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Abstract

We discuss decay properties of solutions to viscous surface waves with capillarity

given in Beale-Nishida’s article [2]. We study their problem more precisely and make some

remarks on their results.

1. Introduction

The aim of the present paper is to discuss Beale-Nishida’s results [2]

more precisely and to give a complete proof to their decay estimates. J. T.

Beale and T. Nishida studied the decay properties of solutions to viscous

surface waves with capillarity more than twenty years ago in [2], based upon

the result of existence of smooth solution to a nonlinear problem [1]. They

gave delicate analysis on linearized operators by showing that a branch of

continuous spectra of negative real numbers accumulate at the origin, to

conclude decay of the solutions in algebraic orders. They applied the theory

of analytic perturbation to a family of two-point boundary value problems

of ODE’s, but they omitted writing details in [2]. The author considers that

their results are still significant and play an important role in the analysis of

nonlinear boundary value problems close to a constant state. To the author’s

knowledge, no one has given complete proofs to their results, and we give

supplementary remarks on their approach.
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Following [2], we state the problem as follows. We denote a fluid domain

of constant depth b (> 0) by Ω, and

Ω = {(x, y) ∈ R
3 : x ∈ R

2, −b < y < 0}.

We consider the fluid domain bounded by a free surface SF from above,

and by a rigid flat bottom SB from below. We denote the fluid velocity by

u = (u1, u2, u3)(t,x, y) and the pressure by q(t,x, y), and we suppose the

elevation of free surface to be given by a graph y = η(t,x). Then our aimed

system linearized around the equilibrium is written as follows:

∂η

∂t
− u3 = 0 on SF , (1)

∂u

∂t
− ν∆u + ∇q = 0 in Ω, (2)

∇ · u = 0 in Ω, (3)

∂ui

∂y
+

∂u3

∂xi
= 0 i = 1, 2 on SF , (4)

q − 2ν
∂u3

∂y
− (g − β∆)η = 0 on SF , (5)

u = 0 on SB . (6)

Here ν, g and β are given positive constants. The inhomogeneous functions

in (2) and (5) are neglected here for simplicity. This system is accompanied

by an initial data

(η,u) = (h,f ) at t = 0. (7)

The author would like to express his thanks to Professor Takaaki Nishida

and Professor Yuusuke Iso for their fruitful comments and warm encour-

agement. The author is also greatly indebted to referee for his valuable

comments on the present manuscript.

2. Resolvents of the Linearized Operator

We formulate (1)-(6) in an operator form according to [2]. Let an oper-

ator P be the Helmholtz projection defined as

L2(Ω) = PL2(Ω) ⊕ {∇φ : φ ∈ H1(Ω), φ = 0 on SF},
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and decompose the pressure term ∇q as P∇q = ∇π(1) + ∇π(2), where

∆π(i) = 0 in Ω,
∂π(i)

∂y
= 0 on SB (i = 1, 2),

π(1) = 2ν
∂u3

∂y
, π(2) = (g − β∆)η on SF .

The system (1)-(6) is reduced to the following evolution equations in H1(R2)

×PL2(Ω)

∂η

∂t
− Ru = 0 on SF ,

∂u

∂t
+ Au + R∗(g − β∆)η = 0 in Ω.

Here we define Ru := u3|SF
, Au := −νP∆u + ∇π(1) and R∗(g − β∆)η :=

∇π(2).

We introduce a formal operator G by

G

(
η

u

)
=

(
0 R

−R∗(g − β∆) −A

)(
η

u

)
in H1(R2) × PL2(Ω),

D(G) ⊃ W = {t(η,u) ∈ H5/2(R2) × PH2(Ω): u satisfies (3), (4) and (6)},

and we consider

(λ − G)

(
η

u

)
=

(
h

f

)
(8)

for (h,f ) ∈ H1(R2)×PL2(Ω). Since G is a dissipative operator, we have (i)

the right half plane belongs to the resolvent set, (ii) G has a closed extension,

which is also denoted by G, and it generates a contraction semigroup etG.

Now we turn to discuss the solvability of equation (8) under the restric-

tion (h,f ) ∈ H5/2(R2) × PL2(Ω).

Lemma 1. ([2, Lemma 3.3]) For any ε0, ε1 > 0, there exists c0 = c0(ε0, ε1) >

0 such that the operator (λ − G) has a bounded inverse satisfying

||u||H2(Ω) + |λ|||u||L2(Ω) + ||λ−1Ru||H5/2(SF ) + ||η||H5/2(R2) + |λ|||η||H3/2(R2)

≤ c0

(
||h||H5/2(R2) + ||f ||L2(Ω)

)
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for λ ∈ {λ ∈ C : |λ| > ε0, | arg λ| < π − ε1}.

