GENERALIZED SKEW DERIVATIONS WITH ENGEL CONDITIONS ON LIE IDEALS

JUI-CHI CHANG

Department of Computer Science and Information Engineering, Chang Jung Christian University ,Tainan, Taiwan
E-mail: jc2004@mail.cjcu.edu.tw
$\|$

Abstract

Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero right generalized β-derivation of R associated with a β-derivation δ such that $[f(x), x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ scuh that $f(x)=s x$ for all $x \in R$ or $R \subseteq M_{2}(F)$ for some field F. Moreover, if the latter case holds, then either $\operatorname{char} R=2$ or $\operatorname{char} R \neq 2$ and $f(x)=b x-x c$ for all $x \in R$, where $b, c \in \mathscr{F} R$ and $b+c \in C$.

Recently, M. C. Chou and C. K. Liu (5) proved that if δ is a nonzero σ-derivation of R and L is a noncommutative Lie ideal of R such that $[\delta(x), x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer, then char $R=2$ and $R \subseteq M_{2}(F)$ for some field F. This result generalizes some known results, see for instances, 15] and [20]. In this paper we extend [5] further to the so-called right generalized skew derivations. Notice that our result also generalizes the case of generalized derivations by N. Argac, L. Carini and V. De Fillipis 1].

Throughout this paper, R is always a prime ring with center Z. For $x, y \in R$, set $[x, y]_{1}=[x, y]=x y-y x$ and $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. Notice that an Engel condition is a polynomial $[x, y]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y^{i} x y^{k-i}$ in noncommutative indeterminantes x and y. For two subsets A and B of R, $[A, B]$ is defined to be the additive subgroup of R generated by all elements

[^0][$a, b]$ with $a \in A$ and $b \in B$. An additive subgroup L of R is said to be a Lie ideal if $[l, r] \in L$ for all $l \in L$ and $r \in R$. A Lie ideal L is said to be noncommutative if $[L, L] \neq 0$.

Let β be an automorphism of R. A β-derivation of R is an additive mapping $\delta: R \rightarrow R$ satisfying $\delta(x y)=\delta(x) y+\beta(x) \delta(y)$ for all $x, y \in R$. β-derivations are also called skew derivations. When $\beta=1$, the identity map of R, β-derivations are merely ordinary derivations. If $\beta \neq 1$, then $1-\beta$ is a β-derivation. An additive mapping $f: R \rightarrow R$ is a right generalized β derivation if there exists a β-derivation $\delta: R \rightarrow R$ such that $f(x y)=f(x) y+$ $\beta(x) \delta(y)$ for all $x, y \in R$. The right generalized β-derivations generalize both β-derivations and generalized derivations. If $a, b \in R$ and $\beta \neq 1$ is an automorphism of R, then $f(x)=a x-\beta(x) b$ is a right generalized β derivation. Moreover, if δ is a β-derivation of R, then $f(x)=a x+\delta(x)$ is a right generalized β-derivation.

We let $\mathscr{F} R$ denote the right Martindale quotient ring of R and Q the two sided Martindale quotient ring of R. Let C be the center of Q and $\mathscr{F} R$, which is called the extended centroid of R. Note that Q and $\mathscr{F} R$ are also prime rings and C is a field (see [2]). It is known that automorphisms, derivations and β-derivations of R can be uniquely extended to Q and $\mathscr{F} R$. In [4], we know that right generalized β-derivations of R can also be uniquely extended to $\mathscr{F} R$. Indeed, if f is a right generalized β-derivation of R, then there exists $s \in \mathscr{F} R$ such that $f(x)=s x+\delta(x)$ for all $x \in R$, where δ is a β-derivation of R (Lemma 2 in [4]).

A β-derivation δ of R is called X-inner if $\delta(x)=b x-\beta(x) b$ for some $b \in Q . \delta$ is called X-outer if it is not X-inner. An automorphism β is called X-inner if $\beta(x)=u x u^{-1}$ for some invertible $u \in Q . \beta$ is called X-outer if it is not X-inner.

We are now ready to state the main result:
Main Theorem. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero right generalized β-derivation of R associated with a β-derivation δ such that $[f(x), x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ such that $f(x)=s x$ for all $x \in R$ or $R \subseteq M_{2}(F)$ for some field F. Moreover, if the latter case holds, then either $\operatorname{char} R=2$ or $\operatorname{char} R \neq 2$ and $f(x)=b x-x c$ for all $x \in R$, where $b, c \in \mathscr{F} R$ and $b+c \in C$.

As a corollary, we have
Corollary 1. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that $\beta \neq 1_{R}$ and f is a nonzero right generalized β-derivation of R associated with a β-derivation δ such that $[f(x), x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer. Then there exists $s \in C$ such that $f(x)=s x$ for all $x \in R$ unless $\operatorname{char} R=2$ and $R \subseteq M_{2}(F)$ for some field F.

Corollary 2. Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero generalized derivation of R associated with derivation d such that $[f(x), x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer. Then either there exists $s \in C$ such that $f(x)=s x$ for all $x \in R$ or $R \subseteq M_{2}(F)$ for some field F. Moreover, if the latter case holds, then either $\operatorname{char} R=2$ or char $R \neq 2$ and $f(x)=b x-x c$ for all $x \in R$, where $b, c \in \mathscr{F} R$ and $b+c \in C$.

We begin with a lemma which is a consequence of [1].
Lemma 1. Let R be a prime ring with center Z and $b \in R$. Let L be a noncommutative Lie ideal of R. If $[b x, x]_{k}=0$ for all $x \in L$, where k is a fixed positive integer, then $b \in Z$ unless char $R=2$ and $R \subseteq M_{2}(F)$ for some field F.

