GENERALIZED SKEW DERIVATIONS WITH ENGEL CONDITIONS ON LIE IDEALS

JUI-CHI CHANG

Department of Computer Science and Information Engineering, Chang Jung Christian University , Tainan, Taiwan

E-mail: jc2004@mail.cjcu.edu.tw

Abstract

Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero right generalized β -derivation of R associated with a β -derivation δ such that $[f(x), x]_k = 0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ scuh that f(x) = sx for all $x \in R$ or $R \subseteq M_2(F)$ for some field F. Moreover, if the latter case holds, then either charR = 2 or char $R \neq 2$ and f(x) = bx - xc for all $x \in R$, where $b, c \in \mathscr{R}R$ and $b + c \in C$.

Recently, M. C. Chou and C. K. Liu [5] proved that if δ is a nonzero σ -derivation of R and L is a noncommutative Lie ideal of R such that $[\delta(x), x]_k = 0$ for all $x \in L$, where k is a fixed positive integer, then charR = 2 and $R \subseteq M_2(F)$ for some field F. This result generalizes some known results, see for instances, [15] and [20]. In this paper we extend [5] further to the so-called right generalized skew derivations. Notice that our result also generalizes the case of generalized derivations by N. Argac, L. Carini and V. De Fillipis [1].

Throughout this paper, R is always a prime ring with center Z. For $x, y \in R$, set $[x, y]_1 = [x, y] = xy - yx$ and $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1. Notice that an Engel condition is a polynomial $[x, y]_k = \sum_{i=0}^k (-1)^i {k \choose i} y^i x y^{k-i}$ in noncommutative indeterminantes x and y. For two subsets A and B of R, [A, B] is defined to be the additive subgroup of R generated by all elements

Received February 16, 2011 and in revised form July 26, 2011.

AMS Subject Classification: 16W20, 16W25, 16W55.

Key words and phrases: Skew derivation, generalized skew derivation, automorphism, prime ring, generalized polynomial identity (GPI), Lie ideal, Engel condition.

[a, b] with $a \in A$ and $b \in B$. An additive subgroup L of R is said to be a Lie ideal if $[l, r] \in L$ for all $l \in L$ and $r \in R$. A Lie ideal L is said to be noncommutative if $[L, L] \neq 0$.

Let β be an automorphism of R. A β -derivation of R is an additive mapping $\delta : R \to R$ satisfying $\delta(xy) = \delta(x)y + \beta(x)\delta(y)$ for all $x, y \in R$. β -derivations are also called skew derivations. When $\beta = 1$, the identity map of R, β -derivations are merely ordinary derivations. If $\beta \neq 1$, then $1 - \beta$ is a β -derivation. An additive mapping $f : R \to R$ is a right generalized β derivation if there exists a β -derivation $\delta : R \to R$ such that $f(xy) = f(x)y + \beta(x)\delta(y)$ for all $x, y \in R$. The right generalized β -derivations generalize both β -derivations and generalized derivations. If $a, b \in R$ and $\beta \neq 1$ is an automorphism of R, then $f(x) = ax - \beta(x)b$ is a right generalized β derivation. Moreover, if δ is a β -derivation of R, then $f(x) = ax + \delta(x)$ is a right generalized β -derivation.

We let $\mathscr{F}R$ denote the right Martindale quotient ring of R and Q the two sided Martindale quotient ring of R. Let C be the center of Q and $\mathscr{F}R$, which is called the extended centroid of R. Note that Q and $\mathscr{F}R$ are also prime rings and C is a field (see [2]). It is known that automorphisms, derivations and β -derivations of R can be uniquely extended to Q and $\mathscr{F}R$. In [4], we know that right generalized β -derivations of R can also be uniquely extended to $\mathscr{F}R$. Indeed, if f is a right generalized β -derivation of R, then there exists $s \in \mathscr{F}R$ such that $f(x) = sx + \delta(x)$ for all $x \in R$, where δ is a β -derivation of R (Lemma 2 in [4]).

A β -derivation δ of R is called X-inner if $\delta(x) = bx - \beta(x)b$ for some $b \in Q$. δ is called X-outer if it is not X-inner. An automorphism β is called X-inner if $\beta(x) = uxu^{-1}$ for some invertible $u \in Q$. β is called X-outer if it is not X-inner.

We are now ready to state the main result:

Main Theorem. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero right generalized β -derivation of R associated with a β -derivation δ such that $[f(x), x]_k = 0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ such that f(x) = sx for all $x \in R$ or $R \subseteq M_2(F)$ for some field F. Moreover, if the latter case holds, then either charR = 2 or char $R \neq 2$ and f(x) = bx - xcfor all $x \in R$, where $b, c \in \mathscr{R}R$ and $b + c \in C$. As a corollary, we have

Corollary 1. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that $\beta \neq 1_R$ and f is a nonzero right generalized β -derivation of R associated with a β -derivation δ such that $[f(x), x]_k = 0$ for all $x \in L$, where k is a fixed positive integer. Then there exists $s \in C$ such that f(x) = sx for all $x \in R$ unless charR = 2 and $R \subseteq M_2(F)$ for some field F.

Corollary 2. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero generalized derivation of R associated with derivation d such that $[f(x), x]_k = 0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ such that f(x) = sx for all $x \in R$ or $R \subseteq M_2(F)$ for some field F. Moreover, if the latter case holds, then either charR = 2 or char $R \neq 2$ and f(x) = bx - xc for all $x \in R$, where $b, c \in \mathscr{F}R$ and $b + c \in C$.