We should refer to the resolvent near λ = 0. We denote by f̂ the partial

Fourier transform of f with respect to x.

Lemma 2. ([2, Lemma 3.4]) Let supp ĥ and supp f̂(·, y) belong to {ξ ∈

R
2 : |ξ| > ξ0} for ξ0 > 0. Then there exist constants r0 > 0 and c1 =

c1(ξ0, r0) > 0 such that for |λ| < r0, equation (8) has a solution t(η,u)

satisfying

||u||H2(Ω) + ||η||H5/2(R2) ≤ c1

(
||h||H5/2(R2) + ||f ||L2(Ω)

)
.

We remark that the function (η,u) given in Lemma 1 and Lemma 2 can

be considered holomorphic with respect to λ as in the case of usual resolvent

problems.

In order to analyze the spectrum near the origin, we apply the partial

Fourier transform to (8) with respect to x to obtain a family of ODE’s

parametrized by ξ = (ξ1, ξ2):

λη̂ − û3 = ĥ on y = 0, (9)

λû − ν(D2 − |ξ|2)û + (iξ,D)q̂ = f̂ in I, (10)

(iξ,D) · û = 0 in I, (11)

Dûj + iξj û3 = 0 j = 1, 2 on y = 0, (12)

−2νDû3 + q̂ − (g + β|ξ|2)η̂ = 0 on y = 0, (13)

û = 0 on y = −b, (14)

where I = (−b, 0) and D = ∂/∂y. We rewrite the system of these equations

in an operator form such as

(λ − Ĝ(ξ))

(
η̂

û

)
=

(
ĥ(ξ)

f̂(ξ, y)

)
in PξX,

where

X = {t(η̂(ξ), û(ξ, ·)) ∈ C × L2(I)},

PξX = {t(η̂(ξ), û(ξ, ·)) ∈ X : iξ1û1 + iξ2û2 + Dû3 = 0 in I},
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D(Ĝ(ξ)) ⊃ {t(η̂, û) ∈ C × H2(I) : û satisfies (11), (12) and (14)}.

For each ξ ∈ R
2, the operator Ĝ(ξ) in PξX is dissipative, and it has a closed

extension which we denote by Ĝ(ξ) again. The spectra of Ĝ(ξ) is determined

in the next proposition which is a slight modification of [2, Lemma 3.5].

Proposition 3. There exist ξ0 > 0 and 0 < r1 < ν(π/2b)2 such that if

|ξ| < ξ0, then the spectrum of Ĝ(ξ) contained in {λ ∈ C : |λ| < r1} consists

of a simple eigenvalue. Furthermore, the eigenvalue and the eigenvector are

analytic in ξ and have the following expansions.





λ = −
gb3

3ν
|ξ|2 + O(|ξ|3),

η̂e = 1 + O(|ξ|),

ûe
j = i

g

2ν
(y2 − b2)ξj + O(|ξ|2), j = 1, 2,

ûe
3 =

g

2ν

(
y3

3
− b2y −

2b3

3

)
|ξ|2 + O(|ξ|3).

(15)

This proposition is a key to conclude decay properties of the solutions,

but Beale-Nishida omitted its proof in [2]. The author will complete its proof

in the present paper. We will prove this proposition in several steps. Firstly

we have the following preparatory lemma.

Lemma 4. The spectrum of Ĝ(0) in {λ ∈ C : |λ| < ν(π/2b)2} consists of a

simple eigenvalue λ = 0 associated with eigenvector (η̂(0), û(0, y)) = (1, 0).

Proof. If we put ξ = 0 in (9)–(14), we have

û3(0, y) = 0, λη̂(0) = ĥ(0), q̂(0, y) =

∫ y

0
f̂(0, z)dz + gη̂(0),

and

(λ − νD2)ûj(0, y) = f̂j(0, y) j = 1, 2 in I, (16)

ûj(0,−b) = 0 j = 1, 2, (17)

Dûj(0, 0) = 0 j = 1, 2. (18)
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For (16)–(18), the largest spectrum of the operator D2 with the boundary

conditions (17) and (18) is an eigenvalue −(π/2b)2. Hence, the set {λ ∈

C : Reλ > −ν(π/2b)2} \ {0} is in resolvent set of (9)–(14).

