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Abstract

Multi-dimensional gas flow with shock waves can be highly complex and the math-

ematical theory for such flows is still far from being complete. This is so because such

a theory should resolve some of the most difficult issues in the theory of partial differen-

tial equations; among them are the free boundaries and the nonlinear equations of mixed

types. These difficulties were recognized early on. We illustrate the richness of the subject

with certain historical perspectives on the basic question of shock reflections.

1. Introduction

The most basic equations for the shock wave theory are the Euler equa-

tions in gas dynamics. We consider the isentropic system:

{

ρt + ∇x · (ρu) = 0, continuity equation,

(ρu)t + ∇x · (ρu ⊗ u + p(ρ)I) = 0, momemtum equations.
(1.1)

To focus on the study of shock waves, one often considers irrotational flows

by introducing the potential φ:

u = ∇xφ. (1.2)
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From (1.1) and (1.2), it follows the Bernoulli equation:

φt +
1

2
|∇xφ|

2 + Π(ρ) = A constant, (1.3)

where

Π′(ρ) ≡
p′(ρ)

ρ
,
√

p′(ρ) = c sound speed. (1.4)

The potential flow equation is a combination of the Bernoulli equation and

the continuity equation:

φtt + 2∇xφ · ∇x(φt) + (∇xφ)t∇2
xφ∇xφ− c2∆φ = 0. (1.5)

The Euler and potential flow equations are the most basic systems for the

study of multi-dimensional gas flow. For the derivation of these equations,

the readers are referred to the classical treatise of Courant-Friedrichs, [4].

This book was published in 1948 and summarizes the achievements of math-

ematical scientists in the classical period. There has been very substantial

progress on the shock wave theory since then, thanks to the pioneering works

of Lax (1956), [9] and Glimm (1965), [10]. However, much of the deep anal-

ysis is on one-dimensional conservation laws, see, for instance, Dafermos [5].

Thus the achievements of the classical period are still the most important for

the study of multi-dimensional gas flow. In an effort to initiate a new era,

following the classical period, von Neumann called the celebrated meeting

of the panel discussions on Wednesday morning, August 17, 1949:

DISCUSSION ON THE EXISTENCE AND UNIQUENESS OR MULTI-

PLICITY OF SOLUTIONS OF THE AERODYNAMICAL EQUATIONS

The list of participants included some of the most important mathemat-

ical scientists of the time, among them von Neumann, Burgers, Heisenberg,

Liepmann, and von Karman. The text of the discussions has been repro-

duced in [17] and it contains vital exchanges on physical and analytical

aspects of the shock wave theory by these leading scientists. The main pur-

pose of the present article is to revisit some of these exchanges in view of
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the recent developments, and to offer new perspectives.

2. Preliminaries

Write the Euler equations (1.1) as a general system of hyperbolic con-

servation laws:


























Ut + ∇x · F(U) = 0,

U ≡

(

ρ

ρu

)

,

F(U) ≡ ρu ⊗ u + p(ρ)I.

(2.1)

A discontinuity along the front ζ(x, t) = 0, ζ a scalar function, satisfies the

Rankine-Hugoniot condition:

ζt[U+ − U−] = ∇xζ · [F(U+) − F(U−)], (2.2)

where U± are the states on either side of the discontinuity. For definiteness,

we make the normalization

|n| = 1, n ≡ ∇xζ. (2.3)

Take a Galilean transformation to make the discontinuity stationary, ζt = 0

so that the Rankine-Hugoniot condition becomes

n · [F(U+) − F(U−)] = 0,

or

n ·
(

ρ+u+ ⊗ u+ + p(ρ+)I
)

= n ·
(

ρ−u− ⊗ u− + p(ρ−)I
)

. (2.4)

Decompose the gas velocity u into velocities normal and tangential to the

discontinuity front:

un
± ≡ un

±n, ut
± ≡ u± − un

±, u
n
± ≡ u± · n. (2.5)

There are two possibilities:

Case 1: The velocity normal to the front does not jump across the disconti-

nuity: un
+ = un

−. Thus only the tangential velocity jumps across the front.
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This is a vortex sheet, or, contact discontinuity, Figure 1. Such a rotational

wave exists also for the incompressible Euler equations.

