8, 10]). If (T, f) is a Banach operator pair, then (f, T) need not be a Banach operator pair (see Example 1[8]).

The set M is said to be q-starshaped with $q \in M$ if the segment $[q, x]=$ $\{(1-k) q+k x: 0 \leq k \leq 1\}$ joining q to x is contained in M for all $x \in M$. The mapping f defined on a q-starshaped set M is said to be affine if

$$
f((1-k) q+k x)=(1-k) f q+k f x, \quad \forall x \in M
$$

Suppose that the set M is q-starshaped with $q \in F(f)$ and is both T and f-invariant. Then T and f are said to be:
(5) $C_{q^{-}}$commuting $\left.(17,18]\right)$ if $f T x=T f x$ for all $x \in C_{q}(f, T)$, where $C_{q}(f, T)=\cup\left\{C\left(f, T_{k}\right): 0 \leq k \leq 1\right\}$ where $T_{k} x=(1-k) q+k T x$,
(6) pointwise R-subweakly commuting ([2]) if, for given $x \in M$, there exists a real number $R>0$ such that $\|f T x-T f x\| \leq R \operatorname{dist}(f x,[q, T x])$,
(7) R-subweakly commuting on $M(15])$ if, for all $x \in M$, there exists a real number $R>0$ such that $\|f T x-T f x\| \leq R \operatorname{dist}(f x,[q, T x])$.

Following important extension of the concept of starshapedness was defined by Dotson [7] and has been studied by many authors.

Definition 1.1.(Dotson's convexity) Let M be subset of a normed space X and $\mathbb{F}=\left\{h_{x}\right\}_{x \in M}$ a family of functions from $[0,1]$ into M such that $h_{x}(1)=x$ for each $x \in M$. The family \mathbb{F} is said to be contractive [7, 11, 22, 24] if there exists a function $\varphi:(0,1) \rightarrow(0,1)$ such that for all $x, y \in M$ and all $t \in(0,1)$, we have $\left\|h_{x}(t)-h_{y}(t)\right\| \leq \varphi(t)\|x-y\|$. The family \mathbb{F} is said to be jointly (weakly) continuous if $t \rightarrow t_{0}$ in $[0,1]$ and $x \rightarrow x_{o}\left(x \rightharpoonup x_{0}\right)$ in M, then
$h_{x}(t) \rightarrow h_{x_{0}}\left(t_{0}\right)\left(h_{x}(t) \rightharpoonup h_{x_{0}}\left(t_{o}\right)\right)$ in $M($ here \rightharpoonup denotes weak convergence). We observe that if $M \subset X$ is q-starshaped and $h_{x}(t)=(1-t) q+t x$, $(x \in M ; t \in[0,1])$, then $\mathbb{F}=\left\{h_{x}\right\}_{x \in M}$ is a contractive jointly continuous and jointly weakly continuous family with $\varphi(t)=t$. Thus the class of subsets of X with the property of contractiveness and joint continuity contains the class of starshaped sets which in turn contains the class of convex sets (see [7, 12, 22, 24]).

Suppose that $\mathbb{H}=\left\{h_{x}\right\}_{x \in M}$ is a family of functions from $[0,1]$ into M having the property that for each sequence $\left\{k_{n}\right\}$ in $(0,1]$, with $k_{n} \rightarrow 1$, we have

$$
\begin{equation*}
h_{x}\left(k_{n}\right)=k_{n} x \tag{*}
\end{equation*}
$$

We observe that $\mathbb{H} \subseteq \mathbb{F}$ and it has the additional property that it is contractive and jointly continuous.

Example 1.2. (4, 16, 23]) Any subspace, a convex set with 0, a starshaped subset with center 0 and a cone of a normed linear space have a family of functions associated with them which satisfy condition (*).

Definition 1.3.(12, 22]) Let T be a selfmap of the set M having a family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in M}$ as defined above. Then T is said to satisfy the property $(K H T)$, if $T\left(h_{x}(t)\right)=h_{T x}(t)$ for all $x \in M$ and $t \in[0,1]$.