On the other hand, we see that λ = 0 is an eigenvalue associated with

eigen vector (η̂(0), û(0, y)) = (1,0). ���

Before proceeding the next step, we recall the definition of a holomorphic

family of unbounded operators ([5, VII §1]).

Definition 5. Let X,Y be Hilbert spaces.

(1) A family of bounded operators {S(ξ)} ⊂ B(X,Y ) are said to be bounded-

holomorphic, if each ξ has a neighborhood in which S(ξ) is bounded and

a complex valued function (S(ξ)U, V )Y is holomorphic in ξ for every

U ∈ X and V ∈ Y .

(2) A family of closed operators {Ĝ(ξ)} ⊂ C (X) are said to be holomorphic,

if there are a Hilbert space Y and two families of bounded-holomorphic

operators {S(ξ)} ⊂ B(Y,X), {T (ξ)} ⊂ B(Y,X) such that S(ξ) maps Y

to D(Ĝ(ξ)) bijectively and Ĝ(ξ)S(ξ) = T (ξ).

Lemma 6. {Ĝ(ξ)} are holomorphic in ξ near the origin ξ = 0.

Proof. In order to avoid the boundary conditions of the domain D(Ĝ(ξ))

depending on ξ, we adopt the associated sesqui-linear form

g(ξ)[U, V ] = (g + β|ξ|2){(û3, θ̂)C − (η̂, v̂3)C} +
ν

2

∫

I
Ŝ(u) : Ŝ(v)dy,

where U = t(η̂, û), V = t(θ̂, v̂) ∈ D(g(ξ)), S(u)ij = ∂ui/∂xj + ∂uj/∂xi and

(aij) : (bij) =
∑

ij aijbij . It is easy to see that the sesqui-linear form g has

the following property.

Lemma 7. g(ξ) is a densely defined, closed, and m-sectorial sesqui-linear

form in PξX, whose domain is

D(g(ξ)) = {t(η̂, û) ∈ PξX : û(ξ, ·) ∈ 0H
1(I)},

where 0H
1(I) = {û(ξ, ·) ∈ H1(I) : û(ξ,−b) = 0}.
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We are ready to construct a bounded-holomorphic operator which maps

D(g(ξ)) onto X. To this end, define a sesqui-linear form h(ξ) := 1 + Re g(ξ)

with its associated operator S(ξ) := Sh(ξ), and we have

S(ξ)U =

(
η̂

û

)
+

(
0

−ν(D2 − |ξ|2)û + (iξ,D)π(1)

)
.

Then it is easy to check the following three facts: (i) S(ξ) is essentially self-

adjoint, and bounded from below. (ii) {S−1(ξ)} are bounded-holomorphic

on X. (iii) {S−1/2(ξ)} are bounded-holomorphic, and map X to D(g(ξ))

bijectively.

Since

S−1/2(ξ)U ∈ D(S1/2(ξ)) = D(h(ξ)) = D(Re g(ξ)) for all U ∈ X,

we define a form g0(ξ) on X by

g0(ξ)[U, V ] = g(ξ)[S−1/2(ξ)U,S−1/2(ξ)V ].

The sesqui-linear form g0(ξ) is closed, sectorial, and defined everywhere in

X, and its family are bounded-holomorphic on X. Thus we have a family of

bounded-holomorphic operators {Ĝ0(ξ)} by

g0(ξ)[U, V ] = (Ĝ0(ξ)U, V )X ,

and

Ĝ(ξ)S−1(ξ) = S1/2(ξ)Ĝ0(ξ)S
−1/2(ξ). (19)

Since the right side of (19) is holomorphic and the left side is bounded,

{Ĝ(ξ)} are holomorphic. This completes the proof of Lemma 6. ���

We now continue the proof of Proposition 3. From Lemma 4 and

Lemma 6, the spectrum of Ĝ(ξ) near the origin consists of a simple eigenvalue

λ(ξ) associated with the eigenvector ϕ(ξ), both of which are holomorphic in

ξ by the following Lemma. This is the special case of general analytic per-

turbation theory. For the proof, the reader may refer to [5, II §1–1 and VII

§1–3], and also to [4, II §5–7] for holomorphy in several variables.
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Lemma 8. Let {T (ξ)} be a family of holomorphic operators in X. Assume

that the spectra Σ(0) of T (0) is separated into {λ(0)}∪Σ′′(0) by a rectifiable,

simple closed curve Γc, and assume that λ(0) is a simple eigenvalue. Then

the spectra Σ(ξ) of T (ξ) are also separated by Γc into {λ(ξ)} ∪ Σ′′(ξ) for

|ξ| < r1 with the associated decomposition X = span〈ϕ(ξ)〉 ⊕ P ′′(ξ)X. In

particular λ(ξ) is a simple eigenvalue associated with the eigenvector ϕ(ξ),

both of which are holomorphic in ξ.