Case 2: The normal velocity jumps across the front. In this case, it follows

easily from (2.4) that the tangential velocity remains continuous across the

front, ut
+ = ut

−, and we have a shock wave, Figure 2. Shock waves occur

only in compressible fluids.

y

x

Figure 1: Contact discontinuity

y

x

ut

un
+

utun
−

Figure 2: Shock waves

Remark 2.1. The potential flow equation (1.5) disallows vortex sheets and

is often used when one wants to focus on the shock waves. When the ini-

tial value is irrotational and isentropic, and the flow is smooth, the flow

remains irrotational and the potential flow equation is equivalent to the Eu-

ler equations. Curved shocks produce entropy variation and vorticities thus

the potential flow equation is not suitable for such a shock. Unlike for in-

compressible flows, in a compressible flow vortex sheets can be produced at

later times through the interaction of shocks and the solid boundary. These

are the standard objections to the use of the potential flow equation. Mathe-

matically, the vortex sheets are highly unstable. For the purpose of the basic

understanding of the physical phenomena concerning the gas flow around a

solid boundary, particularly the effects of the boundary on the shock waves,

the potential flow equation is an adequate model, as it yields the qualitative

behavior of flows.

Either for the Euler equations or for the potential flow equation, shock

waves are produced by compression. For definiteness, we choose the sign of

the front function ζ so that

u± · n > 0. (2.6)

This way U− is called the upstream state and U+ the downstream state.

As shock waves are a result of the compression of gases, the downstream
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density is greater than the upstream density. Equivalently, the upstream

normal velocity relative to the shock is greater than the downstream normal

velocity. When the energy equation is included in the Euler equations, this

is equivalent to the fact that the downstream entropy is greater than the

upstream entropy, and so this is often formulated as the entropy condition,

Figure 2,

0 < un
+ < un

−. (2.7)

For stationary flow, the shock speed is zero and the entropy condition

says that the upstream normal flow velocity is supersonic and the down-

stream is subsonic:

un
− > c−, , u

n
+ < c+. (2.8)

In general, for a propagating shock the upstream normal velocity is super-

sonic relative to the shock. The flow speed

|u| =
√

(un)2 + |ut|2

is greater than the normal velocity due to the tangential velocity component.

Thus the upstream speed is always supersonic. For small tangential speed,

the downstream is subsonic, and the shock is transonic; we call it a weak

shock. For large tangential speed, the downstream is supersonic, and we call

this shock a supersonic, strong shock.

Remark 2.2. Both weak and strong shock waves satisfy the entropy condi-

tion and are physically admissible. By a Galilean transformation tangential

to the shock, the tangential component of the flow velocity can be made

zero and the shock is then a transonic, strong shock. Similarly, through a

Galilean transformation, the tangential speed can be made large to turn a

weak shock into a supersonic, strong shock. Thus the notion of weak and

strong shocks makes sense only when there is a particular reference frame,

such as that determined by a solid flying object or a stationary obstacle.

Also, the strength of the shock is determined by the jump in the normal

speed and has nothing to do with whether it is supersonic or transonic.

Much attention has been paid to the study of stationary flows, and

stationary potential flows, in particular, [4], [1]. It is well-known that the
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stationary potential flow equation

(∇xφ)t∇2
xφ∇xφ− c2∆φ = 0, (2.9)

is
{

elliptic for subsonic flows, |∇xφ| = |u| < c;

hyperbolic for supersonic flows, |∇xφ| = |u| > c.
(2.10)

Another important class of flows are the self-similar flows:

U(x, t) = U(ξ), ξ ≡
x

t
. (2.11)

For self similar flows, the dimension of the basic dependent variables is re-

duced by one, from (x, t) to the self-similarity variables ξ = x/t.

Remark 2.3. Both the Euler equations (1.1) and the potential flow equation

(1.5) are invariant under the self-similar transformation

(x, t) → c(x, t), for any positive constant c. (2.12)

The existence of self-similar flows requires the additional property that both

the initial data U(x, 0) and the geometry of the solid around which the gas

flows are also invariant under the self-similar transformation (2.12). The

usual boundary condition for inviscid flows

u · n = 0, slip boundary condition, (2.13)

n normal to the solid boundary, is then also invariant under the self-similar

transformation (2.12).