Lemma 2. Let R be a dense subring of $\operatorname{End}\left(V_{D}\right)$, containing nonzero linear transformations of finite rank, where D is division ring and $\operatorname{dim} V_{D} \geq 3$. Let $f(x)=b x-\phi(x) c$ where $b, c \in R$ and ϕ is an automorphism of R. If $[f([x, y]),[x, y]]_{k}=0$ for all $x, y \in R$, where k is fixed positive integer, then $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$.

Proof. We will adopt the proof of Lemma [2 in [5] with some necessary modification. Since R is a primitive ring with nonzero socle, by a result in 12, p.79], there exists a semi-linear automorphism $T \in \operatorname{End}(V)$ such that $\phi(x)=T x T^{-1}$ for all $x \in R$. Moreover, $T(v s)=T(v) \tau(s)$ for all $v \in V$ and $s \in D$, where τ is an automorphism of D.

If v and $T^{-1} c v$ are D-dependent for all $v \in V$, then as before, there exists $\lambda \in D$ such that $T^{-1} c v=v \lambda$ for all $v \in V$. This imply

$$
\begin{aligned}
f(x) v & =(b x v-\phi(x) c) v=\left(b x-T x T^{-1} c\right) v \\
& =b x v-T x v \lambda=b x v-T\left(T^{-1} c x v\right)
\end{aligned}
$$

$$
=b x v-c x v=((b-c) x) v
$$

for all $x \in R$ and for all $v \in V$. Hence $(f(x)-(b-c) x) V=0$ for all $x \in R$. Since V is faithful, we have $f(x)=(b-c) x$ for all $x \in R$ and hence, by the assumption, we have

$$
\begin{equation*}
[(b-c)[x, y],[x, y]]_{k}=0 \tag{2}
\end{equation*}
$$

for all $x, y \in R$. By (2) and Lemma it follows that $b-c \in Z$ and we are down.

So we may assume that v_{0} and $T^{-1} c v_{0}$ are D-independent for some $v_{0} \in V$. If $\operatorname{dim} V_{D} \geq 4$, then we can choose $u, w \in V$ such that $v_{0}, T^{-1} c v_{0}$, u and w are D-independent. By the density of R, there exists $x, y \in R$ such that

$$
x v_{0}=0, x T^{-1} c v_{0}=0, x u=T^{-1} w, x w=u
$$

and

$$
y v_{0}=0, y T^{-1} c v_{0}=u, y u=-w, y w=0 .
$$

Hence $[x, y] v_{0}=0,[x, y] T^{-1} c v_{0}=T^{-1} w,[x, y] w=w$ and $(b[x, y]-\phi([x, y]) c) v_{0}$ $=\left(b[x, y]-T[x, y] T^{-1} c\right) v_{0}=w$. With all these, we obtain from the assumption that

$$
\begin{aligned}
0 & =[f([x, y]),[x, y]]_{k} v_{0} \\
& =[b[x, y]-\phi([x, y]) c,[x, y]]_{k} v_{0} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
& =(-1)^{k}[x, y]^{k}(b[x, y]-\phi([x, y]) c) v_{0} \\
& =(-1)^{k} w,
\end{aligned}
$$

a contradiction.
Therefore, we may assume $\operatorname{dim} V_{D}=3$. In this case, we can choose $w \in V$ such that $v_{0}, T^{-1} c v_{0}$ and w are D-independent and $\left\{v_{0}, T^{-1} c v_{0}, w\right\}$ forms a basis for V. If V. If $T\left(v_{0}+T^{-1} c v_{0}+w\right), T\left(T^{-1} c v_{0}+w\right) \in v_{0} D$, then $T\left(v_{0}\right) \in v_{0} D$ and hence $v_{0}, T^{-1} c v_{0}+w \in T^{-1} c v_{0}+w \in T^{-1}\left(v_{0} D\right)=$ $\left(T^{-1} v_{0}\right) D$ contrary to the fact that v_{0} and $T^{-1} c v_{0}+w$ are D-independent. Therefore if $u=v_{0} \lambda+T^{-1} c v_{0}+w$, where $\lambda \in\{0,1\}$, then $T(u) \notin v_{0} D$.

Write $T(u)=v_{0} \alpha+T^{-1} c v_{0} \beta+w \gamma$, where $\alpha, \beta, \gamma \in D$ with $\beta \neq 0$ or $\gamma \neq 0$. By the density of R, there exists $x, y \in R$ such that

$$
x v_{0}=0, x T^{-1} c v_{0}=w, x w=0
$$

and

$$
y v_{0}=0, y T^{-1} c v_{0}=0, y w=-u
$$

In particular, $x u=w, y u=-u, x T(u)=w \beta$ and $y T(u)=-u \gamma$. Therefore, $[x, y] v_{0}=0,[x, y] T^{-1} c v_{0}=u,[x, y] w=-w$ and $(b[x, y]-\phi([x, y]) c) v_{0}=$ $\left(b[x, y]-T[x, y] T^{-1} c\right) v_{0}=T(u)$. Also $[x, y] u=u-w,[x, y] T(u)=u \beta-w \gamma$, $[x, y]^{2 i-1} T(u)=u \beta-w \gamma$ and $[x, y]^{2 i} T(u)=(u-w) \beta+w \gamma$ for $i \geq 1$. Since β, γ are not all zero and u, w are D-independent, it is easy to see that $[x, y]^{i} T(u) \neq 0$ for $i \geq 1$. With all these and the assumption, we have

$$
\begin{aligned}
0 & =[f([x, y]),[x, y]]_{k} v_{0} \\
& =[b[x, y]-\phi([x, y]) c,[x, y]]_{k} v_{0} \\
& =\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i}\right) v_{0} \\
& =(-1)^{k}[x, y]^{k}(b[x, y]-\phi([x, y]) c) v_{0} \\
& =(-1)^{k}[x, y]^{k} T(u),
\end{aligned}
$$

a contradiction. So the proof of the lemma is complete.
Lemma 3. Let F be field with char $F \neq 2, V_{F}$ a vector space over F with $\operatorname{dim} V_{F}=2$, and $R=\operatorname{End}\left(V_{F}\right)$. Let $f(x)=b x-\phi(x) c$ for all $x \in R$, where $b, c \in R$ and ϕ is an automorphism of R. If $[f([x, y]),[x, y]]_{k}=0$ for all $x, y \in R$, where k is a fixed positive integer, then either $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$ or $\phi=1_{R}$ and $b+c \in Z$.