We begin with a lemma which is a consequence of [1].

Lemma 1. Let R be a prime ring with center Z and $b \in R$. Let L be a noncommutative Lie ideal of R. If $[bx, x]_k = 0$ for all $x \in L$, where k is a fixed positive integer, then $b \in Z$ unless charR = 2 and $R \subseteq M_2(F)$ for some field F.

Lemma 2. Let R be a dense subring of $End(V_D)$, containing nonzero linear transformations of finite rank, where D is division ring and $\dim V_D \ge 3$. Let $f(x) = bx - \phi(x)c$ where $b, c \in R$ and ϕ is an automorphism of R. If $[f([x,y]), [x,y]]_k = 0$ for all $x, y \in R$, where k is fixed positive integer, then $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$.

Proof. We will adopt the proof of Lemma 2 in [5] with some necessary modification. Since R is a primitive ring with nonzero socle, by a result in [12, p.79], there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\phi(x) = TxT^{-1}$ for all $x \in R$. Moreover, $T(vs) = T(v)\tau(s)$ for all $v \in V$ and $s \in D$, where τ is an automorphism of D.

If v and $T^{-1}cv$ are *D*-dependent for all $v \in V$, then as before, there exists $\lambda \in D$ such that $T^{-1}cv = v\lambda$ for all $v \in V$. This imply

$$f(x)v = (bxv - \phi(x)c)v = (bx - TxT^{-1}c)v$$
$$= bxv - Txv\lambda = bxv - T(T^{-1}cxv)$$

[September

$$= bxv - cxv = ((b - c)x)v$$

for all $x \in R$ and for all $v \in V$. Hence (f(x) - (b - c)x)V = 0 for all $x \in R$. Since V is faithful, we have f(x) = (b - c)x for all $x \in R$ and hence, by the assumption, we have

$$[(b-c)[x,y], [x,y]]_k = 0$$
(2)

for all $x, y \in R$. By (2) and Lemma 1, it follows that $b - c \in Z$ and we are down.

So we may assume that v_0 and $T^{-1}cv_0$ are *D*-independent for some $v_0 \in V$. If dim $V_D \geq 4$, then we can choose $u, w \in V$ such that $v_0, T^{-1}cv_0, u$ and w are *D*-independent. By the density of *R*, there exists $x, y \in R$ such that

$$xv_0 = 0, \ xT^{-1}cv_0 = 0, \ xu = T^{-1}w, \ xw = u$$

and

$$yv_0 = 0, \ yT^{-1}cv_0 = u, \ yu = -w, \ yw = 0.$$

Hence $[x, y]v_0 = 0$, $[x, y]T^{-1}cv_0 = T^{-1}w$, [x, y]w = w and $(b[x, y] - \phi([x, y])c)v_0 = (b[x, y] - T[x, y]T^{-1}c)v_0 = w$. With all these, we obtain from the assumption that

a contradiction.

Therefore, we may assume dim $V_D = 3$. In this case, we can choose $w \in V$ such that $v_0, T^{-1}cv_0$ and w are D-independent and $\{v_0, T^{-1}cv_0, w\}$ forms a basis for V. If V. If $T(v_0 + T^{-1}cv_0 + w), T(T^{-1}cv_0 + w) \in v_0 D$, then $T(v_0) \in v_0 D$ and hence $v_0, T^{-1}cv_0 + w \in T^{-1}cv_0 + w \in T^{-1}(v_0 D) = (T^{-1}v_0)D$ contrary to the fact that v_0 and $T^{-1}cv_0 + w$ are D-independent. Therefore if $u = v_0\lambda + T^{-1}cv_0 + w$, where $\lambda \in \{0, 1\}$, then $T(u) \notin v_0 D$.

308

Write $T(u) = v_0 \alpha + T^{-1} c v_0 \beta + w \gamma$, where $\alpha, \beta, \gamma \in D$ with $\beta \neq 0$ or $\gamma \neq 0$. By the density of R, there exists $x, y \in R$ such that

$$xv_0 = 0, \ xT^{-1}cv_0 = w, \ xw = 0$$

and

$$yv_0 = 0, \ yT^{-1}cv_0 = 0, \ yw = -u.$$

In particular, xu = w, yu = -u, $xT(u) = w\beta$ and $yT(u) = -u\gamma$. Therefore, $[x, y]v_0 = 0$, $[x, y]T^{-1}cv_0 = u$, [x, y]w = -w and $(b[x, y] - \phi([x, y])c)v_0 = (b[x, y] - T[x, y]T^{-1}c)v_0 = T(u)$. Also [x, y]u = u - w, $[x, y]T(u) = u\beta - w\gamma$, $[x, y]^{2i-1}T(u) = u\beta - w\gamma$ and $[x, y]^{2i}T(u) = (u - w)\beta + w\gamma$ for $i \ge 1$. Since β , γ are not all zero and u, w are D-independent, it is easy to see that $[x, y]^iT(u) \ne 0$ for $i \ge 1$. With all these and the assumption, we have

$$\begin{aligned} 0 &= [f([x,y]), [x,y]]_k v_0 \\ &= [b[x,y] - \phi([x,y])c, [x,y]]_k v_0 \\ &= \left(\sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) [x,y]^{k-i}\right) v_0 \\ &= (-1)^k [x,y]^k (b[x,y] - \phi([x,y])c) v_0 \\ &= (-1)^k [x,y]^k T(u), \end{aligned}$$

a contradiction. So the proof of the lemma is complete.