Example 1.4. An affine map T defined on q-starshaped set with $T q=q$ satisfies the property $(K H T)$. For this note that each q-starshaped set M has a contractive jointly continuous family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in M}$ defined by $h_{x}(t)=t x+(1-t) q$, for each $x \in M$ and $t \in[0,1]$. Thus $h_{x}(1)=x$ for all $x \in M$. Also, if the selfmap T of M is affine and $T q=q$, we have $T\left(h_{x}(t)\right)=T(t x+(1-t) q)=t T x+(1-t) q=h_{T x}(t)$ for all $x \in M$ and all $t \in[0,1]$. Thus T satisfies the property $(K H T)$.

Recently, Chen and Li [8] introduced the class of Banach operator pairs, as a new class of noncommuting maps and it has been further studied by Akbar and Khan [1], Hussain [10], Hussain and Cho [14], Khan and Akbar [20, 21] and Pathak and Hussain [26]. In this paper, we improve and extend the recent common fixed point and invariant best approximation results of

Hussain and Cho [14] and Chen and Li [8], to the class of (f, θ, L) - weak contractions where $F(f)$ need not be starshaped.

2. Main Results

Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is called a weak contraction if there exists two constants $\theta \in(0,1)$ and $L \geq 0$ such that

$$
\begin{equation*}
d(T x, T y) \leq \theta d(x, y)+L d(y, T x), \quad \forall x, y \in X \tag{2.1}
\end{equation*}
$$

Due to the symmetry of the distance, the weak contraction condition (2.1) includes the following:

$$
\begin{equation*}
d(T x, T y) \leq \theta d(x, y)+L d(x, T y), \quad \forall x, y \in X \tag{2.2}
\end{equation*}
$$

which is obtained from (2.1) by formally replacing $d(T x, T y), d(x, y)$ by $d(T y, T x), d(y, x)$, respectively, and then interchanging x and y.

Consequently, in order to check the weak contraction of T, it is necessary to check both (2.1) and (2.2). Obviously, a Banach contraction satisfies (2.1) and hence is a weak contraction. Some examples of weak contractions are given in [5, 6].

Let f be a self-mapping on X. A mapping $T: X \longrightarrow X$ is said to be f-weak contraction or (f, θ, L)-weak contraction if there exists two constants $\theta \in(0,1)$ and $L \geq 0$ such that

$$
\begin{equation*}
d(T x, T y) \leq \theta d(f x, f y)+L d(f y, T x), \quad \forall x, y \in X \tag{2.3}
\end{equation*}
$$

Berinde [5] introduced the notion of a (θ, L)-weak contraction and proved that a lot of the well-known contractive conditions do imply the (θ, L)-weak contraction. The concept of (θ, L)-weak contraction does not ask $\theta+L$ to be less than 1 as happens in many kinds of fixed point theorems for the contractive conditions (see [9]) that involve one or more of the displacements $d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)$. For more details, we refer to [5, , 6, 14] and references cited in these papers.

We shall need the following recent result;

Lemma 2.1. (Theorem 2.4[14]). Let M be a nonempty subset of a metric space (X, d) and let T, f be self-mappings of M. Assume that $F(f)$ is nonempty, clT $(F(f)) \subseteq F(f), \operatorname{cl}(T(M))$ is complete and T is a (f, θ, L) weak contraction. Then $M \cap F(T) \cap F(f) \neq \emptyset$.

We shall denote by $Y_{q}^{T x}=\left\{h_{T x}(k): 0 \leq k \leq 1\right\}$ where $q=h_{T x}(0)$.
The following result properly contains Theorems $3.2-3.3$ of [8], Theorem 2.11 in [10] and Theorem 2.2 in [26] and improves Theorem 2.2 of [3] and Theorem 6 of [19].

