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Abstract

P. K. Sahoo in [7] has arrived at the functional equation stemming from trapezoidal

rule

g(y)− g(x) =
y − x
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–

,

for x, y ∈ R, where f and g are unknown functions. In fact, Sahoo considered more general

equations

g(y) − h(x) = (y − x)[f(x) + 2k(sx + ty) + 2k(tx + sy) + f(y)] (1)

with four unknown functions (cf. [7]) and

f1(y) − g1(x) = (y − x)[f2(x) + f3(sx + ty) + f4(tx + sy) + f5(y)] (2)

with six unknown functions (cf. [8]), where s and t are two fixed real parameters. The

equations have been solved in [7] and [8] for s2 = t2 or s = 0 or t = 0 without any

regularity assumptions, and in the case s2 6= t2 (with st 6= 0) the solutions have been

determined under high regularity assumptions on unknown functions (differentiability of

second or fourth order).

In this paper we solve equations (1) and (2) in the case of s2 6= t2 (with st 6= 0)

with no regularity assumptions on unknown functions for rational parameters s and t, and

under very weak assumptions in other cases.
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1. Introduction

In references [7] and [8] P. K. Sahoo considered the functional equations

(1) and (2), stemming from the trapezoidal rule for estimation of Riemann

integral, with assumptions of high regularity of the unknown functions (two

times differentiability, or even four times differentiability), thus the results

were obtained. In the present paper we use a slightly different method of

solve (1) and (2), based on Lemma 1 below. In addition, we show that

with no regularity at all in case of rational parameters or with very weak

regularity in general case we are able to obtain similar results. Obviously, in

places where in Sahoo’s results appear to be linear functions, we get general

additive mappings. Sometimes even the general solutions of the Cauchy

equation have to be linear as well. This is due to the special shape of

equations (1) and (2).

In this paper, functional equations (1) and (2) in the case s2 6= t2 with

s, t ∈ Q, s, t 6= 0 are going to be solved without any regularity assumptions.

First let us recall notations used in reference [4].

Let G and H be commutative groups. Then SAi(G;H) denotes the

group of all i-additive, symmetric mappings from Gi into H for i ≥ 2,

while SA0(G;H) denotes the family of constant functions from G to H and

SA1(G;H) = Hom(G;H). We also denote by I the subset of Hom(G;G) ×

Hom(G;G) containing all pairs (α, β) for which Ran(α) ⊂ Ran(β). Further-

more, a convention that a sum over empty set of indices equals 0 is adopted.

Now we present the following useful lemma which is generalization of

lemma presented in reference [4] (Lemma 2.3) with a modification from [2].

Lemma 1. Fix N,M,K ∈ N∪ {0} and let I0, . . . , IM+K be finite subsets of

I. Suppose further that H is uniquely divisible by N ! and let functions ϕi :

G → SAi(G;H), i ∈ {0, . . . , N} and functions ψi,(α,β) : G → SAi(G;H),

(α, β) ∈ Ii, i ∈ {0, . . . ,M +K} satisfy

ϕN (x)(yN ) +
N−1∑

i=0

ϕi(x)(y
i) =

M∑

i=0

∑

(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(yi)

+
M+K∑

i=M+1

∑

(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(xi)
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for every x, y ∈ G. Then ϕN is a generalized polynomial of degree at most

equal to

M+K∑

i=0

card(
M+K⋃

s=i

Is) − 1.

Proof. The Lemma is proved by using induction with respect to M + K.

If M + K = 0 then M = K = 0 and we can use the famous theorem of

Székelyhidi (Theorem 9.5 in reference [9]). Suppose that M ≥ 1 or K ≥ 1

and the assertion holds true for some M +K − 1. Let us consider the case

where on the right hand side there are M + K + 1 summands. It follows

that at least one of the sets Ii, 1 ≤ i ≤ M + K is nonempty. If Ii is a set

appearing in the first sum on the right-hand side then, as in the proof of

Lemma 2.3 in reference [4], we obtain for some u1, . . . , uk (k = cardIi)

∆u1,...,uk
ϕN (x)(yN ) +

N−1∑

i=0

ϕ̂i(x)(y
i)

=
∑

j 6=i

∑

(α,β)∈Lj

ψ̂j,(α,β)(α(x) + β(y))(yj)

+
M+K∑

j=M+1

∑

(α,β)∈Lj

ψ̂j,(α,β)(α(x) + β(y))(xj),

where ϕ̂i and ψ̂j,(α,β) are some functions mapping G into SAi(G;H) and

SAj(G;H), respectively. We admit Lj =
⋃M+K

s=j Is, j ∈ {0, . . . ,M+K}\{i}.