For the potential flow equation (1.5), we set

φ(x, t) = tψ(ξ), χ(ξ) = ψ(ξ) −
1

2
|ξ|2, (2.14)

so that we have
{

∇ξψ = ∇xφ = u, velocity,

∇ξχ = u − ξ, pseudo-velocity.
(2.15)



2011] MULTI-DIMENSIONAL GAS FLOW 275

The potential flow equation (1.5) becomes the self-similar potential flow

equation:

(∇ξψ − ξ)t∇2
ξψ(∇ξψ − ξ) − c2∆ψ = 0; (2.16)

or equivalently,

(∇ξχ)t∇2
ξχ(∇ξχ) − c2∆χ = 2c2 − |∇ξχ|

2. (2.17)

The self-similar potential equation (2.17) is







Elliptic for pseudo-subsonic flows, |∇ξχ| = |u − ξ| < c,

Hyperbolic for pseudo-supersonic flows, |∇ξχ| = |u − ξ| > c.
(2.18)

For two-dimensional potential flow there is simplification of notation, and

we list the equations and their basic properties as follows:



















x = (x, y), u = (u, v) = (φx, φy),

φtt+2φxφxt+2φyφyt+[(φx)2−c2]φxx+2φxφyφxy+[(φy)
2−c2]φyy =0,

2d potential flow equation;

(2.19)



























[(φx)2 − c2]φxx + 2φxφyφxy + [(φy)
2 − c2]φyy = 0,

2d stationary potential flow equation,






elliptic for subsonic flow (φx)2 + (φy)
2 = u2 + v2 < c2,

hyperbolic for supersonic flow (φx)2 + (φy)
2 = u2 + v2 > c2;

(2.20)



















































































φ(x, y, t)= tψ(ξ, η), χ(ξ, η)=ψ(ξ, η)− 1
2
(ξ2+η2), ξ= x

t
; η= y

t
,

[(ψx−ξ)
2−c2]ψxx+2(ψx−ξ)(ψy−η)ψxy+[(ψy−η)

2−c2]ψyy =0,

2d self-similar potential flow equation, I,

[(χξ)
2−c2]χξξ+2χξχηχξη+[(χη)

2−c2]χηη =2c2−|(χξ)
2+(χη)

2|,

2d self-similar potential flow equation, II,


























elliptic for pseudo-subsonic flows,

(χξ)
2 + (χη)

2 = (u− ξ)2 + (v − η)2 < c2;

hyperbolic for pseudo-supersonic flows,

(χξ)
2 + (χη)

2 = (u− ξ)2 + (v − η)2 > c2.

(2.21)
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For the Euler equations, the stationary and self-similar flow equations

are;

{

∇x · (ρu) = 0,

∇x · (ρu ⊗ u + p(ρ)I) = 0, stationary Euler equations;
(2.22)



















−ξ · ∇ξρ+ ∇ξ · (ρu) = 0,

−ξ · ∇ξ(ρu) + ∇ξ · (ρu ⊗ u + p(ρ)I) = 0,

self-similar Euler equations, I;

(2.23)

or, for the n-dimensional case, x ∈ R
n,



















∇ξ · (ρ(u − ξ)) = −nρ,

∇ξ · (ρ(u − ξ) ⊗ (u − ξ) + p(ρ)I) = −(n+ 1)ρ(u − ξ),

self-similar Euler equations, II.

(2.24)

Note from (2.22) and (2.24) that the stationary and self-similar Euler equa-

tions have the same form for their left hand sides.

From now on, we will concentrate on 2-dimensional flows.

3. Stationary and Self-Similar Flows

An interesting stationary gas flow is often produced by a constant up-

stream state with nonzero velocity and a flow going around a solid object.