Proof. Again, by 12, p.79], there exists a semi-linear automorphism $T \in$ $\operatorname{End}(V)$ such that $\phi(x)=T x T^{-1}$ for all $x \in R$. Moreover, $T(v s)=T(v) \tau(s)$ for all $v \in V, s \in F$, where τ is an automorphism of F. If v and $T^{-1} c v$ are F-dependent for all $v \in V$, as the second paragraph in the proof of Lemma 2 then $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$. So we may assume that
v_{0} and $T^{-1} c v_{0}$ are F-independent for some $v_{0} \in V$. Clearly, $\left\{v_{0}, T^{-1} c v_{0}\right\}$ is a basis for V_{F}. It is easy to see that there exists $x, y \in R$ such that

$$
x v_{0}=T^{-1} c v_{0}, \quad x T^{-1} c v_{0}=0, \quad y v_{0}=0, \quad y T^{-1} c v_{0}=v_{0} .
$$

Therefore, $[x, y] v_{0}=-v_{0},[x, y] T^{-1} c v_{0}=T^{-1} c v_{0}$ and $(b[x, y]-\phi([x, y]) c) v_{0}=$ $\left(b[x, y]-T[x, y] T^{-1} c\right) v_{0}=(b+c) v_{0}$. Consequently, we have

$$
\begin{aligned}
0 & =[b[x, y]-\phi([x, y]) c,[x, y]]_{k} v_{0} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
& =(-1)^{k} \sum_{i=0}^{k}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c) v_{0} \\
& =(-1)^{k+1} \sum_{i=0}^{k}\binom{k}{i}[x, y]^{i}(b+c) v_{0} .
\end{aligned}
$$

Clearly, $(b+c) v_{0}=v_{0} r+T^{-1} c v_{0} s$ for some $r, s \in F$. If $s \neq 0$, by the last equation, we have $(-1)^{k+1} 2^{k} T^{-1} c v_{0} s=0$, a contradiction. Therefore $(b+c) v_{0}=v_{0} r$.

We also can choose $x, y \in R$ such that

$$
x v_{0}=-v_{0}-T^{-1} c v_{0}, \quad x T^{-1} c v_{0}=0, \quad y v_{0}=0, \quad y T^{-1} c v_{0}=-v_{0} .
$$

Then $[x, y] v_{0}=-v_{0}$ and $[x, y] T^{-1} c v_{0}=v_{0}+T^{-1} c v_{0}$. Moreover, $[x, y]^{i} v_{0}=$ $(-1)^{i} v_{0}, v_{0}=(-1)^{i} v_{0},[x, y]^{2 i-1} T^{-1} c v_{0}=v_{0}+T^{-1} c v_{0}$ and $[x, y]^{2 i} T^{-1} c v_{0}=$ $T^{-1} c v_{0}$ for $i \geq 1$. If $T\left(v_{0}\right)=v_{0} q+T^{-1} c v_{0} p$, then $(b[x, y]-\phi([x, y]) c) v_{0}=$ $\left(b[x, y]-T[x, y] T^{-1} c\right) v_{0}=-(b+c) v_{0}-T\left(v_{0}\right)=-v_{0} r-v_{0} q-T^{-1} c v_{0} p=$ $-v_{0}(r+q)-T^{-1} c v_{0} p$ and

$$
\begin{aligned}
0 & =[b[x, y]-\phi([x, y]) c,[x, y]]_{k} v_{0} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
& =(-1)^{k} \sum_{i=0}^{k}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c) v_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k+1} \sum_{i=0}^{k}\binom{k}{i}[x, y]^{i}\left(v_{0}(r+q)+T^{-1} c v_{0} p\right) \\
& =(-1)^{k+1}\left\{\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} v_{0}(r+q)+\left(\sum_{i=0}^{k}\binom{k}{i}[x, y]^{i} T^{-1} c v_{0}\right) p\right\} \\
& =(-1)^{k+1}\left(j v_{0} p+2^{k} T^{-1} c v_{0} p\right)
\end{aligned}
$$

where $j=\binom{k}{1}+\binom{k}{3}+\cdots+\left(\begin{array}{c}k\left\lfloor\frac{k+1}{2}\right\rfloor-1\end{array}\right)$. If $p \neq 0$, then the last equation leads a contradiction since char $R \neq 2$. Therefore, $T\left(v_{0}\right)=v_{0} q, q \neq 0$.