Theorem 2.2. Let M be a nonempty subset of a normed [resp. Banach] space X and T, f be self-maps of M. Suppose that $F(f)$ is nonempty and has a contractive, jointly continuous [resp. jointly weakly continuous] family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in F(f)}$, clT $(F(f)) \subseteq F(f)$ [resp. wclT $(F(f)) \subseteq F(f)$], $c l(T(M))$ is compact [resp. wcl $(T(M))$ is weakly compact], T is continuous [resp. weakly continuous] on M and there exists a constant $L \geq 0$ such that

$$
\begin{equation*}
\|T x-T y\| \leq\|f x-f y\|+\operatorname{L.dist}\left(f y, Y_{q}^{T x}\right), \quad \text { for } \quad \text { all } x, y \in M \tag{2.4}
\end{equation*}
$$

Then $M \cap F(T) \cap F(f) \neq \emptyset$.
Proof. For $n \in N$, let $k_{n}=\frac{n}{n+1}$. Define $T_{n}: F(f) \rightarrow F(f)$ by $T_{n} x=$ $h_{T x}\left(k_{n}\right)$ for all $x \in F(f)$. Since $F(f)$ has a contractive family and $c l T(F(f)) \subseteq F(f)[$ resp. $w c l T(F(f)) \subseteq F(f)]$, so $\left.c l T_{n}(F(f)) \subseteq F(f)\right]$ [resp. $\left.w c l T_{n}(F(f)) \subseteq F(f)\right]$ for each $n \geq 1$. By (2.4), and the contractiveness of the family $\mathbb{F}=\left\{h_{x}\right\}_{x \in F(f)}$, we have

$$
\begin{aligned}
\left\|T_{n} x-T_{n} y\right\|=\left\|h_{T x}\left(k_{n}\right)-h_{T y}\left(k_{n}\right)\right\| & =\phi\left(k_{n}\right)\|T x-T y\| \\
& \leq \phi\left(k_{n}\right)\left(\|f x-f y\|+\operatorname{L.dist}\left(f y, Y_{q}^{T x}\right)\right) \\
& \leq \phi\left(k_{n}\right)\|f x-f y\|+\phi\left(k_{n}\right) L .\left\|f y-T_{n} x\right\|,
\end{aligned}
$$

for each $x, y \in F(f))$ where $\phi\left(k_{n}\right) \in(0,1)$.
If $\operatorname{cl}(T(M))$ is compact, for each $n \in \mathbb{N}, \operatorname{cl}\left(T_{n}(M)\right)$ is compact and hence complete. By Lemma 2.1, for each $n \geq 1$, there exists $x_{n} \in F(f)$ such that $x_{n}=f x_{n}=T_{n} x_{n}$. The compactness of $c l(T(M))$ implies that there exists a
subsequence $\left\{T x_{m}\right\}$ of $\left\{T x_{n}\right\}$ such that $T x_{m} \rightarrow w \in \operatorname{cl}(T(M))$ as $m \rightarrow \infty$. Since $\left\{T x_{m}\right\}$ is a sequence in $T(F(f))$ and $c l T(F(f)) \subseteq F(f)$, therefore $w \in F(f)$. Further, the joint continuity of \mathbb{F} implies that

$$
x_{m}=T_{m} x_{m}=h_{T x_{m}}\left(k_{m}\right) \rightarrow h_{w}(1)=w
$$

as $m \rightarrow \infty$. By the continuity of T, we obtain $T w=w$. Thus, $M \cap F(T) \cap$ $F(f) \neq \emptyset$ proves the first case.

The weak compactness of $w c l(T(M))$ implies that $w c l\left(T_{n}(M)\right)$ is weakly compact and hence complete due to completeness of X. From Lemma 2.1, for each $n \geq 1$, there exists $x_{n} \in F(f)$ such that $x_{n}=f x_{n}=T_{n} x_{n}$. The weak compactness of $w c l(T(M))$ implies that there is a subsequence $\left\{T x_{m}\right\}$ of $\left\{T x_{n}\right\}$ converging weakly to $y \in w c l(T(M))$ as $m \rightarrow \infty$. Since $\left\{T x_{m}\right\}$ is a sequence in $T(F(f))$, therefore $y \in w c l(T(F(f))) \subseteq F(f) \cap F(g)$. By the joint weak continuity of \mathbb{F} we obtain,

$$
x_{m}=T_{m} x_{m}=h_{T x_{m}}\left(k_{m}\right) \rightharpoonup h_{y}(1)=y
$$

as $m \rightarrow \infty$. By the weak continuity of T, we get $T y=y$. Thus $M \cap F(T) \cap$ $F(f) \neq \emptyset$.