Mathematically, to construct the stationary flows one has to solve the bound-

ary value problem with boundary data given at |x| = ∞. In continuum

physics, boundary value problems often have multiple solutions. This was

already known to Euler for the buckling of elastic rods. For the incompress-

ible flows, there are the well-known Taylor solutions, for example. In gas

dynamics, because of the strong nonlinearity of the shock waves, the non-

uniqueness of solutions to boundary value problem has been shown only in

a few instances. For example, for quasi-one dimensional nozzle flows, [12],

[13], [14], the multiple solutions in a nozzle with given boundary condition

would contain the unstable solution with a stationary transonic shock in the

portion of the nozzle contracting in the flow direction.
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The equations for self-similar and stationary flows share the same prop-

erty in terms of classification of partial differential equations. This is clear if

we compare the two sets of equations in (2.9) and (2.17) for potential flows

and (2.22) and (2.24) for Euler flows. The difference is on the lower order

terms, the right hand side of the equations. We illustrate this by comparing

the simplest case of the two dimensional potential flow equations, (2.20) and

(2.21):



























[(φx)2 − c2]φxx + 2φxφyφxy + [(φy)
2 − c2]φyy = 0,

2d stationary potential flow equation,

[(χξ)
2 − c2]χξξ + 2χξχηχξη + [(χη)

2 − c2]χηη = 2c2 − |(χξ)
2 + (χη)

2|,

2d self-similar potential flow equation, II.

(3.1)

The self-similar equation differs from the stationary equation as it contains

the additional lower order term 2c2 − |(χξ)
2 + (χη)

2| on the right-hand side.

The classification of partial differential equations is dictated by the higher

order terms on the left-hand side of the equations. And these two sets of

equations have exactly the same form for their left hand sides. Of course,

there is another difference: The basic dependent variable χ for the self-similar

equation has the property that its gradients are the pseudo-velocity:

χξ = u− ξ, χη = v − η;

while the gradient of the potential φ is the velocity:

φx = u, φy = v.

Remark 3.1. The above are analytical considerations. Physically, the

boundary value problem for the self-similar equation, with boundary value

also posted for ξ2 + η2 at infinity, is equivalent to the initial value problem

for the potential flow equation with self-similar initial data. Although it is

difficult to prove, we expect the initial value problem for the potential flow

equation to have a unique solution. Therefore the boundary value problem

for the self-similar equation is expected to have a unique solution.

On the other hand, we have remarked above that the stationary solu-

tions, also with boundary value posed at infinity, often do not have unique

solutions. Clearly, the classification of partial differential equations alone
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does not suffice in clarifying the situation and the lower order term −2c2 +

|(χξ)
2 + (χη)

2| must make essential difference in this basic issue. In the

following, we focus our study from this elementary point of view. A key

observation is the fundamental Ellipticity Principle for self-similar potential

flows in any space dimension.

Theorem 3.2 (Ellipticity Principle, [7]). Consider the self-similar potential

flow equation (2.18). Suppose that there is a solution χ(ξ), which is elliptic,

i.e. psuedo-subsonic, in some region Ω. Consider a continuous perturbation

of the solution, either by changing the geometry of the solid or the boundary

condition at infinity. Then there cannot appear a hyperbolic, i.e. psuedo-

supersonic, bubble inside Ω.

Remark 3.3. It is a well-documented fact that there are subsonic station-

ary flows around an airfoil for which a supersonic bubble can grow inside

the subsonic flow. There is the question of whether a smooth, shock-less

transonic flow is stable, [16]. A transonic wave pattern is experimentally

obtained by increasing the Mach number M of the upstream flow. For small

Mach numbers, flows globally subsonic, Figure 3. As the Mach number

increases, a supersonic bubble emerges, Figure 4. This is not possible for

self-similar flows as stated in the Ellipticity Principle.

subsonic subsonic

subsonic
Mach = 0.7

Figure 3: Subsonic stationary flow

subsonic supersonic

supersonic
Mach = 0.8

normal shock

normal shock

Figure 4: Transonic stationary flow

4. Historical Perspectives

In the aforementioned DISCUSSION ON THE EXISTENCE AND

UNIQUENESS OR MULTIPLICITY OF SOLUTIONS OF THE AERO-

DYNAMICAL EQUATIONS, [17], the chair, von Neumann, made several
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general comments. We quote one of his comments below that leads to sub-

stantial exchanges later:

von Neumann:

Occasionally the simplest hydrodynamical problems have several solu-

tions, some of which are very difficult to exclude on mathematical grounds

only. For instance, a very simple hydrodynamical problem is that of the su-

personic flow of a gas through a concave corner, which obviously leads to

the appearance of a shock wave. In general, there are two different solutions

with shock waves, and it is perfectly well known from experimentation that

only one of the two, the weaker shock wave, occurs in nature. But I think

that all stability arguments to prove that it must be so, are of very dubious

quality.