Assume further that $c v_{0}=v_{0} \alpha+T^{-1} c v_{0} \beta, c T^{-1} c v_{0}=v_{0} m+T^{-1} c v_{0} n$, $b v_{0}=v_{0} \lambda+T^{-1} c v_{0} \gamma$ and $b T^{-1} c v_{0}=v_{0} l+T^{-1} c v_{0} h$, where $\alpha, \beta, m, n, \lambda, \gamma, l, h$ $\in F$. Since $(b+c) v_{0}=v_{0} r$, then $\alpha+\lambda=r$ and $\beta+\gamma=0$. Now for each $s \in F \backslash\{0\}$, we can choose $x, y \in R$ such that

$$
x v_{0}=-T^{-1} c v_{0} s, \quad x T^{-1} c v_{0}=0, \quad y v_{0}=0, \quad y T^{-1} c v_{0}=-v_{0} .
$$

Then we have $[x, y] v_{0}=v_{0} s,[x, y] T^{-1} c v_{0}=-T^{-1} c v_{0} s$, and $(b[x, y]-\phi([x, y]) c) v_{0}=$ $\left(b[x, y]-T[x, y] T^{-1} c\right) v_{0}=b v_{0} s+T\left(T^{-1} c v_{0} s\right)=b v_{0} s+c v_{0} \tau(s)=\left(v_{0} \lambda+\right.$ $\left.T^{-1} c v_{0} \gamma\right) s+\left(v_{0} \alpha+T^{-1} c v_{0} \beta\right) \tau(s)=v_{0}(s \lambda+\tau(s) \alpha)+T^{-1} c v_{0} \beta(\tau(s)-s)$. Let $\eta=s \lambda+\tau(s) \alpha$ and $\mu=\beta(\tau(s)-s)$. Then

$$
\begin{aligned}
0 & =[b[x, y]-\phi([x, y]) c,[x, y]]_{k} v_{0} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c) v_{0} s^{k-i} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}\left(v_{0} \eta+T^{-1} c v_{0} \mu\right) s^{k-i} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} v_{0} s^{k} \eta+\sum_{i=0}^{k}(-1)^{k}\binom{k}{i} T^{-1} c v_{0} s^{k} \mu \\
& =(-1)^{k} 2^{k} T^{-1} c v_{0} s^{k} \mu .
\end{aligned}
$$

This implies $\mu=0$ since char $R \neq 2$. Hence $\beta=0$ or $\tau(s)=s$ for all $s \in F \backslash\{0\}$, that is, $\beta=0$ or $\tau=1_{F}$. If $\beta=0, T\left(T^{-1} c v_{0}\right)=c v_{0}=v_{0} \alpha$,
which is absurd since we also have $T\left(v_{0}\right)=v_{0} q$. Hence $\tau=1_{F}$ and T is F-linear.

Finally, we want to show that T is indeed a scalar linear transformation and hence $\phi=1_{R}$, the identity automorphism of R. Since all the objects involved in the equation $\left[b[x, y]-T([x, y]) T^{-1} c,[x, y]\right]_{k} v_{0}=0$ are all F-linear transformations, in the rest of the proof, we will use matrices to represent all the elements of R relative to the basis $\left\{v_{0}, T^{-1} c v_{0}\right\}$. Indeed, we have

$$
b=\left[\begin{array}{ll}
\lambda & l \\
\gamma & h
\end{array}\right], \quad c=\left[\begin{array}{ll}
\alpha & m \\
\beta & n
\end{array}\right], \quad T=\left[\begin{array}{ll}
q & \alpha \\
0 & \beta
\end{array}\right],
$$

where $\alpha+\lambda=r, \gamma+\beta=0, q \neq 0$ and $\beta \neq 0$. For any $s, t, u \in F$ we can also choose $x, y \in R$ such that $[x, y]=\left[\begin{array}{ll}s & t \\ u & -s\end{array}\right]$. Hence

$$
\begin{aligned}
& b[x, y]-T[x, y] T^{-1} c \\
= & {\left[\begin{array}{cc}
(\lambda+\alpha) s+l u-q t & \left(\frac{2 \alpha n}{\beta}-l-m\right) s+\left(\lambda-\frac{q n}{\beta}\right) t+\left(\frac{\alpha^{2} n}{q \beta}-\frac{\alpha m}{q}\right) u \\
h u & (n-h) s+t \gamma+\left(\frac{n \alpha-\beta m}{q}\right) u
\end{array}\right] . }
\end{aligned}
$$

Without loss of the generality, we may assume that k is odd in the rest of the proof. Hence

$$
\begin{aligned}
& {\left[b[x, y]-T([x, y]) T^{-1} c,[x, y]\right]_{k} v_{0} } \\
= & \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
= & \sum_{i=\mathrm{odd}}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
& +\sum_{i=\text { even }}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}(b[x, y]-\phi([x, y]) c)[x, y]^{k-i} v_{0} \\
= & \sum_{i=\text { odd }}^{k}(-1)^{i}\binom{k}{i}\left[\begin{array}{cc}
\left(s^{2}+t u\right)^{\frac{k-1}{2}} & 0 \\
0 & \left(s^{2}+t u\right)^{\frac{k-1}{2}}
\end{array}\right]\left[\begin{array}{c}
(\lambda+\alpha) s^{2}+l u s-q t s+h u t \\
(\lambda+\alpha) s u+l u^{2}-q t u-h s u
\end{array}\right] \\
& +\sum_{i=\text { even }}^{k}(-1)^{i}\binom{k}{i}\left[\begin{array}{cc}
\left(s^{2}+t u\right)^{\frac{k-1}{2}} & 0 \\
0 & \left(s^{2}+t u\right)^{\frac{k-1}{2}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
(\lambda+\alpha) s^{2}-q t s-\left(m-\frac{2 \alpha n}{\beta}\right) s u+\left(\lambda-\frac{q n}{\beta}\right) t u+\left(\frac{\alpha^{2} n}{q \beta}-\frac{\alpha m}{q}\right) u^{2} \\
n s u+\gamma t u+\left(\frac{n \alpha-m \beta}{q}\right) u^{2}
\end{array}\right] . } \\
= & 2^{k-1}\left[\begin{array}{cc}
\left(s^{2}+t u\right)^{\frac{k-1}{2}} & 0 \\
0 & \left(s^{2}+t u\right)^{\frac{k-1}{2}}
\end{array}\right] \\
& {\left[\begin{array}{c}
-\left(m+l-\frac{2 \alpha n}{\beta}\right) s u+\left(\lambda-h-\frac{q n}{\beta}\right) t u+\left(\frac{\alpha^{2} n}{q \beta}-\frac{\alpha m}{q}\right) u^{2} \\
(-\lambda-\alpha+n+h) s u+(\gamma+q) t u+\left(-l+\frac{n \alpha-m \beta}{q}\right) u^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . }
\end{aligned}
$$