Example 2.3. Let $X=\mathbb{R}$, the set of real numbers be endowed with the usual norm and $M=[0,1]$. Define $f x=x$ if x is rational in M and $f x=0$ otherwise, and $T x=1$ for all $x \in M$. Then $F(f)=\{x: 0 \leq x \leq 1, x \in$ Q, the set of rationals $\}$. Clearly, $F(f)$ is not starshaped. Suppose that $\mathbb{F}=\left\{h_{x}\right\}_{x \in F(f)}$ is a family of functions from $[0,1]$ into $F(f)$, defined by

$$
h_{x}(t)=\left\{\begin{array}{lr}
t x & \text { for all } x, t \in F(f) \\
0 & \text { for all } x \in F(f) \text { and } t \in M \backslash F(f)
\end{array}\right.
$$

Clearly $\left|h_{x}(t)-h_{y}(t)\right| \leq t|x-y|$ for all $x, y \in F(f)$ and $t \in[0,1]$. Thus the family $\mathbb{F}=\left\{h_{x}\right\}_{x \in F(f)}$ is a contractive family with $\phi(t)=t, t \in(0,1)$. Further, $\operatorname{clT}(F(f))=\{1\} \subseteq F(f)$ and $c l T(F(f))=\{1\}$ is compact. All the conditions of Theorem 2.2 are satisfied and consequently T and f have a common fixed point $x=1$. However, it is interesting to note that the results of Al- Thagafi [3], Chen and Li 8], Hussain and Cho 14] and Pathak and Hussain [26] cannot be applied, since $F(f)$ is not starshaped.

Corollary 2.4. Let M be a nonempty subset of a normed [resp. Banach] space X and T, f be self-maps of M. Suppose that $F(f)$ is q-starshaped, $c l T(F(f)) \subseteq F(f)[r e s p . \quad w c l T(F(f)) \subseteq F(f)], \operatorname{cl}(T(M))$ is compact [resp. wcl $(T(M))$ is weakly compact], T is continuous [resp. weakly continuous] on M and

$$
\begin{equation*}
\|T x-T y\| \leq\|f x-f y\|+\operatorname{L.dist}(f y,[q, T x]), \quad \text { for } \quad \text { all } x, y \in M \tag{2.5}
\end{equation*}
$$

Then $M \cap F(T) \cap F(f) \neq \emptyset$.
Remark 2.5. By comparing the results in [2, 11, 12, 22, 24] with the Theorem 2.2 we notice that the property $(K H T)$ is key assumption in the results of [2, 11, 12, 22, 24].

Corollary 2.6. Let M be a nonempty subset of a normed [resp. Banach] space X, M has a contractive, jointly continuous [resp. jointly weakly continuous] family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in M}$ and T, f be self-maps of M. such that f satisfies property $(K H T)$. Suppose that $F(f)$ is nonempty, closed [resp. weakly closed], $\operatorname{cl}(T(M))$ is compact $[$ resp. wcl $(T(M))$ is weakly compact], T is continuous [resp. weakly continuous] on M. If (T, f) is Banach operator pair and satisfies (2.4) for all $x, y \in M$, then $M \cap F(T) \cap F(f) \neq \emptyset$.

Proof. Define $T_{n}: M \rightarrow M$ by $T_{n} x=h_{T x}\left(k_{n}\right)$ for all $x \in M$. Since (T, f) is a Banach operator pair, we have $T x \in F(f)$ for $x \in F(f)$. Note that f satisfies property ($K H T$), so we have

$$
f\left(T_{n} x\right)=f\left(h_{T x}\left(k_{n}\right)\right)=h_{f T x}\left(k_{n}\right)=h_{T x}\left(k_{n}\right)=T_{n} x .
$$