Lemma 3. Let F be field with char $F \neq 2$, V_F a vector space over F with dim $V_F = 2$, and $R = \text{End}(V_F)$. Let $f(x) = bx - \phi(x)c$ for all $x \in R$, where $b, c \in R$ and ϕ is an automorphism of R. If $[f([x, y]), [x, y]]_k = 0$ for all $x, y \in R$, where k is a fixed positive integer, then either $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$ or $\phi = 1_R$ and $b + c \in Z$.

Proof. Again, by [12, p.79], there exists a semi-linear automorphism $T \in$ End(V) such that $\phi(x) = TxT^{-1}$ for all $x \in R$. Moreover, $T(vs) = T(v)\tau(s)$ for all $v \in V$, $s \in F$, where τ is an automorphism of F. If v and $T^{-1}cv$ are F-dependent for all $v \in V$, as the second paragraph in the proof of Lemma 2, then $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$. So we may assume that v_0 and $T^{-1}cv_0$ are *F*-independent for some $v_0 \in V$. Clearly, $\{v_0, T^{-1}cv_0\}$ is a basis for V_F . It is easy to see that there exists $x, y \in R$ such that

$$xv_0 = T^{-1}cv_0, \ xT^{-1}cv_0 = 0, \ yv_0 = 0, \ yT^{-1}cv_0 = v_0.$$

Therefore, $[x, y]v_0 = -v_0$, $[x, y]T^{-1}cv_0 = T^{-1}cv_0$ and $(b[x, y] - \phi([x, y])c)v_0 = (b[x, y] - T[x, y]T^{-1}c)v_0 = (b + c)v_0$. Consequently, we have

$$\begin{aligned} 0 &= [b[x,y] - \phi([x,y])c, [x,y]]_k v_0 \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) [x,y]^{k-i} v_0 \\ &= (-1)^k \sum_{i=0}^k \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) v_0 \\ &= (-1)^{k+1} \sum_{i=0}^k \binom{k}{i} [x,y]^i (b+c) v_0. \end{aligned}$$

Clearly, $(b + c)v_0 = v_0r + T^{-1}cv_0s$ for some $r, s \in F$. If $s \neq 0$, by the last equation, we have $(-1)^{k+1}2^kT^{-1}cv_0s = 0$, a contradiction. Therefore $(b + c)v_0 = v_0r$.

We also can choose $x, y \in R$ such that

$$xv_0 = -v_0 - T^{-1}cv_0, \quad xT^{-1}cv_0 = 0, \quad yv_0 = 0, \quad yT^{-1}cv_0 = -v_0.$$

Then $[x, y]v_0 = -v_0$ and $[x, y]T^{-1}cv_0 = v_0 + T^{-1}cv_0$. Moreover, $[x, y]^i v_0 = (-1)^i v_0$, $v_0 = (-1)^i v_0$, $[x, y]^{2i-1}T^{-1}cv_0 = v_0 + T^{-1}cv_0$ and $[x, y]^{2i}T^{-1}cv_0 = T^{-1}cv_0$ for $i \ge 1$. If $T(v_0) = v_0q + T^{-1}cv_0p$, then $(b[x, y] - \phi([x, y])c)v_0 = (b[x, y] - T[x, y]T^{-1}c)v_0 = -(b + c)v_0 - T(v_0) = -v_0r - v_0q - T^{-1}cv_0p = -v_0(r + q) - T^{-1}cv_0p$ and

$$\begin{aligned} 0 &= [b[x,y] - \phi([x,y])c, [x,y]]_k v_0 \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) [x,y]^{k-i} v_0 \\ &= (-1)^k \sum_{i=0}^k \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) v_0 \end{aligned}$$

$$= (-1)^{k+1} \sum_{i=0}^{k} \binom{k}{i} [x, y]^{i} (v_{0}(r+q) + T^{-1} c v_{0} p)$$

$$= (-1)^{k+1} \left\{ \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} v_{0}(r+q) + \left(\sum_{i=0}^{k} \binom{k}{i} [x, y]^{i} T^{-1} c v_{0} \right) p \right\}$$

$$= (-1)^{k+1} (j v_{0} p + 2^{k} T^{-1} c v_{0} p)$$

where $j = \binom{k}{1} + \binom{k}{3} + \dots + \binom{k}{2\lfloor \frac{k+1}{2} \rfloor - 1}$. If $p \neq 0$, then the last equation leads a contradiction since char $R \neq 2$. Therefore, $T(v_0) = v_0 q, q \neq 0$.