So we have

$$
\begin{equation*}
\left(s^{2}+t u\right)\left(\left(m+l-\frac{2 \alpha n}{\beta}\right) s u-\left(\lambda-h-\frac{q n}{\beta}\right) t u-\left(\frac{\alpha^{2} n}{q \beta}-\frac{\alpha m}{q}\right) u^{2}\right)=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(s^{2}+t u\right)\left((-\lambda-\alpha+n+h) s u+(\gamma+q) t u+\left(-l+\frac{n \alpha-m \beta}{q}\right) u^{2}\right)=0 \tag{4}
\end{equation*}
$$

Substituting $s=t=u=1$ into (3), we obtain

$$
\begin{equation*}
m+l-\frac{2 \alpha n}{\beta}-\left(\lambda-h-\frac{q n}{\beta}\right)-\left(\frac{\alpha^{2}}{q \beta}-\frac{\alpha m}{q}\right)=0 . \tag{5}
\end{equation*}
$$

Substituting $s=0$ and $t=u=1$ into (33), we obtain

$$
\begin{equation*}
\left(\lambda-h-\frac{q n}{\beta}\right)-\left(\frac{\alpha^{2}}{q \beta}-\frac{\alpha m}{q}\right)=0 . \tag{6}
\end{equation*}
$$

Combining (5) and (6), we obtain

$$
\begin{equation*}
m+l-\frac{2 \alpha n}{\beta}=0 \tag{7}
\end{equation*}
$$

Again, substituting $s=u=1$ and $t=0$ into (3), we obtain

$$
\begin{equation*}
m+l-\frac{2 \alpha n}{\beta}-\left(\frac{\alpha^{2}}{q \beta}-\frac{\alpha m}{q}\right)=0 \tag{8}
\end{equation*}
$$

Combining (5) and (8), we obtain

$$
\begin{equation*}
\lambda-h-\frac{q n}{\beta}=0 . \tag{9}
\end{equation*}
$$

Similarly, we can deduce from (4) to get

$$
\begin{equation*}
\lambda+\alpha=n+h \text { and } \gamma+q=0 \tag{10}
\end{equation*}
$$

But it is known that $\gamma+\beta=0$, hence $\beta=q$. Now from (2) we have $\lambda=h+n$. Comparing this to (10), we have $\alpha=0$. Hence T is a scalar linear transformation. From (5) we also have $m+l=0$ and hence $b+c \in Z$. The proof is complete.

Lemma 4. Let R be a noncommutative prime ring and let $f(x)=b x-\beta(x) c$, where β is an X-inner automorphism of R. If $[f([x, y]),[x, y]]_{k}=0$ for all $x, y \in R$, where k is a fixed positive integer, then either $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$ or $R \subseteq M_{2}(F)$ for some field F. Moreover, if the latter case holds, then either $\operatorname{char} R=2$ or $\operatorname{char} R \neq 2, \beta=1_{R}$, and $b+c \in Z$.

Proof. By the assumption, there exists an invertible element $g \in Q$ such that $\beta(x)=g x g^{-1}$ for all $x \in R$. If $g^{-1} c \in C$, then $f(x)=b x-g x g^{-1} c=$ $b x-c x=(b-c) x$ for all $x \in R$ and we are down by Lemma So we may assume $g^{-1} c \notin C$. Let
$\varphi(x, y)=[f([x, y]),[x, y]]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}[x, y]^{i}\left(b[x, y]-g[x, y] g^{-1} c\right)[x, y]^{k-i}$.
Then it is easy to see that $\varphi(x, y)=0$ is a nontrivial GPI of R. By [6] or [2, Theorem 6.4.4], $\varphi(x, y)=0$ is also a nontrivial GPI of Q. Let F be the algebraic closure of C if C is infinite and $F=C$ otherwise. By [2], $\varphi(x, y)=0$ is also a nontrivial GPI of $Q \otimes{ }_{C} F$. Moreover, since $Q \otimes{ }_{C} F$ is centrally closed prime algebra 11, Theorem 3.5], by replacing R, C with $Q \otimes{ }_{C} F, F$ respectively, we may assume that R is centrally closed and the field C is either algebraically closed or finite. By [12, p.75], R is isomorphic to a dense subring of the ring of linear transformations on a vector space over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we have $\operatorname{dim} V_{C} \geq 2$. If $\operatorname{dim} V_{C} \geq 3$, then by Lemma [2] $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$. Hence we may assume that $\operatorname{dim} V_{C}=2$ and char $R \neq 2$. Then by Lemma 3 we have either $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$ or $\beta=1_{R}$ and $b+c \in Z$. If $f(x)=(b-c) x$ for all $x \in R$, then $b x-\beta(x) c=b x-g x g^{-1} c=(b-c) x$ for all $x \in R$. Hence
$g x g^{-1} c=c x$ and $g^{-1} c x=x g^{-1} c$ for all $x \in R$. That is, $g^{-1} c \in C$, which is a contradiction. Therefore, $\beta=1_{R}, b+c \in Z$ and the proof is complete.