This implies that $T_{n} x \in F(f)$ for each $x \in F(f)$. Thus for each $n,\left(T_{n}, f\right)$ is a Banach operator pair on M. Now the result follows from Theorem 2.2.

$$
\text { Let } C=P_{M}(u) \cap C_{M}^{f}(u) \text {, where } C_{M}^{f}(u)=\left\{x \in M: f x \in P_{M}(u)\right\} \text {. }
$$

Corollary 2.7. Let X be a normed [resp. Banach] space X and T, f be self-maps of X. If $u \in X, D \subseteq C, D_{0}:=D \cap F(f)$ is nonempty, has a contractive, jointly continuous [resp. jointly weakly continuous] family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in D_{0}}, \operatorname{cl}\left(T\left(D_{0}\right)\right) \subseteq D_{0}\left[\operatorname{resp} . \quad \operatorname{wcl}\left(T\left(D_{0}\right)\right) \subseteq D_{0}\right]$, $c l(T(D))$ is compact [resp. wcl $(T(D))$ is weakly compact $], T$ is continuous [resp. weakly continuous] on D and (2.4) holds for all $x, y \in D$, then $P_{M}(u) \cap$ $F(T) \cap F(f) \neq \emptyset$.

Corollary 2.8. Let X be a normed [resp. Banach] space X and T, f be self-maps of X. If $u \in X, D \subseteq P_{M}(u), D_{0}:=D \cap F(f)$ is nonempty, has a contractive, jointly continuous [resp. jointly weakly continuous] family of functions $\mathbb{F}=\left\{h_{x}\right\}_{x \in D_{0}}, \operatorname{cl}\left(T\left(D_{0}\right)\right) \subseteq D_{0}\left[\operatorname{resp} . \quad w c l\left(T\left(D_{0}\right)\right) \subseteq D_{0}\right]$, $c l(T(D))$ is compact [resp. wcl $(T(D))$ is weakly compact], T is continuous [resp. weakly continuous] on D and (2.4) holds for all $x, y \in D$, then $P_{M}(u) \cap$ $F(T) \cap F(f) \cap F(g) \neq \emptyset$.

Remark 2.9. Theorems 4.1 and 4.2 of Chen and Li [8] are particular cases of Corollaries 2.7 and 2.8.

Remark 2.10. Locally bounded topological vector spaces provide active area of research and have the following nice characterization.

A topological vector space X is Hausdorff locally bounded if and only its topology is defined by some p-norm, $0<p \leq 1$.

A p-norm on a linear space X is a real valued function $\|\cdot\|_{p}$ on X with $0<p \leq 1$, satisfying the following conditions:
(i) $\|x\|_{p} \geq 0$ and $\|x\|_{p}=0 \Leftrightarrow x=0$
(ii) $\|\lambda x\|_{p}=|\lambda|^{p}\|x\|_{p}$
(iii) $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$
for all $x, y \in X$ and all scalars λ. The pair $\left(X,\|\cdot\|_{p}\right)$ is called a p-normed space. It is a metric space with a translation invariant metric d_{p} defined by $d_{p}(x, y)=\|x-y\|_{p}$ for all $x, y \in X$. If $p=1$, we obtain the concept of a normed space.

All of the results (Theorem 2.2-Corollary 2.8) and those proved by Hussain and Cho [14] for normed(Banach) spaces hold for the p-normed(complete p-normed) spaces. Thus from Corollary 2.13 in [14] we obtain following recent result.

Corollary 2.11.(25], Theorem 2.2) Let T and f be selfmaps on an Opial p-normed space X and M a subset of X such that $T(\partial M) \subset M, x_{0} \in$ $F(f) \cap F(T)$. Suppose that $D=P_{M}\left(x_{0}\right)$ is nonempty, weakly compact and q-starshaped. Assume that f is affine, continuous, $D=f D, f q=q$ and T is f-nonexpansive on $D \cup\left\{x_{0}\right\}$. If T and f are commuting maps, then $P_{M}\left(x_{0}\right) \cap F(T) \cap F(f) \neq \emptyset$.