Remark 4.1. The specific example von Neumann refers to is about the

shock reflection off a supersonic pointed flying object. There are two possi-

bilities that Prandtl was aware of: One is the weak, supersonic shock reflec-

tion, Figure 5; and the other is the strong transonic shock reflection, Figure

6. Both solutions can be viewed as a supersonic flight with the same given

upstream supersonic state I. In the case of the weak shock, the downstream

state II is supersonic; while for the strong shock the downstream state III

is subsonic. It has been a classical problem as to why the experiments al-

ways show the weak shock reflection. Analytically, these two solutions were

obtained by Prandtl using the shock polar analysis, [4], Figure 7.

θ

I
II

II

Figure 5: Weak shock reflection

θ

I

III

III

Figure 6: Strong shock reflection

Liepmann, of Liepmann-Roshko, Elements of Gas Dynamics, [11], offers

the following response, which brings up interesting points in the theory of

partial differential equations.
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I

II

III

u

v

Figure 7: Shock polar

Liepmann:

I would like to add a remark about the question of the two shock waves.

I think that the experiments cannot be safely cited to settle whether only the

solution with the weaker shock appears in nature, because the theoretical case

refers to an infinite wall (or to the flow along the two sides of an infinite

wedge), which case cannot be realized in practice. With the stronger one of

the two shock waves you have subsonic flow behind the shock wave, which

means that behind the shock wave you have a region where the theory of the

elliptic differential equation applies and where the field is influenced by the

boundary conditions at a finite or an infinite distance downstream. In the

case of the other shock wave the velocity remains supersonic, so that you

have conditions such as those obtained with hyperbolic equations. Thus one

cannot exclude a priori that conditions downstream may influence the flow

and thus may lead to a predilection for one type of shock wave about the

other type.

Remark 4.2. The strong, transonic shocks require geometric as well as

downstream conditions to be produced and stabilized. In the nozzle flow,

strong shocks are known to be stable in the portion of the nozzle expanding

in the flow direction; for analytical study of this, see [13]. For supersonic

flight, the engines are often designed so as to produce a strong shock inside

the engine. This is to increase the gas temperature and thereby the efficiency

of the combustion process. The stationary strong shocks are also used as an

experimental tool for the study of the structure of gases, [20].
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Next come the exchanges between von Neumann and von Karman. Von

Karman makes some important observations on whether stationary solutions

are physical.

von Karman:

I would like to say something about this question of uniqueness of solu-

tions. I dont think that there is any reason that if you put a problem in a

form which has no physical meaning, there shall not be two solutions. And I

think the case of stationary motion as such belongs to this category, because

it can occur only as a limiting case. Any physical process starts from some-

where and goes to somewhere. In the case of the two shock waves, if instead

of considering a stationary motion you consider an accelerated motion, you

will first get a detached shock wave ahead of the obstacle (when the Mach

number has just passed through unity). Then, with increasing velocity the so-

lution will approach the correct solution for the steady case, I should think,

without any difficulty. Such a case comes near to what you can actually

realize in an experiment. Is that not correct?

von Neumann:

I may not have chosen that example which fits best to your argument. It

has, of course, to be admitted that to postulate stationarity is to postulate a

general trait of the solution one wants, which may hold only approximately

in the physical situation that can actually be realized. However, it is not

necessary to take the stationary flow through a corner. The following problem

also has two solutions. If you take a plane shock which hits a wall and you

consider the reflection of the shock from the wall, then under a wide variety

of conditions (in fact, in most cases) there are two solutions. In this case

stationarity has not been postulated.

von Karman:

I only mean the following thing. I suppose we start from a certain state

of rest of the gas, which must be a solution of our equations. Then we change

the conditions gradually and follow the system step by step. I believe that

in such a case you will always get a solution and only one solution. There

is no proof that there is only one, but I believe it to be so. For, after all,

a gas is a molecular system, which follows the general equations of classical

mechanics. But if you take first an infinite cone, or an infinite wedge both

of which are situations which can never be realized and furthermore you ask
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for a stationary solution; in such a case there is no reason why there should

be only one solution.