Proof of Main Theorem. By 4, Lemma 2], we can write $f(x)=s x+\delta(x)$ for all $x \in R$, where $s \in \mathscr{F} R$ and δ is a β-derivation of R. Since L is a noncommutative Lie ideal, by 16, Remark 2], there is a nonzero ideal I of R such that $[I, I] \subseteq L$. By the hypothesis, we have

$$
\begin{equation*}
h(x, y)=[f([x, y]),[x, y]]_{k}=[s[x, y]+\delta([x, y]),[x, y]]_{k}=0 \text { for all } x, y \in I . \tag{11}
\end{equation*}
$$

We divide the proof into three cases.
Case 1. Suppose that $\delta=0$. Then $f(x)=s x$ for all $x \in R$. By (11), we have $[s[x, y],[x, y]]_{k}=0$ for all $x, y \in I$ and by $[6]$, we have $[s[x, y],[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$. Now we done by Lemma

For the rest of proof we need the following fact which is a consequence of (5).

Fact. If $\delta \neq 0, s \in Z$ and $[s[x, y]+\delta([x, y]),[x, y]]_{k}=0$ for all $x, y \in R$, then $\operatorname{char} R=2$ and $R \subseteq M_{2}(F)$ for some field F.

Case 2. Suppose that δ is X-outer. By $\underline{9}],[s[x, y]+\delta([x, y]),[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$. Notice that $s[x, y]+\delta([x, y])=s[x, y]+\delta(x y)-\delta(y x)=$ $s[x, y]+\delta(x) y+\beta(x) \delta(y)-\delta(y) x-\beta(y) \delta(x)$. So
$[s[x, y]+\delta(x) y+\beta(x) \delta(y)-\delta(y) x-\beta(y) \delta(x),[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$.
Assume first that β is X-inner, that is, $\beta(x)=g x g^{-1}$ for some invertible element $g \in Q$. From (12), we have
$\left[s[x, y]+\delta(x) y+g x g^{-1} \delta(y)-\delta(y) x-g y g^{-1} \delta(x),[x, y]\right]_{k}=0$ for all $x, y \in \mathscr{F} R$.
By [9], we get from (13) that

$$
\left[s[x, y]+z y+g x g^{-1} u-u x-g y g^{-1} z,[x, y]\right]_{k}=0 \text { for all } x, y, z, u \in \mathscr{F} R .
$$

Setting $z=u=0$, we have $\left[s[x, y],[x, y]_{k}=0\right.$ for all $x, y \in \mathscr{F} R$. By Lemma \square and the fact mentioned above, we have $\operatorname{char} R=2$ and $R \subseteq M_{2}(F)$ for some field F. So we are done.

Assume next that β is X-outer. By (12) and [9, Theorem 1], we have

$$
\begin{equation*}
[s[x, y]+z y+w u-u x-t z,[x, y]]_{k}=0 \text { for all } x, y, z, u, w, t \in \mathscr{F} R . \tag{14}
\end{equation*}
$$

Again, setting $z=u=0$, (14) implies $[s[x, y],[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$. We are done as before.

Case 3. Suppose that δ is a nonzero X-inner β-derivation defined by some element $b \in Q$, that is, $\delta(x)=b x-\beta(x) b$ for all $x \in R$. In this case, $f(x)=(s+b) x-\beta(x) b$ for all $x \in R$ and $[f(x), x]_{k}=[(s+b) x-\beta(x) b, x]_{k}=0$ for all $x \in L$. Since $[I, I] \subseteq L$, by 8 , Theorem 1], it is easy to see that

$$
\begin{equation*}
[(s+b) x-\beta(x) b, x]_{k}=0 \text { for all } x \in[\mathscr{F} R, \mathscr{F} R] \tag{15}
\end{equation*}
$$

In particular, we have $[(s+b)[x, y]-\beta([x, y]) b,[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$. If β is X-inner then by Lemma 4 and the fact mentioned above, we have either char $R=2, R \subseteq M_{2}(F)$ or char $R \neq 2, R \subseteq M_{2}(F)$ and $f(x)=(s+b) x-x b$ with $s+2 b \in C$. So we may assume that β is X-outer. Then by Chuang's theorem [8], $\mathscr{F} R$ is a GPI ring and by [7], it is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence $\mathscr{F} R$ is isomorphic to a densed subring of ring of linear transformations on a vector space V over D, containing nonzero linear transformations of finite rank. By Lemma 2 we have $\operatorname{dim} V_{D} \leq 2$. If $\operatorname{dim} V_{D}=1$ then $\mathscr{F} R=D$. If $\operatorname{dim} V_{D}=2$, then $\mathscr{F} R \simeq M_{2}(D)$. If C is finite, then $\operatorname{dim} D_{C}<\infty$ implies that D is also finite. Therefore $D \simeq C$ is a field by Wedderburn's theorem 13, p.183]. This implies either $\mathscr{F} R=C$ or $\mathscr{F} R \simeq M_{2}(C)$. But since R is noncommutative, we must have $\mathscr{F} R \simeq M_{2}(C)$. By Lemma 3 and the fact mentioned above, we must have char $\mathscr{F} R=2$. Thus char $R=2$ and $R \subseteq M_{2}(C)$. So for the rest of the proof, we may assume that C is infinite. By Lemma 3, we can also assume that $\mathscr{F} R$ is not a subring of $M_{2}(F)$ for any field F.

Subcase 1. β is not Frobenius. Since $[(s+b)[x, y]-\beta([x, y]) b,[x, y]]_{k}=[(s+$ $b)[x, y]-[\beta(x), \beta(y)] b,[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$, then by 8 , Theorem 2], we have $[(s+b)[x, y]-[z, u] b,[x, y]]_{k}=0$ for all $x, y, z, u \in \mathscr{F} R$. Setting $z=x$ and $u=y$ we have $[(s+b)[x, y]-[x, y] b,[x, y]]_{k}=0$ for all $x, y \in \mathscr{F} R$. By Lemma_2 $s \in C$ and then the fact mentioned above implies that char $\mathscr{F} R=2$ and $\mathscr{\mathscr { F }} R \subseteq M_{2}(F)$, a contradiction.