Since we know λ(0) is simple, we can choose an eigenvector and its

eigenvalue which are holomorphic in ξ:





λ(ξ) =
∑

|j|≥1

λj · ξ
j, û(ξ, y) =

∑

|j|≥1

ûj(y) · ξj,

η̂(ξ) = 1 +
∑

|j|≥1

η̂j · ξ
j, q̂(ξ, y) = q̂(0, y) +

∑

|j|≥1

q̂j(y) · ξj.
(20)

Here we adopt the vector notation j = (j1, j2) ∈ N
2
0, λj ·ξ

j = λj1ξ
j1
1 +λj2ξ

j2
2 ,

and so on. If we put (20) in (9)–(14) and set (ĥ, f̂) = (0,0), we have q̂(0, y) =

g. We next calculate the coefficients of order ξ of (9)–(14) and obtain for

|j| = 1:

λj = 0,
∑

|j|=1

ûj(y) · ξj = (i
g

2ν
(y2 − b2)ξ1, i

g

2ν
(y2 − b2)ξ2, 0),

and of order |ξ|2 for |j| = 2:

λj = −
gb3

3ν
|ξ|2,

∑

|j|=2

û3(y) · ξj =
g

2ν
(
y3

3
− b2y −

2

3
b3)|ξ|2.

Hence we have determined some of the coefficients of the power series in ξ.

We complete the proof of Proposition 3. ���

Remark 9. The eigenvalues {λ(ξ)} of the family of ordinary differential

operators {Ĝ(ξ)} given in Proposition 3 correspond to continuous spectra of

the partial differential operator G. Indeed, from the proof of Proposition 3,

(i) if λ(ξ0) is an eigenvalue of G, then the eigenvector U(x, y) does not vanish.

However Û is supported only on ξ = ξ0, and Û = 0 holds for almost every ξ.

Hence λ(ξ) is not an eigenvalue of G. (ii) We see that the range of (λ(ξ0)−G)

is dense in H5/2(R2) × PL2(Ω), and it implies that λ(ξ0) is not a residual
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spectrum of G. (iii) Meanwhile, we can choose {Fn} ⊂ H5/2(R2) × PL2(Ω)

which satisfy ||Fn||H5/2(R2)×PL2(Ω) = 1 and ||(λ(ξ0)−G)−1Fn||L2(R2)×PL2(Ω) →

∞ as n → ∞. Therefore, {λ(ξ)} are a family of continuous spectra of the

partial differential operator G.

By Lemma 1 and Lemma 2, the inverse (λ − Ĝ(ξ))−1 is holomorphic in

{λ ∈ C : Reλ > −r0} for |ξ| ≥ ξ0, and we take the path of Dunford integral

in the left half plane to obtain

(
η̂(t, ξ)

û(t, ξ, y)

)
= etĜ(ξ)

(
η̂0(ξ)

û0(ξ, y)

)

=
1

2πi
lim

τ→∞

∫ −r0+iτ

−r0−iτ
eλt(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ. (21)

On the other hand, by Lemma 1 and Proposition 3, the inverse (λ− Ĝ(ξ))−1

is holomorphic in {λ ∈ C : Reλ > −r1} except the pole λ = λ(ξ) for |ξ| < ξ0,

and the integral path should be modified ([3, VII.4 Theorem 22]) as

(
η̂(t, ξ)

û(t, ξ, y)

)
=

1

2πi

{∮

Cξ

+ lim
τ→∞

∫ −r1+iτ

−r1−iτ

}
eλt(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ,

= eλ(ξ)tP ′(ξ)

(
η̂0(ξ)

û0(ξ, y)

)

+
1

2πi
lim

τ→∞

∫ −r1+iτ

−r1−iτ
eλt(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ. (22)

Here we note that Cξ is a positively-oriented small circle enclosing λ = λ(ξ)

but excluding the line {λ ∈ C : Reλ = −r1}, and we denote by P ′(ξ) the

eigenprojection associated with the eigenvalue λ = λ(ξ), which is holomor-

phic in ξ:

P ′(ξ)

(
η̂0

û0

)
=

〈(η̂0, û0), (η̂
e, ûe)〉C×L2(I)

|η̂e(ξ)|2 + ||ûe(ξ, ·)||2
L2(I)

(
η̂e

ûe

)
.