Assume further that $cv_0 = v_0\alpha + T^{-1}cv_0\beta$, $cT^{-1}cv_0 = v_0m + T^{-1}cv_0n$, $bv_0 = v_0\lambda + T^{-1}cv_0\gamma$ and $bT^{-1}cv_0 = v_0l + T^{-1}cv_0h$, where $\alpha, \beta, m, n, \lambda, \gamma, l, h \in F$. Since $(b+c)v_0 = v_0r$, then $\alpha + \lambda = r$ and $\beta + \gamma = 0$. Now for each $s \in F \setminus \{0\}$, we can choose $x, y \in R$ such that

$$xv_0 = -T^{-1}cv_0s, \quad xT^{-1}cv_0 = 0, \quad yv_0 = 0, \quad yT^{-1}cv_0 = -v_0.$$

Then we have $[x, y]v_0 = v_0 s$, $[x, y]T^{-1}cv_0 = -T^{-1}cv_0 s$, and $(b[x, y] - \phi([x, y])c)v_0 = (b[x, y] - T[x, y]T^{-1}c)v_0 = bv_0 s + T(T^{-1}cv_0 s) = bv_0 s + cv_0 \tau(s) = (v_0 \lambda + T^{-1}cv_0 \gamma)s + (v_0 \alpha + T^{-1}cv_0 \beta)\tau(s) = v_0(s\lambda + \tau(s)\alpha) + T^{-1}cv_0\beta(\tau(s) - s)$. Let $\eta = s\lambda + \tau(s)\alpha$ and $\mu = \beta(\tau(s) - s)$. Then

$$\begin{aligned} 0 &= [b[x,y] - \phi([x,y])c, [x,y]]_k v_0 \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) [x,y]^{k-i} v_0 \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c) v_0 s^{k-i} \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (v_0 \eta + T^{-1} c v_0 \mu) s^{k-i} \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} v_0 s^k \eta + \sum_{i=0}^k (-1)^k \binom{k}{i} T^{-1} c v_0 s^k \mu \\ &= (-1)^k 2^k T^{-1} c v_0 s^k \mu. \end{aligned}$$

This implies $\mu = 0$ since char $R \neq 2$. Hence $\beta = 0$ or $\tau(s) = s$ for all $s \in F \setminus \{0\}$, that is, $\beta = 0$ or $\tau = 1_F$. If $\beta = 0$, $T(T^{-1}cv_0) = cv_0 = v_0\alpha$,

which is absurd since we also have $T(v_0) = v_0 q$. Hence $\tau = 1_F$ and T is F-linear.

Finally, we want to show that T is indeed a scalar linear transformation and hence $\phi = 1_R$, the identity automorphism of R. Since all the objects involved in the equation $[b[x, y] - T([x, y])T^{-1}c, [x, y]]_k v_0 = 0$ are all F-linear transformations, in the rest of the proof, we will use matrices to represent all the elements of R relative to the basis $\{v_0, T^{-1}cv_0\}$. Indeed, we have

$$b = \begin{bmatrix} \lambda & l \\ \gamma & h \end{bmatrix}, \quad c = \begin{bmatrix} \alpha & m \\ \beta & n \end{bmatrix}, \quad T = \begin{bmatrix} q & \alpha \\ 0 & \beta \end{bmatrix},$$

where $\alpha + \lambda = r$, $\gamma + \beta = 0$, $q \neq 0$ and $\beta \neq 0$. For any $s, t, u \in F$ we can also choose $x, y \in R$ such that $[x, y] = \begin{bmatrix} s & t \\ u & -s \end{bmatrix}$. Hence

$$b[x,y] - T[x,y]T^{-1}c$$

$$= \begin{bmatrix} (\lambda + \alpha)s + lu - qt & \left(\frac{2\alpha n}{\beta} - l - m\right)s + \left(\lambda - \frac{qn}{\beta}\right)t + \left(\frac{\alpha^2 n}{q\beta} - \frac{\alpha m}{q}\right)u\\ hu & (n-h)s + t\gamma + \left(\frac{n\alpha - \beta m}{q}\right)u \end{bmatrix}.$$

Without loss of the generality, we may assume that k is odd in the rest of the proof. Hence

$$\begin{split} &[b[x,y] - T([x,y])T^{-1}c, [x,y]]_k v_0 \\ &= \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c)[x,y]^{k-i} v_0 \\ &= \sum_{i=\text{odd}}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c)[x,y]^{k-i} v_0 \\ &+ \sum_{i=\text{even}}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - \phi([x,y])c)[x,y]^{k-i} v_0 \\ &= \sum_{i=\text{odd}}^k (-1)^i \binom{k}{i} \begin{bmatrix} (s^2 + tu)^{\frac{k-1}{2}} & 0 \\ 0 & (s^2 + tu)^{\frac{k-1}{2}} \end{bmatrix} \begin{bmatrix} (\lambda + \alpha)s^2 + lus - qts + hut \\ (\lambda + \alpha)su + lu^2 - qtu - hsu \end{bmatrix} \\ &+ \sum_{i=\text{even}}^k (-1)^i \binom{k}{i} \begin{bmatrix} (s^2 + tu)^{\frac{k-1}{2}} & 0 \\ 0 & (s^2 + tu)^{\frac{k-1}{2}} \end{bmatrix} \end{split}$$

$$\begin{bmatrix} (\lambda+\alpha)s^2 - qts - \left(m - \frac{2\alpha n}{\beta}\right)su + \left(\lambda - \frac{qn}{\beta}\right)tu + \left(\frac{\alpha^2 n}{q\beta} - \frac{\alpha m}{q}\right)u^2\\ nsu + \gamma tu + \left(\frac{n\alpha - m\beta}{q}\right)u^2 \end{bmatrix}$$
$$= 2^{k-1}\begin{bmatrix} (s^2 + tu)^{\frac{k-1}{2}} & 0\\ 0 & (s^2 + tu)^{\frac{k-1}{2}} \end{bmatrix}$$
$$\begin{bmatrix} -\left(m + l - \frac{2\alpha n}{\beta}\right)su + \left(\lambda - h - \frac{qn}{\beta}\right)tu + \left(\frac{\alpha^2 n}{q\beta} - \frac{\alpha m}{q}\right)u^2\\ (-\lambda - \alpha + n + h)su + (\gamma + q)tu + \left(-l + \frac{n\alpha - m\beta}{q}\right)u^2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$