Definition 2.12. A subset C of a linear space X is said to have the property (N) with respect to T 13, 16, 17] if,
(i) $T: C \rightarrow C$,
(ii) $\left(1-k_{n}\right) q+k_{n} T x \in C$, for some $q \in C$ and a fixed sequence of real numbers $k_{n}\left(0<k_{n}<1\right)$ converging to 1 and for each $x \in C$.

Hussain et al. [16] noted that each q-starshaped set C has the property (N) but converse does not hold, in general.

Remark 2.13. All of the results of Hussain and Cho 14] (Th. 2.7-Cor. 2.13) remain valid, provided the q-starshapedness of the sets $F(f)$ and D_{0}, is replaced by the property (N). Consequently, recent results due to Hussain and Cho [14], Hussain, O'Regan and Agarwal [16] and Khan et al. 22] are improved. Here we sketch the proof of Theorem 2.7 of Hussain and Cho [14] under property (N), others follow similarly.

Theorem 2.14. Let M be a nonempty subset of a normed (resp., Banach) space X and let T, f be self-mappings of M. Suppose that $\operatorname{clT}(F(f)) \subseteq F(f)$ (resp., $\operatorname{wcl} T(F(f)) \subseteq F(f)), \operatorname{cl}(T(M))$ is compact (resp., $w c l(T(M))$ is weakly compact and either $I-T$ is demi-closed at 0 or X satisfies Opial's condition, where I stands for the identity mapping) and there exists a constant $L \geq 0$ such that

$$
\begin{equation*}
\|T x-T y\| \leq\|f x-f y\|+\operatorname{L\cdot dist}(f y,[q, T x]), \quad \forall x, y \in M . \tag{2.5}
\end{equation*}
$$

If $F(f)$ has the property (N) w.r.t. T, then $M \cap F(T) \cap F(f) \neq \emptyset$.
Proof. As $T(F(f)) \subseteq F(f)$ and $F(f)$ has the property (N) w.r.t. T, for each $n \in \mathbb{N}$, we can define $T_{n}: F(f) \rightarrow F(f)$ by $T_{n} x=\left(1-k_{n}\right) q+k_{n} T x$ for all $x \in F(f)$ and a fixed sequence $\left\{k_{n}\right\}$ of real numbers $\left(0<k_{n}<1\right)$ converging to 1. Since $F(f)$ has the property (N) w.r.t. T and $c l T(F(f)) \subseteq F(f)$ (resp., $w c l T(F(f)) \subseteq F(f))$, we have $c l T_{n}(F(f)) \subseteq F(f)$ (resp., $w c l T_{n}(F(f)) \subseteq$ $F(f))$ for each $n \in \mathbb{N}$. Also, by the inequality (2.6),

$$
\begin{aligned}
\left\|T_{n} x-T_{n} y\right\| & =k_{n}\|T x-T y\| \\
& \leq k_{n}\|f x-f y\|+k_{n} \operatorname{L.dist}(f y,[q, T x]) \\
& \leq k_{n}\|f x-f y\|+L_{n} \cdot\left\|f y-T_{n} x\right\|
\end{aligned}
$$

for all $x, y \in F(f), L_{n}:=k_{n} L$ and $0<k_{n}<1$. Thus, for $n \in \mathbb{N}, T_{n}$ is a $\left(f, k_{n}, L_{n}\right)$-weak contraction, where $L_{n} \geq 0$.

If $\operatorname{cl}(T(M))$ is compact, then, for each $n \in \mathbb{N}, \operatorname{cl}\left(T_{n}(M)\right)$ is compact and hence complete. By Lemma 2.1, for each $n \in \mathbb{N}$, there exists $x_{n} \in F(f)$ such that $x_{n}=f x_{n}=T_{n} x_{n}$. Rest of the proof is similar to that of Theorem 2.7 of [14] and so is omitted.

Example 2.15. Let $X=\mathbb{R}$ and $M=\left\{0,1,1-\frac{1}{n+1}: n \in \mathbb{N}\right\}$ be endowed with the usual norm. Define $T(x)=0$ for each $x \in M$. Clearly, M is not starshaped but has property (N) w.r.t T 16], for $q=0$ and $k_{n}=1-\frac{1}{n+1}$. Let f be defined by $f 1=0=f 0$ and $f\left(1-\frac{1}{n+1}\right)=1$ for all $n \in \mathbb{N}$. Clearly, (T, f) is a Banach operator pair and 0 is their common fixed point.