von Karman:

Since the equations are non-linear, you can often, without violating con-

tinuity, pass from one solution to another one by following an envelope, and

in such a case you can scarcely find a mathematical reason why one solution

should be preferred to the other. But if you start from an actually existing

(observed) state and then determine the next phase, I believe you will find

only one completely determined result. Concerning Dr. von Neumann ex-

ample of the reflection of waves from a wall, I do not know the answer, but I

believe that no case in which infinitely extending waves or walls are involved

is really defined physically.

Remark 4.3. von Karman proposes a physically realizable process: Start

first with the trivial situation when the pointed flying object has zero speed

and the solution is then a constant state with zero gas velocity, Figure 8.

Then the flying object accelerates to a subsonic speed and a bow shock ap-

pears due to the compression of the gas around the flying object, Figure 9.

The distance D(t) of the bow shock from the flying object increases in time

in general. The distance will come to a finite value if the flying object is of

finite size. When the flying object is accelerated to a supersonic speed and

the flying object is pointed with the wedge angle θ small, there will be an

attached shock at the tip, Figure 10. von Karman then concludes that such

an attached shock would be a weak, supersonic shock.

The basic question of non-uniqueness of stationary solutions is being

raised here. One should not expect unique stationary solutions. On the other

hand, as we have considered this question analytically in Remark 3.1, self-

similar solutions should be unique. This leads to the analytical consideration

in the next section.

Burgers:

Dr. von Neumann mentioned a case of nonstationary theory where you

have also two solutions: a shock wave hitting a wall. But in the picture

you gave the wall was infinite, so that here again one must ask: How does

the situation arise, when you have an actual, finite wall? It may be that

you could treat the problem for an actual situation, in which a shock wave
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θ

UI = 0

Figure 8: Zero speed, constant solution.

θ

bow shock

D(t)

Figure 9: Subsonic upstream state.

I

II

II

weak shock

θ

Figure 10: Supersonic upstream state.

travelling in unlimited space reaches the edge of a wall, you might obtain a

definite solution.

von Neumann:

In that case you assume that the state at the time t = 0 is given and

you ask whether there is or is not a unique continuation of the solution at

later times. The answer to this question in its full generality is not known;

there seem to be a great many mathematical difficulties.

Remark 4.4. The great many mathematical difficulties still exist today.

However, it should be emphasized that analytical proof of uniqueness is

one thing; and the plausibility of uniqueness from physical consideration is

another thing. The first can be difficult. On the other hand, the latter

should be raised first, both from physical and analytical point of view, and

this is what these physicists have tried to do.
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5. Weak Shock Reflection

Mathematically, one can expect an infinite number of shock waves occur-

ring in the process of acceleration, making analytically difficult to construct

the solutions. On the other hand, as discussed in Remark 4.3, von Karman

points out that it is the time-asymptotic behavior that is observed and is

therefore the relevant one for the study of the attached shocks. This sug-

gests, instead of gradual acceleration, a wedge is instantaneously accelerated

to a supersonic speed uI . This means that at the initial time, gas surround-

ing the flying object is set to be the supersonic upstream state, Figure 11.

Such an initial value is trivially self-similar. Consider a 2-dimensional fly-

ing object around a wedge with angle 2α. The initial data is the upstream

supersonic state

(ρ, ρu)(x, y, 0) = (ρI , ρIuI), |uI | > cI , (x, y) ∈ D. (5.1)

U = I

Figure 11: Initial condition

As we will see, the solution will be the same as the initial data I for

x < 0 and, by symmetry, we will consider only the upper half plane. Thus

the relevant region is

D ≡ {(x, y) : x > 0, y > x tanα.} (5.2)

Consider the usual slip boundary condition for inviscid flows:

u · n = 0, for y = x tanα, the boundary of the wedge,
(5.3)

n = (sinα, cosα), the normal of the boundary.

We will consider the potential flow equation (2.19). Under the self-similar

values and domain, the solution is also self-similar and satisfies (2.21). For
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x > x0 large, the effect of the tip of the wedge is not felt in finite time.