By induction hypothesis, we obtain that ∆u1,...,uk
ϕN is a polynomial function

of order at most equal to

∑

j 6=i

cardLj − 1 =
∑

j 6=i

card(
M+K⋃

s=j

Is) − 1.

In particular, the function ϕN is polynomial of order

M+K∑

j=0

cardLj − 1 =
M+K∑

j=0

card(
M+K⋃

s=j

Is) − 1.

Analogously, if the set Ii is appearing in the second sum on the right-hand
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side, we get for u1, . . . , uk (k = cardIi)

∆u1,...,uk
ϕN (x)(yN ) +

N−1∑

i=0

ϕ̂i(x)(y
i)

=

M∑

j=0

∑

(α,β)∈Lj

ψ̂j,(α,β)(α(x)+β(y))(yj)

+
∑

j 6=i

∑

(α,β)∈Lj

ψ̂j,(α,β)(α(x)+β(y))(xj),

where Lj, ϕ̂i and ψ̂j have the same meaning as above. Also for this case by

using induction hypothesis it is obtained that ϕN is a polynomial function

of order bounded by

M+K∑

j=0

card(

M+K⋃

s=j

Is) − 1. ���

The following lemma is also required.

Lemma 2.([3]) For every k ∈ N, if B ∈ SAk(R; R) satisfies

B(xk−1, y) = yB(xk−1, 1)

for every x, y ∈ R, then B is k-linear, i.e.

B(x1, . . . , xk) = B(1k)x1 · · · · · xk

for every x1, . . . , xk ∈ R, where 1k is the k-tuple (1, . . . , 1
︸ ︷︷ ︸

k

).

2. Main Results

Now we are able to solve functional equations (1) and (2) in the case

s2 6= t2 for rational s, t without any regularity assumptions. We start with

the equation (1).
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Let s, t ∈ Q with s2 6= t2 and s, t 6= 0. Taking in (1) y = x we get

h(x) = g(x). (3)

We may treat the multiplication y · ϕ(x) as action of the homomorphism

ϕ(x) on the argument y, i.e. ϕ(x)(y) = y · ϕ(x). If we put y = y − x in (1)

after some simplifications we can write (1) in the form

f(x)(y) + g(x)

= [−f(x+ y) − 2k((s + t)x+ ty) − 2k((s + t)x+ sy)](y) + g(x+ y).

Using Lemma 1 for N = M = 1, K = 0, I1 = {(id, id), ((s + t)id, t id), ((s +

t)id, s id)}, I0 = {(id, id)}, ϕ1 = f , ϕ0 = h, ψ0,(id,id) = g, ψ1,(id,id) = −f ,

ψ1,((s+t)id,t id) = ψ1,((s+t)id,s id) = −2k we get (with assumptions s2 6= t2 and

s, t 6= 0) that f is a generalized polynomial of degree at most
∑1

i=0 card(
⋃1

s=i

Is) − 1 = 5, that is

f(x) =

5∑

i=0

Bd
i (x), (4)

where Bd
i are diagonalizations of i-additive symmetric functions Bi for i =

0, 1, . . . , 5.

Putting u = sx + ty, v = y − x we have x = 1
s+t

u − t
s+t

v and y =
1

s+t
u+ s

s+t
v (s+ t 6= 0 since s2 6= t2). Followed with obvious transformations

and simplifications we get from (1)

k(u)(v) = −
1

2
f

(
1

s+ t
u−

t

s+ t
v

)

(v) −
1

2
f

(
1

s+ t
u+

s

s+ t
v

)

(v)

−k(u+ (s − t)v)(v) +
1

2
g

(
1

s+ t
u+

s

s+ t
v

)

−
1

2
g

(
1

s+ t
u−

t

s+ t
v

)

.

Again using Lemma 1 for N = M = 1, K = 0, I0 = {( 1
s+t

id, s
s+t

id), ( 1
s+t

id,

− t
s+t

id)}, I1 = {( 1
s+t

id,− t
s+t

id), ( 1
s+t

id, s
s+t

id), (id, (s− t)id)}, ϕ1 = k, ϕ0 =

0, ψ0,( 1

s+t
id, s

s+t
id) = ψ0,( 1

s+t
id,− t

s+t
id) = 1

2g, ψ1,( 1

s+t
id, s

s+t
id) = ψ1,( 1

s+t
id,− t

s+t
id) =

−1
2f , ψ1,(id,(s−t)id) = −k we obtain (with assumptions s2 6= t2, s, t 6= 0) that

k is a generalized polynomial of degree at most
∑1

i=0 card(
⋃1

s=i Is)− 1 = 5,
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that is

k(x) =
5∑

i=0

Ad
i (x), (5)

where Ad
i are diagonalizations of i-additive symmetric functions Ai for i =

0, 1, . . . , 5.