Acknowledgment

The authors would like to thank the referee for valuable suggestions to improve the paper.

References

1. F. Akbar and A.R. Khan, Common fixed point and approximation results for noncommuting maps on Locally Convex Spaces, Fixed Point Theory and Applications, Volume 2009 (2009), Article ID 207503, 14 pages
2. F. Akbar and N. Sultana, On pointwise R-subweakly commuting maps and best approximations, Analysis in Theory and Appl., 24(2008), 40-49.
3. M. A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory 85(1996), 318-323.
4. I. Beg, A. R. Khan and N. Hussain, Approximation of *-nonexpansive random multivalued operators on Banach spaces, J. Aust. Math. Soc., 76(2004), 51-66.
5. V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19(2003), 7-22.
6. V. Berinde, Approximating fixed points of weak contractions using Picard iteration, Nonlinear Anal. Forum 9(2004), 43-53.
7. W. J. Dotson Jr., On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc., 38(1973), 155-156.
8. J. Chen and Z. Li, Common fixed points for Banach operator pairs in best approximation, J. Math. Anal. Appl., 336(2007), 1466-1475.
9. LJ.B.Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273.
10. N. Hussain, Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., 338(2008), 1351-1363.
11. N. Hussain, Common fixed point and invariant approximation results, Demonstratio Math., 39(2006), 389-400.
12. N. Hussain, Generalized I-nonexpansive maps and invariant approximation results in p-normed spaces, Analysis in Theory and Appl., 22(2006), 72-80.
13. N. Hussain and V. Berinde, Common fixed point and invariant approximation results in certain metrizable topological vector spaces, Fixed Point Theory and Appl., vol. 2006, Article ID 23582, 13 pages.
14. N. Hussain and Y.J. Cho, Weak contraction, common fixed points and invariant approximations, J. Inequalities and Appl., Volume 2009, Article ID 390634, 10 pages.
15. N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl., 321(2006), 851-861.
16. N. Hussain, D. O'Regan and R. P. Agarwal, Common fixed point and invariant approximation results on non-starshaped domains, Georgian Math. J., 12(2005), 659-669.
17. N. Hussain and B. E. Rhoades, C_{q}-commuting maps and invariant approximations, Fixed Point Theory and Appl., Volume 2006(2006), Article ID 24543, 9 pages.
18. G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl., 325(2007), 1003-1012.
19. G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math. Japon., 42(1995), 249-252.
20. A.R. Khan and F. Akbar, Best simultaneous approximations, asymptotically nonexpansive mappings and variational inequalities in Banach spaces, J. Math. Anal. Appl., 354(2009), 469-477.
21. A. R. Khan and F. Akbar, Common fixed points from best simultaneous approximations, Taiwanese J. Math., 13(2009), 1379-1386.
22. A. R. Khan, N. Hussain and A. B. Thaheem, Applications of fixed point theorems to invariant approximation, Approx. Theory and Appl., 16(2000), 48-55.
23. A. R. Khan, A. B. Thaheem and N. Hussain, Random fixed points and random approximations in nonconvex domains. J. Appl. Math. Stochastic Anal., 15(2002), 263-270.
24. A. R. Khan, A. Latif, A. Bano and N. Hussain, Some results on common fixed points and best approximation, Tamkang J. Math., 36(2005), 33-38.
25. A. Latif, A result on best approximation in p-normed spaces, Arch. Math. 37(2001), 71-75.
26. H. K. Pathak and N. Hussain, Common fixed points for Banach operator pairs with applications, Nonlinear Analysis, 69(2008), 2788-2802.

[^0]: Received July 07, 2009 and in revised form June 01, 2010.
 AMS Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 Key words and phrases: Common fixed point, Banach operator pair, Dotsonś convexity, f-weak contractions, best approximation.