Therefore, the solution is independent of the direction parallel to the solid

boundary, and depends only on the direction normal to the solid bound-

ary. Thus the problem is 1-dimensional and one needs only to solve the 1-

dimensional Riemann problem for the time-dependent equation (2.19). The

solution consists of a shock (I, IV ) parallel to the solid boundary. On the

other hand, the solution is self-similar and so satisfies the self-similar equa-

tion (2.21). We thus obtain the boundary value I at x = 0 and the boundary

value of the shock (I, IV ) at time t = 1, for sufficiently large x, for the equa-

tion (2.21). As (x, y) = (ξ, η) for t = 1, the self-similar solution is the time

dependent solution at time t = 1, and so the shock (I, IV ) is located at a

distance d from the solid, with d equal to its own speed. For |ξ|2 + |η|2 large,

(2.21) is hyperbolic and so the shock (I, IV ) may persists from infinity till

the hyperbolicity of (2.21) terminates at the pseudo sonic circle pertaining

to the state IV :

CIV ≡ {(ξ, η) : (ξ − uIV )2 + (η − vIV )2 = (cIV )2.}. (5.4)

Around the tip (x, y) = (ξ, η) = (0, 0), if the solution contains the weak

shock reflection (I, II), as observed in the experiments, then the shock can

persists till the pseudo-sonic circle CII with respect to the state II:

CII ≡ {(ξ, η) : (ξ − uII)
2 + (η − vII)

2 = (cII)
2}. (5.5)

These solutions to the hyperbolic part of the self-similar equation (2.21)

are unique, [15], [2]. However, these solutions may terminate before the

pseudo-sonic circles. The problem of the global structure of the solution

is considered in [8]. A numerical computation was performed to show that

the shocks (I, II), (I, IV ) persist till their respective speudo-sonic circles

CII , CIV . These shocks are connected by a curved shock S, with the flow

pseudo-subsonic and (2.21) elliptic between the pseudo-sonic circles CII ,

CIV , the curved shock S and the solid boundary. Figure 12. The following

theorem in [8] says that such a solution can be analytically constructed.

Theorem 5.1. There exists an angle α0 such that for the wedge angle α <

α0, there exists a solution to the self-similar equation (2.21) with the initial

data (5.1), and boundary condition (5.3) in the region D of (5.2). The

solution consists of the weak shock (I, II) from the tip of the wedge till the
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pseudo-sonic circle CI , the shock (I, IV ) parallel to the solid boundary till

the pseudo-sonic circle CIV , and a curved shock S connecting the two shocks,

and a pseudo-subsonic region between CII , CIV and S, Figure 12.

As the solution is self-similar, the solution at later time, say t = 2, is

the magnification of that described in the above theorem, Figure 13. Thus

we have shown that the time-asymptotic solution for an accelerating wedge

consists of a weak shock reflection attached to the tip of the wedge, Figure

5. This analytical study corresponds to the suggestions of von Karman.
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Figure 12: Time t = 1.
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Figure 13: Time t = 2.
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Remark 5.2. For the precise statement of Theorem 5.1, see [8]. It is proved

using the Leray-Schauder degree theory. It is a global method of using the

homotopy method, making use of the global estimate of the Ellipticity Prin-

ciple, Theorem 3.2. Such a global consideration is an important new devel-

opment in the theory of multi-dimensional gas flow.

6. Boundary Condition

Continuing the discussions, Heisenberg raises the basic point that the

models of partial differential equations in the fluid dynamics may not be

applicable in various physical situations.

Heisenberg:

I have one question in connection with these applications of the hy-

drodynamical equations. Should one assume from the beginning that these

equations actually could be used to such a large extent? If we take the case

of the gas expanding into a vacuum, the density at the front is so low that

the mean free path becomes larger than the distance to the assumed front.

Should one not start from the kinetic picture and say that at the front the

molecules will sort themselves out according to their velocities?

Heisenberg:

Then the physical front would be formed by a selection of those molecules

which had the highest velocities and did not suffer a collision for a long time.