So we have

$$(s^{2}+tu)\left(\left(m+l-\frac{2\alpha n}{\beta}\right)su-\left(\lambda-h-\frac{qn}{\beta}\right)tu-\left(\frac{\alpha^{2}n}{q\beta}-\frac{\alpha m}{q}\right)u^{2}\right)=0$$
(3)

and

$$(s^{2}+tu)\left((-\lambda-\alpha+n+h)su+(\gamma+q)tu+\left(-l+\frac{n\alpha-m\beta}{q}\right)u^{2}\right)=0.$$
(4)

Substituting s = t = u = 1 into (3), we obtain

$$m + l - \frac{2\alpha n}{\beta} - \left(\lambda - h - \frac{qn}{\beta}\right) - \left(\frac{\alpha^2}{q\beta} - \frac{\alpha m}{q}\right) = 0.$$
 (5)

Substituting s = 0 and t = u = 1 into (3), we obtain

$$\left(\lambda - h - \frac{qn}{\beta}\right) - \left(\frac{\alpha^2}{q\beta} - \frac{\alpha m}{q}\right) = 0.$$
(6)

Combining (5) and (6), we obtain

$$m + l - \frac{2\alpha n}{\beta} = 0. \tag{7}$$

Again, substituting s = u = 1 and t = 0 into (3), we obtain

$$m+l-\frac{2\alpha n}{\beta}-\left(\frac{\alpha^2}{q\beta}-\frac{\alpha m}{q}\right)=0.$$
(8)

Combining (5) and (8), we obtain

$$\lambda - h - \frac{qn}{\beta} = 0. \tag{9}$$

Similarly, we can deduce from (4) to get

$$\lambda + \alpha = n + h \text{ and } \gamma + q = 0. \tag{10}$$

But it is known that $\gamma + \beta = 0$, hence $\beta = q$. Now from (9) we have $\lambda = h + n$. Comparing this to (10), we have $\alpha = 0$. Hence T is a scalar linear transformation. From (5) we also have m + l = 0 and hence $b + c \in Z$. The proof is complete.

JUI-CHI CHANG

Lemma 4. Let R be a noncommutative prime ring and let $f(x) = bx - \beta(x)c$, where β is an X-inner automorphism of R. If $[f([x, y]), [x, y]]_k = 0$ for all $x, y \in R$, where k is a fixed positive integer, then either $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$ or $R \subseteq M_2(F)$ for some field F. Moreover, if the latter case holds, then either charR = 2 or char $R \neq 2$, $\beta = 1_R$, and $b + c \in Z$.

Proof. By the assumption, there exists an invertible element $g \in Q$ such that $\beta(x) = gxg^{-1}$ for all $x \in R$. If $g^{-1}c \in C$, then $f(x) = bx - gxg^{-1}c = bx - cx = (b - c)x$ for all $x \in R$ and we are down by Lemma 1. So we may assume $g^{-1}c \notin C$. Let

$$\varphi(x,y) = [f([x,y]), [x,y]]_k = \sum_{i=0}^k (-1)^i \binom{k}{i} [x,y]^i (b[x,y] - g[x,y]g^{-1}c)[x,y]^{k-i}.$$

Then it is easy to see that $\varphi(x, y) = 0$ is a nontrivial GPI of R. By [6] or [2, Theorem 6.4.4], $\varphi(x, y) = 0$ is also a nontrivial GPI of Q. Let F be the algebraic closure of C if C is infinite and F = C otherwise. By [2], $\varphi(x, y) = 0$ is also a nontrivial GPI of $Q \otimes_C F$. Moreover, since $Q \otimes_C F$ is centrally closed prime algebra [11, Theorem 3.5], by replacing R, C with $Q \otimes_C F$, F respectively, we may assume that R is centrally closed and the field C is either algebraically closed or finite. By [12, p.75], R is isomorphic to a dense subring of the ring of linear transformations on a vector space over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we have dim $V_C \geq 2$. If dim $V_C \geq 3$, then by Lemma 2, $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$. Hence we may assume that dim $V_C = 2$ and char $R \neq 2$. Then by Lemma 3, we have either $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$ or $\beta = 1_R$ and $b + c \in Z$. If f(x) = (b - c)x for all $x \in R$, then $bx - \beta(x)c = bx - gxg^{-1}c = (b - c)x$ for all $x \in R$. Hence $gxg^{-1}c = cx$ and $g^{-1}cx = xg^{-1}c$ for all $x \in R$. That is, $g^{-1}c \in C$, which is a contradiction. Therefore, $\beta = 1_R$, $b + c \in Z$ and the proof is complete. \Box

Proof of Main Theorem. By [4, Lemma 2], we can write $f(x) = sx + \delta(x)$ for all $x \in R$, where $s \in \mathscr{F}R$ and δ is a β -derivation of R. Since L is a noncommutative Lie ideal, by [16, Remark 2], there is a nonzero ideal I of R such that $[I, I] \subseteq L$. By the hypothesis, we have

$$h(x,y) = [f([x,y]), [x,y]]_k = [s[x,y] + \delta([x,y]), [x,y]]_k = 0 \text{ for all } x, y \in I.$$
(11)

We divide the proof into three cases.