Subcase 2. β is Frobenius. We may assume char $R=p>0$. Otherwise, if $\operatorname{char} R=0$, then the Frobenius automorphism β fixes C and hence must be X-inner by [13, p.140], a contradiction. So for all $\lambda \in C, \beta(\lambda)=\lambda^{p^{n}}$ for some nonzero integer n. Choose an integer m such that $p^{m}>k$. Then from $\left[[f(x), x]_{k}, x\right]_{p^{m}-k}=[f(x), x]_{p^{m}}=\left[f(x), x^{p^{m}}\right]$, we can reduce (15) to

$$
\begin{equation*}
\left[(s+b) x-\beta(x) b, x^{p^{m}}\right]=0 \text { for all } x \in[\mathscr{F} R, \mathscr{F} R] . \tag{16}
\end{equation*}
$$

Assume first that $n \geq 1$. Clearly, $[\mathscr{F} R, \mathscr{F} R]$ is a C-space. For $\lambda \in C$ and $x \in[\mathscr{F} R, \mathscr{F} R]$, replacing x in (16) by λx, we have
$0=\left[\lambda(s+b) x-\lambda^{p^{n}} \beta(x) b, \lambda^{p^{m}} x^{p^{m}}\right]=\lambda^{p^{m}+1}\left[(s+b) x, x^{p^{m}}\right]-\lambda^{p^{m+n}}\left[\beta(x) b, x^{p^{m}}\right]$.
As C is infinite, it follows from the Vandermonde determinant argument that

$$
\begin{equation*}
\left[\beta(x) b, x^{p^{m}}\right]=0 \text { for all } x \in[\mathscr{F} R, \mathscr{F} R] . \tag{17}
\end{equation*}
$$

For $\lambda \in C$, replacing x in (17) by $x+\lambda y$, we have

$$
\begin{aligned}
0 & =\left[\beta(x+\lambda y) b,(x+\lambda y)^{p^{m}}\right]=\left[\beta(x) b+\lambda^{p^{n}} \beta(y) b, \sum_{i=0}^{p^{m}} \psi_{i}(x, y) \lambda^{i}\right] \\
& =\sum_{i=0}^{p^{m}} \lambda^{i}\left[\beta(x) b, \psi_{i}(x, y)\right]+\sum_{i=0}^{p^{m}-1} \lambda^{p^{n}+i}\left[\beta(y) b, \psi_{i}(x, y)\right]
\end{aligned}
$$

where $\psi_{i}(x, y)$ denotes the sum of all monic monomials with x-degree $p^{m}-i$ and y-degree i for $0 \leq i \leq p^{m}$. In particular, $\psi_{1}(x, y)=x^{p^{m}-1} y+x^{p^{m}-2} y x+$ $\cdots+y x^{p^{m}-1}=\sum_{i=0}^{p^{m}-1} x^{p^{m}-1-i} y x^{i}$. As C is infinite, if follows again from the Vandermonde determinant argument that $\left[\beta(x) b, \psi_{1}(x, y)\right]=0$ for all $x, y \in$ $[\mathscr{F} R, \mathscr{F} R]$. Setting $y=[x, z]$, where $z \in \mathscr{F} R$, then $\psi_{1}(x,[x, z])=x^{p^{m}} z-z x^{p^{m}}$ and $\left[\beta(x) b, \psi_{1}(x,[x, z])\right]=0$ for all $x \in[\mathscr{F} R, \mathscr{F} R]$ and $z \in \mathscr{F} R$. From these it follows that

$$
\begin{equation*}
\beta(x) b x^{p^{m}} z-\beta(x) b z x^{p^{m}}-x^{p^{m}} z \beta(x) b+z x^{p^{m}} \beta(x) b=0 \tag{18}
\end{equation*}
$$

for all $x \in[\mathscr{F} R, \mathscr{F} R]$ and $z \in \mathscr{F} R$.
Assume that $x^{p^{m}} \notin C$ for some $x \in[\mathscr{F} R, \mathscr{F} R]$. Then 1 and $x^{p^{m}}$ are linear independent over C. Applying [18, Lemma 1.2] to (18), $\beta(x) b$ can be
expressed as a C-linear combination of 1 and $x^{p^{m}}$. In particular, $[\beta(x) b, x]=$ 0 . Since C is infinite, for any $y \in[\mathscr{F} R, \mathscr{F} R]$, there exists infinite many $\lambda \in C$ such that $(x+\lambda y)^{p^{m}} \notin C$; otherwise the Vandermonde determinant argument shows that $x^{p^{m}} \in C$ which is a contradiction. For such $\lambda \in C$ we have

$$
\begin{aligned}
0 & =[\beta(x+\lambda y) b, x+\lambda y]=\left[\beta(x) b+\lambda^{p^{m}} \beta(y) b, x+\lambda y\right] \\
& =\lambda[\beta(x) b, y]+\lambda^{p^{m}}[\beta(y) b, x]+\lambda^{p^{m}+1}[\beta(y) b, y] .
\end{aligned}
$$

Applying the Vandermonde determinant argument again, $[\beta(x) b, y]=0$ for all $y \in[\mathscr{F} R, \mathscr{F} R]$. In particular, $[\beta(x) b[z, w],[z, w]]=0$ for all $z, w \in \mathscr{F} R$. By Lemma \square and the assumption made right before Subcase 1, we have $\beta(x) b \in C$. Since for any $y \in[\mathscr{F} R, \mathscr{F} R]$ there exists infinite many $\lambda \in C$ such that $(x+\lambda y)^{p^{m}} \notin C$, we also have $\beta(x+\lambda y) b \in C$. Hence $\beta(y) b \in C$ for all $y \in[\mathscr{F} R, \mathscr{F} R]$. In particular, $[x, y] a \in C$ for all $x, y \in \mathscr{F} R$, where $a=\beta^{-1}(b)$. Since $\mathscr{F} R \simeq M_{2}(D)$ is a finite dimensional central simple algebra and the assumption made right above Subcase 1, $\mathscr{F} R \subseteq M_{t}(F), t \geq 3$ for some field F. It is easy to see that $[x, y] a \in C$ for all $x, y \in M_{t}(F)$. On the other hand, let $x=e_{12}$ and $y=e_{21}$, the matrix units in $M_{t}(F)$, then $[x, y] a \notin C$ unless $a=0$, which is a contradiction.