One should expect that there, especially, we have a velocity distribution dif-

ferent from the normal one, and therefore we should not apply the ordinary

concepts like temperature and so on. I do not know how big the actual dif-

ference is, but I have tried to estimate it. One feels at least that there is a

rather large region in which ordinary hydrodynamics cannot be applied, sim-

ply because the concepts of temperature and so on would be rather useless.

von Neumann:

Therefore, while it is certainly not rigorously true, don’t you think it is

sensible, first of all, to apply hydrodynamic theory, and get a solution? If

you then discuss in what portions of the field the mean free path is small

compared to the distances over which all essential changes occur (one of

the most important portions is that where the distance from the boundary
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is small), it is reasonable to assume that the hydrodynamical equations may

at least be used in such regions. When one has to deal with the boundary

regions, the Maxwell 笀oltzmann theory should be called upon.

von Neumann:

Now what I have to say is that if one accepts this, and if one estimates

how large these extraordinary regions are, in the cases which are of interest

in the present context, they turn out to be fairly small. Properly speaking, in

the case of the Riemann expansion into vacuum, the region where you have

to be careful is quite large but it involves very little substance and very little

energy. Hence, in many cases, the correction of the hydrodynamical solution

in that region need not be discussed.

Heisenberg:

I certainly agree chiefly with what you say. I only would like to observe

that the failures of hydrodynamical solutions determine the boundary condi-

tions. The boundary conditions react back on the solutions of the hydrody-

namic equations, and since these boundary conditions cannot be determined

from hydrodynamics and require a detailed study of molecular processes, the

two things are interconnected. With you, I believe that on the whole we can

talk about hydrodynamical equations and their solutions, but the selection

of the solutions to be used depends on the boundary conditions and to this

extent we get these non-hydrodynamical parts of the field into our problem.

von Neumann:

The boundary layer theory for a fluid of low viscosity certainly furnishes

a monumental warning. The naive and yet prima facie seemingly reasonable

procedure would be to apply the ordinary equations of the ideal fluid and then

to expect that viscosity will somehow take care of itself in a narrow region

along the wall. We have learned that this procedure may lead to great errors;

a complete theory of the boundary layer may give you completely different

conditions also for the flow in the bulk of the field. It is possible that the same

discipline will be necessary for the boundary with a vacuum. All I would like

to say now is that there is yet no evidence for this.

Remark 6.1. The question of finding the boundary conditions for the fluid

dynamics equations from the consideration of the kinetic theory is an impor-

tant one. It has been a very active field of study since the time of the above

exchanges between Heisenberg and von Neumann. It is also a very rich field.
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The boundary condition and the appropriate corresponding fluid dynamics

equations depend on the physical situation. There are the classical Hilbert

and Chapman-Enskog expansions. It is important to adjust the expansion

for the particular physical situation that one considers. Thus the Hilbert ex-

pansion should be performed depending on the Knudsen number, the Mach

number, the Reynold number, the degree of nonlinearity, the geometry of

the solid boundary and other factors. In the case of flow near vacuum, for

instance, the situation is different between the evaporation toward the vac-

uum from a sphere and from a cylinder. The study of fluid dynamics from

the kinetic point of view has given rise to modern fluid dynamics. Interested

readers are recommended the book by Sone, [19].

The companion article [18] to [17] discusses the interesting problem of

the transition of regular to Mach reflections. These are self-similar solutions

with initial data consisting of a shock at the tip of the ramp, Figure 14.

For sufficiently large wedge angle, the solution at later time is a regular

reflection, Figure 15. The construction of the basic wave pattern of the

regular reflection solution has been considered for quite sometime and is

finally done for the potential flow equation in [3]. It is interesting that the

two papers [8] and [3] have proposed two different approaches for problems of

similar analytical nature. The technique in [8] has also been applied to this

problem of regular reflection, [6]. As the angle of the wedge decreases, more

complicated wave patterns appear, including the Mach reflection, Figure

16. There is the question of the transition criterion of the termination of

the regular reflection. There are the sonic, stability, geometric and other

transition criteria, [4]. In view of the above discussions on the boundary

behaviors, the transition criteria on the level of inviscid models would provide

a good starting point for the real flows with the viscous effects, as studied

from the kinetic theory. These are important topics for future research.
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