Case 1. Suppose that $\delta = 0$. Then f(x) = sx for all $x \in R$. By (11), we have $[s[x, y], [x, y]]_k = 0$ for all $x, y \in I$ and by [6], we have $[s[x, y], [x, y]]_k = 0$ for all $x, y \in \mathscr{R}$. Now we done by Lemma 1.

For the rest of proof we need the following fact which is a consequence of [5].

Fact. If $\delta \neq 0$, $s \in Z$ and $[s[x, y] + \delta([x, y]), [x, y]]_k = 0$ for all $x, y \in R$, then charR = 2 and $R \subseteq M_2(F)$ for some field F.

Case 2. Suppose that δ is X-outer. By [9], $[s[x, y] + \delta([x, y]), [x, y]]_k = 0$ for all $x, y \in \mathscr{F}R$. Notice that $s[x, y] + \delta([x, y]) = s[x, y] + \delta(xy) - \delta(yx) = s[x, y] + \delta(x)y + \beta(x)\delta(y) - \delta(y)x - \beta(y)\delta(x)$. So

$$[s[x,y] + \delta(x)y + \beta(x)\delta(y) - \delta(y)x - \beta(y)\delta(x), [x,y]]_k = 0 \text{ for all } x, y \in \mathscr{F}R.$$
(12)

Assume first that β is X-inner, that is, $\beta(x) = gxg^{-1}$ for some invertible element $g \in Q$. From (12), we have

$$[s[x,y]+\delta(x)y+gxg^{-1}\delta(y)-\delta(y)x-gyg^{-1}\delta(x), [x,y]]_k = 0 \text{ for all } x, y \in \mathscr{F}R.$$
(13)

By [9], we get from (13) that

$$[s[x,y] + zy + gxg^{-1}u - ux - gyg^{-1}z, [x,y]]_k = 0 \text{ for all } x, y, z, u \in \mathscr{F}R$$

Setting z = u = 0, we have $[s[x, y], [x, y]]_k = 0$ for all $x, y \in \mathscr{F}R$. By Lemma 1 and the fact mentioned above, we have charR = 2 and $R \subseteq M_2(F)$ for some field F. So we are done.

Assume next that β is X-outer. By (12) and [9, Theorem 1], we have

$$[s[x,y] + zy + wu - ux - tz, [x,y]]_k = 0 \text{ for all } x, y, z, u, w, t \in \mathscr{F}R.$$
(14)

Again, setting z = u = 0, (14) implies $[s[x, y], [x, y]]_k = 0$ for all $x, y \in \mathscr{F}R$. We are done as before.

Case 3. Suppose that δ is a nonzero X-inner β -derivation defined by some element $b \in Q$, that is, $\delta(x) = bx - \beta(x)b$ for all $x \in R$. In this case, $f(x) = (s+b)x - \beta(x)b$ for all $x \in R$ and $[f(x), x]_k = [(s+b)x - \beta(x)b, x]_k = 0$ for all $x \in L$. Since $[I, I] \subseteq L$, by [8, Theorem 1], it is easy to see that

$$[(s+b)x - \beta(x)b, x]_k = 0 \text{ for all } x \in [\mathscr{F}R, \mathscr{F}R].$$
(15)

In particular, we have $[(s+b)[x,y] - \beta([x,y])b, [x,y]]_k = 0$ for all $x, y \in \mathscr{P}R$. If β is X-inner then by Lemma 4 and the fact mentioned above, we have either char $R = 2, R \subseteq M_2(F)$ or char $R \neq 2, R \subseteq M_2(F)$ and f(x) = (s+b)x - xbwith $s + 2b \in C$. So we may assume that β is X-outer. Then by Chuang's theorem [8], $\mathcal{F}R$ is a GPI ring and by [7], it is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence $\mathcal{F}R$ is isomorphic to a densed subring of ring of linear transformations on a vector space V over D, containing nonzero linear transformations of finite rank. By Lemma 2, we have dim $V_D \leq 2$. If dim $V_D = 1$ then $\mathscr{F}R = D$. If $\dim V_D = 2$, then $\mathscr{F}R \simeq M_2(D)$. If C is finite, then $\dim D_C < \infty$ implies that D is also finite. Therefore $D \simeq C$ is a field by Wedderburn's theorem [13, p.183]. This implies either $\mathscr{F}R = C$ or $\mathscr{F}R \simeq M_2(C)$. But since R is noncommutative, we must have $\mathscr{F}R \simeq M_2(C)$. By Lemma 3 and the fact mentioned above, we must have char $\mathcal{F}R = 2$. Thus char R = 2 and $R \subseteq M_2(C)$. So for the rest of the proof, we may assume that C is infinite. By Lemma 3, we can also assume that \mathcal{R} is not a subring of $M_2(F)$ for any field F.

Subcase 1. β is not Frobenius. Since $[(s+b)[x,y] - \beta([x,y])b, [x,y]]_k = [(s+b)[x,y] - [\beta(x),\beta(y)]b, [x,y]]_k = 0$ for all $x, y \in \mathscr{F}R$, then by [8, Theorem 2], we have $[(s+b)[x,y] - [z,u]b, [x,y]]_k = 0$ for all $x, y, z, u \in \mathscr{F}R$. Setting z = x and u = y we have $[(s+b)[x,y] - [x,y]b, [x,y]]_k = 0$ for all $x, y \in \mathscr{F}R$. By Lemma 2, $s \in C$ and then the fact mentioned above implies that char $\mathscr{F}R = 2$ and $\mathscr{F}R \subseteq M_2(F)$, a contradiction.