Here by virtue of (15),

∣∣∣∣∣
〈(η̂0, û0), (η̂

e, ûe)〉C×L2(I)

|η̂e(ξ)|2 + ||ûe(ξ, ·)||2
L2(I)

∣∣∣∣∣ ≤ c1(|η̂0(ξ)| + |ξ| · ||û0(ξ, ·)||L2(I)). (23)
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We denote Qη
t(η,u) = η and Qu

t(η,u) = u. If we take (21), (22) and (23)

into account, we have for α ∈ [0, 5/2] and r2 = min(r0, r1),

||η(t)||2
Ḣα(R2

x)
= |||ξ|αη̂(t, ξ)||2L2(R2

ξ)

≤ 2c2
1

∫

|ξ|<ξ0

|ξ|2αe2λ(ξ)t(|η̂0(ξ)|
2 + |ξ|2||û0(ξ, ·)||

2
L2(I))|η̂

e(ξ)|2dξ

+

∫

|ξ|<ξ0

|ξ|2α

4π2
lim

τ→∞

∣∣∣∣∣

∫ −r1+iτ

−r1−iτ
eλtQη(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ

∣∣∣∣∣

2

dξ

+

∫

|ξ|≥ξ0

|ξ|2α

4π2
lim

τ→∞

∣∣∣∣∣

∫ −r0+iτ

−r0−iτ
eλtQη(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ

∣∣∣∣∣

2

dξ

≤ c2

{
||η̂0||

2
L∞(R2

ξ)

∫

|ξ|<ξ0

|ξ|2αe2λ(ξ)tdξ

+t−α−1

∫

|ξ|<ξ0

(t|ξ|2)α+1e2λ(ξ)t||û0(ξ, ·)||
2
L2(I)dξ

}

+c3e
−2r2t(||η0||

2
H5/2(R2

x)
+ ||u0||

2
L2(Ω)),

≤ c4t
−α−1(||η0||

2
H5/2(R2

x)
+ ||η0||

2
L1(R2

x) + ||u0||
2
L2(Ω)).

On the other hand, since ûe(ξ, ·) is O(|ξ|), we have for β ∈ [0, 2],

||∂β
x u(t)||2L2(Ω) = |||ξ|βû(t, ξ, y)||2L2(R2

ξ×I)

≤ 2c2
1

∫

|ξ|<ξ0

|ξ|2βe2λ(ξ)t(|η̂0(ξ)|
2 + |ξ|2||û0(ξ, ·)||

2
L2(I))||û

e(ξ, ·)||L2(I)dξ

+

∫

{|ξ|<ξ0}×I

|ξ|2β

4π2
lim

τ→∞

∣∣∣∣
∫ −r1+iτ

−r1−iτ
eλtQu(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ

∣∣∣∣
2

dξdy

+

∫

{|ξ|≥ξ0}×I

|ξ|2β

4π2
lim

τ→∞

∣∣∣∣
∫ −r0+iτ

−r0−iτ
eλtQu(λ − Ĝ(ξ))−1

(
η̂0(ξ)

û0(ξ, y)

)
dλ

∣∣∣∣
2

dξdy

≤ c5

{
||η̂0||

2
L∞(R2

ξ)

∫

|ξ|<ξ0

|ξ|2(β+1)e2λ(ξ)tdξ

+t−β−2

∫

|ξ|<ξ0

(t|ξ|2)β+2e2λ(ξ)t||û0(ξ, ·)||
2
L2(I)dξ

}

+c3e
−2r2t(||η0||

2
H5/2(R2

x)
+ ||u0||

2
L2(Ω)),

≤ c6t
−β−2(||η0||

2
H5/2(R2

x)
+ ||η0||

2
L1(R2

x) + ||u0||
2
L2(Ω)).

As for ||∂β
y u(t)||L2(Ω), if we apply y-derivatives to ûe, we have no gain of
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the order of ξ. Hence ||∂β
y u(t)||L2(Ω) is O(t−1) for β ∈ [0, 2]. We have thus

obtained the following theorem, which is one of the main results of Beale-

Nishida’s paper [2].

Theorem 10. ([2, Theorem 3.1]) Let E2 = ||η0||L1(R2) + ||η0||H5/2(R2) +

||u0||L2(Ω). Then the solution to (1)-(7) has the decay rate:

||∂α
x η(t)||L2(R2) ≤ c0E2t

−(1+α)/2, 0 ≤ α ≤ 5/2,

||u(t)||H2(Ω) ≤ c0E2t
−1.
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