We now may assume that $x^{p^{m}} \in C$ for all $x \in[\mathscr{F} R, \mathscr{F} R]$. In particular, $[x, y]^{p^{m}} \in C$ for all $x, y \in[\mathscr{F} R, \mathscr{F} R]$. As before, $\mathscr{F} R \subseteq M_{t}(F), t \geq 3$ for some field F and $[x, y]^{p^{m}} \in C$ for all $x, y \in[\mathscr{F} R, \mathscr{F} R]$. But setting $x=e_{12}$ and $y=e_{21}$, then we have $[x, y]=e_{11}-e_{22}$ and $[x, y]^{p^{m}}=e_{11}+(-1)^{p^{m}} e_{22} \notin C$, which is a contradiction.

Assume next that $n \leq-1$. In this case, let $n^{\prime}=-n$, then $n^{\prime} \geq 1$ and $\beta\left(\lambda^{p^{n^{\prime}}}\right)=\lambda$ for all $\lambda \in C$. Replacing x in (16) by $\lambda^{p^{n^{\prime}}} x$, we have

$$
\begin{aligned}
0 & =\left[(b+s) \lambda^{p^{n^{\prime}}} x-\beta\left(\lambda^{p^{n^{\prime}}} x\right) b,\left(\lambda^{p^{n^{\prime}}} x\right)^{p^{m}}\right] \\
& =\left[\lambda^{p^{n^{\prime}}}(b+s) x-\lambda \beta(x) b, \lambda^{p^{n^{\prime}+m}} x^{p^{m}}\right] \\
& =\lambda^{2 n^{\prime}+m}\left[(b+s) x, x^{p^{m}}\right]-\lambda^{p^{n^{\prime}+m}+1}\left[\beta(x) b, x^{p^{m}}\right] .
\end{aligned}
$$

Again, by the Vandermonde determinant argument, $\left[\beta(x) b, x^{p^{m}}\right]=0$ for all $x \in[\mathscr{F} R, \mathscr{F} R]$. Replacing x by $x+\lambda^{p^{n^{\prime}}} y$, we obtain as before that $\left[\beta(x) b, \psi_{1}(x, y)\right]=0$ for all $x, y \in[\mathscr{F} R, \mathscr{F} R]$. Now we can finish the proof by using the same argument as we did for the case $n \geq 1$. The proof of the main theorem is complete.

Finally, we give an example to show that the exceptional case in the main theorem does occur.

Example. Let $R=M_{2}(F)$, where F is a field of characteristic 2 and let $L=[R, R]=F e_{12}+F e_{21}+F\left(e_{11}-e_{22}\right)$. Clearly, L is a noncommutative Lie ideal of R and $x^{2} \in Z(R)$ for all $x \in L$. Let f be the map defined by $f(x)=e_{11} x-x e_{12}$ for all $x \in R$. Then f is a nonzero generalized derivation of R and $[f(x), x]_{2}=\left[f(x), x^{2}\right]=0$ for all $x \in L$. However, e_{11}, e_{12} and $e_{11}+e_{12}$ are not in $Z(R)$.

References

1. N. Argac, L. Carini and V. De Filippis, An Engel condition with generalized derivations on Lie ideal, Taiwanese J. of Math., 12(2008), No. 2, 419-433.
2. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. New York-Basel-Hongkong, 1996.
3. M. Brešar and J. Vukman, On certain subgroups of prime rings with derivations, J. Austral. Math. Soc., 54 (1993), 133-141.
4. J. C. Chang, On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. of Math., $\mathbf{7}(2003)$, , No. 1, 103-113.
5. M. C. Chou and C. K. Liu, An Engel conditions with skew derivations on Lie ideals, Monatshefte fur Math., 158(2009), No.3, 259-270.
6. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
7. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I, J. Algebra, 149 (1992), 371-404.
8. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II, J. Algebra, 160 (1993), 292-335.
9. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. Algebra, 288 (2005), 59-77.
10. C. L. Chuang and C. K. Liu, Extended Jacobson density theorem for rings with skew derivations, Comm. Algebra, 35 (2007), 1391-1413.
11. T. S. Erickson, W. S. Martindale 3rd and J. M. Osborn, Prime non-associative algebras, Pacific J. Math., 60 (1975), 49-63.
12. N. Jacobson, Structure of rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
13. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14(1975), No.2, 215-237; Engl. Transl: Algebra and Logic 14(1975), No.2, 132-148.
14. V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, Comm. Algebra 20 (1992), 3321-3345.
15. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 75-80.
16. C. Lanski, Derivations with nilpotent values of Lie ideals, Proc. Amer. Math. Soc., 108 (1990), 31-37.
17. P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica, 23 (1995), 1-5.
18. P. H. Lee, T. L. Wong, L. S. Lin and R. J. Wang, Commuting traces of multiadditive mappings, J. Algebra, 193 (1997), 709-723.
19. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
20. J. H. Mayne, Centralizing automorphism of Lie ideals in prime rings, Canad. Math. Bull., 35 (1992), 510-514.

[^0]: Received February 16, 2011 and in revised form July 26, 2011.
 AMS Subject Classification: 16W20, 16W25, 16W55.
 Key words and phrases: Skew derivation, generalized skew derivation, automorphism, prime ring, generalized polynomial identity (GPI), Lie ideal, Engel condition.