Subcase 2. β is Frobenius. We may assume charR = p > 0. Otherwise, if charR = 0, then the Frobenius automorphism β fixes C and hence must be X-inner by [13, p.140], a contradiction. So for all $\lambda \in C$, $\beta(\lambda) = \lambda^{p^n}$ for some nonzero integer n. Choose an integer m such that $p^m > k$. Then from $[[f(x), x]_k, x]_{p^m-k} = [f(x), x]_{p^m} = [f(x), x^{p^m}]$, we can reduce (15) to

$$[(s+b)x - \beta(x)b, x^{p^m}] = 0 \text{ for all } x \in [\mathscr{F}R, \mathscr{F}R].$$
(16)

Assume first that $n \ge 1$. Clearly, $[\mathscr{F}R, \mathscr{F}R]$ is a *C*-space. For $\lambda \in C$ and $x \in [\mathscr{F}R, \mathscr{F}R]$, replacing x in (16) by λx , we have

$$0 = [\lambda(s+b)x - \lambda^{p^{n}}\beta(x)b, \lambda^{p^{m}}x^{p^{m}}] = \lambda^{p^{m+1}}[(s+b)x, x^{p^{m}}] - \lambda^{p^{m+n}}[\beta(x)b, x^{p^{m}}]$$

As C is infinite, it follows from the Vandermonde determinant argument that

$$[\beta(x)b, x^{p^m}] = 0 \text{ for all } x \in [\mathscr{F}R, \mathscr{F}R].$$
(17)

For $\lambda \in C$, replacing x in (17) by $x + \lambda y$, we have

$$0 = [\beta(x+\lambda y)b, (x+\lambda y)^{p^m}] = \left[\beta(x)b + \lambda^{p^n}\beta(y)b, \sum_{i=0}^{p^m}\psi_i(x,y)\lambda^i\right]$$
$$= \sum_{i=0}^{p^m}\lambda^i[\beta(x)b, \psi_i(x,y)] + \sum_{i=0}^{p^m-1}\lambda^{p^n+i}[\beta(y)b, \psi_i(x,y)]$$

where $\psi_i(x, y)$ denotes the sum of all monic monomials with x-degree $p^m - i$ and y-degree i for $0 \leq i \leq p^m$. In particular, $\psi_1(x, y) = x^{p^m - 1}y + x^{p^m - 2}yx + \cdots + yx^{p^m - 1} = \sum_{i=0}^{p^m - 1} x^{p^m - 1 - i}yx^i$. As C is infinite, if follows again from the Vandermonde determinant argument that $[\beta(x)b, \psi_1(x, y)] = 0$ for all $x, y \in [\mathscr{F}R, \mathscr{F}R]$. Setting y = [x, z], where $z \in \mathscr{F}R$, then $\psi_1(x, [x, z]) = x^{p^m}z - zx^{p^m}$ and $[\beta(x)b, \psi_1(x, [x, z])] = 0$ for all $x \in [\mathscr{F}R, \mathscr{F}R]$ and $z \in \mathscr{F}R$. From these it follows that

$$\beta(x)bx^{p^m}z - \beta(x)bzx^{p^m} - x^{p^m}z\beta(x)b + zx^{p^m}\beta(x)b = 0$$
(18)

for all $x \in [\mathscr{F}R, \mathscr{F}R]$ and $z \in \mathscr{F}R$.

Assume that $x^{p^m} \notin C$ for some $x \in [\mathscr{F}R, \mathscr{F}R]$. Then 1 and x^{p^m} are linear independent over C. Applying [18, Lemma 1.2] to (18), $\beta(x)b$ can be

expressed as a *C*-linear combination of 1 and x^{p^m} . In particular, $[\beta(x)b, x] = 0$. Since *C* is infinite, for any $y \in [\mathscr{F}R, \mathscr{F}R]$, there exists infinite many $\lambda \in C$ such that $(x+\lambda y)^{p^m} \notin C$; otherwise the Vandermonde determinant argument shows that $x^{p^m} \in C$ which is a contradiction. For such $\lambda \in C$ we have

$$0 = [\beta(x + \lambda y)b, x + \lambda y] = [\beta(x)b + \lambda^{p^m}\beta(y)b, x + \lambda y]$$

= $\lambda[\beta(x)b, y] + \lambda^{p^m}[\beta(y)b, x] + \lambda^{p^m+1}[\beta(y)b, y].$

Applying the Vandermonde determinant argument again, $[\beta(x)b, y] = 0$ for all $y \in [\mathscr{F}R, \mathscr{F}R]$. In particular, $[\beta(x)b[z,w], [z,w]] = 0$ for all $z, w \in \mathscr{F}R$. By Lemma 1 and the assumption made right before Subcase 1, we have $\beta(x)b \in C$. Since for any $y \in [\mathscr{F}R, \mathscr{F}R]$ there exists infinite many $\lambda \in C$ such that $(x + \lambda y)^{p^m} \notin C$, we also have $\beta(x + \lambda y)b \in C$. Hence $\beta(y)b \in C$ for all $y \in [\mathscr{F}R, \mathscr{F}R]$. In particular, $[x, y]a \in C$ for all $x, y \in \mathscr{F}R$, where $a = \beta^{-1}(b)$. Since $\mathscr{F}R \simeq M_2(D)$ is a finite dimensional central simple algebra and the assumption made right above Subcase 1, $\mathscr{F}R \subseteq M_t(F)$, $t \geq 3$ for some field F. It is easy to see that $[x, y]a \in C$ for all $x, y \in M_t(F)$. On the other hand, let $x = e_{12}$ and $y = e_{21}$, the matrix units in $M_t(F)$, then $[x, y]a \notin C$ unless a = 0, which is a contradiction.

We now may assume that $x^{p^m} \in C$ for all $x \in [\mathscr{F}R, \mathscr{F}R]$. In particular, $[x, y]^{p^m} \in C$ for all $x, y \in [\mathscr{F}R, \mathscr{F}R]$. As before, $\mathscr{F}R \subseteq M_t(F), t \geq 3$ for some field F and $[x, y]^{p^m} \in C$ for all $x, y \in [\mathscr{F}R, \mathscr{F}R]$. But setting $x = e_{12}$ and $y = e_{21}$, then we have $[x, y] = e_{11} - e_{22}$ and $[x, y]^{p^m} = e_{11} + (-1)^{p^m} e_{22} \notin C$, which is a contradiction.

Assume next that $n \leq -1$. In this case, let n' = -n, then $n' \geq 1$ and $\beta(\lambda^{p^{n'}}) = \lambda$ for all $\lambda \in C$. Replacing x in (16) by $\lambda^{p^{n'}}x$, we have

$$0 = [(b+s)\lambda^{p^{n'}}x - \beta(\lambda^{p^{n'}}x)b, (\lambda^{p^{n'}}x)^{p^{m}}] = [\lambda^{p^{n'}}(b+s)x - \lambda\beta(x)b, \lambda^{p^{n'+m}}x^{p^{m}}] = \lambda^{2n'+m}[(b+s)x, x^{p^{m}}] - \lambda^{p^{n'+m}+1}[\beta(x)b, x^{p^{m}}].$$

Again, by the Vandermonde determinant argument, $[\beta(x)b, x^{p^m}] = 0$ for all $x \in [\mathscr{F}R, \mathscr{F}R]$. Replacing x by $x + \lambda^{p^{n'}}y$, we obtain as before that $[\beta(x)b, \psi_1(x, y)] = 0$ for all $x, y \in [\mathscr{F}R, \mathscr{F}R]$. Now we can finish the proof by using the same argument as we did for the case $n \ge 1$. The proof of the main theorem is complete. Finally, we give an example to show that the exceptional case in the main theorem does occur.

Example. Let $R = M_2(F)$, where F is a field of characteristic 2 and let $L = [R, R] = Fe_{12} + Fe_{21} + F(e_{11} - e_{22})$. Clearly, L is a noncommutative Lie ideal of R and $x^2 \in Z(R)$ for all $x \in L$. Let f be the map defined by $f(x) = e_{11}x - xe_{12}$ for all $x \in R$. Then f is a nonzero generalized derivation of R and $[f(x), x]_2 = [f(x), x^2] = 0$ for all $x \in L$. However, e_{11}, e_{12} and $e_{11} + e_{12}$ are not in Z(R).

References

- N. Argac, L. Carini and V. De Filippis, An Engel condition with generalized derivations on Lie ideal, *Taiwanese J. of Math.*, **12**(2008), No. 2, 419-433.
- K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, *Rings with Generalized Iden*tities, Marcel Dekker, Inc. New York-Basel-Hongkong, 1996.
- 3. M. Brešar and J. Vukman, On certain subgroups of prime rings with derivations, J. Austral. Math. Soc., **54** (1993), 133-141.
- 4. J. C. Chang, On the identity h(x) = af(x) + g(x)b, Taiwanese J. of Math., 7(2003), , No. 1, 103-113.
- M. C. Chou and C. K. Liu, An Engel conditions with skew derivations on Lie ideals, Monatshefte fur Math., 158(2009), No.3, 259-270.
- C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
- C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I, J. Algebra, 149 (1992), 371-404.
- C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II, J. Algebra, 160 (1993), 292-335.
- C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. Algebra, 288 (2005), 59-77.
- C. L. Chuang and C. K. Liu, Extended Jacobson density theorem for rings with skew derivations, *Comm. Algebra*, **35** (2007), 1391-1413.
- T. S. Erickson, W. S. Martindale 3rd and J. M. Osborn, Prime non-associative algebras, *Pacific J. Math.*, 60 (1975), 49-63.
- N. Jacobson, Structure of rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
- V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14(1975), No.2, 215-237; Engl. Transl: Algebra and Logic 14(1975), No.2, 132-148.

- V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, *Comm. Algebra* 20 (1992), 3321-3345.
- C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 75-80.
- C. Lanski, Derivations with nilpotent values of Lie ideals, Proc. Amer. Math. Soc., 108 (1990), 31-37.
- P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica, 23 (1995), 1-5.
- P. H. Lee, T. L. Wong, L. S. Lin and R. J. Wang, Commuting traces of multiadditive mappings, J. Algebra, 193 (1997), 709-723.
- W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
- J. H. Mayne, Centralizing automorphism of Lie ideals in prime rings, Canad. Math. Bull., 35 (1992), 510-514.