Putting now y = 0 in (1) we have

g(x) = [f(x) + 2k(sx) + 2k(tx) + f(0)](x) + g(0)

and using previous calculations we get

g(x) = x

[
5∑

i=0

Bd
i (x) + 2

5∑

i=0

Ad
i (sx) + 2

5∑

i=0

Ad
i (tx) +B0

]

+ c0, (6)

where c0 = g(0).

Remark 1. M. Sablik during The Forty-fourth ISFE held in May 2006 in

Louisville, Kentucky, USA, has made a remark (refer to reference [5]) that

using Lemma 1 we are able to show that if functions f, g, h, k satisfy equa-

tion (1) then f and k are generalized polynomial functions of order at most

5, and g = h is a polynomial of order at most 6. If we assume that every Ai

and every Bi for i = 0, 1, . . . , 5 are continuous (to get homogeneity of mono-

mial functions forming solutions) or satisfy any condition implying that Ai

and Bi are homogeneous (that is measurability or boundedness on a set of

positive Lebesgue measure) we get that functions f, g, h, k are polynomials

and then they satisfy the assertion of Sahoo’s theorems. So inserting the

general forms of functions f, g, h, k into equation (1) and assuming continu-

ity (or measurability or boundedness on a set of positive Lebesgue measure)

of functions f and k, we obtain the solution mentioned by Sahoo in his talk

at the meeting (reference [6]) and the differentiability (up to four times) of

unknown functions (for real parameters s and t) is not required. In addi-

tion, using the same condition, further result is obtained under no regularity

assumption in the case where s and t are rational numbers.
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Substituting formulas (3), (4), (5), (6) to the equation (1) we have

2y

5∑

i=0

Ad
i (sy) + 2y

5∑

i=0

Ad
i (ty) − 2x

5∑

i=0

Ad
i (sx) − 2x

5∑

i=0

Ad
i (tx)

= y

5∑

i=1

Bd
i (x) − x

5∑

i=1

Bd
i (y) + 2y

5∑

i=0

Ad
i (sx+ ty) − 2x

5∑

i=0

Ad
i (sx+ ty)

+2y

5∑

i=0

Ad
i (tx+ sy) − 2x

5∑

i=0

Ad
i (tx+ sy).

Using i-additivity of functions Ai and Bi for i = 0, 1, . . . , 5 and their homo-

geneity with respect to s, t ∈ Q we can write the previous equation as

2y
5∑

i=0

(si + ti)Ad
i (y) − 2x

5∑

i=0

(si + ti)Ad
i (x)

= y

5∑

i=1

Bd
i (x) + 2y

5∑

i=0

i∑

j=0

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j, yj)

− x

5∑

i=1

Bd
i (y) − 2x

5∑

i=0

i∑

j=0

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j, yj),

that is

x

5∑

i=1

Bd
i (y) − y

5∑

i=1

Bd
i (x)

= 2y

5∑

i=1

i−1∑

j=0

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j, yj)

−2x

5∑

i=1

i∑

j=1

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j , yj).

Now, comparing the terms with respect to degree of x and y, we arrive at

the following conditions

xB1(y) − yB1(x) = 2(s+ t)yA1(x) − 2(s+ t)xA1(y), (7)

y

5∑

i=2

Bd
i (x) = 2x

5∑

i=2

i(sti−1 + tsi−1)Ai(x
i−1, y) − 2y

5∑

i=2

(si + ti)Ad
i (x), (8)
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2y
5∑

i=3

i−2∑

j=1

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j, yj)

= 2x
5∑

i=3

i−1∑

j=2

(
i

j

)

(si−jtj + ti−jsj)Ai(x
i−j , yj) (9)

holding for all x, y ∈ R (expressions with degree of x equal to 1 for i ≥

2 generate the same condition as expressions with degree of y equal to 1

therefore they are omitted).

If we put y = 1 in (7) we get

B1(x) = (b1 + 2(s+ t)a1)x− 2(s + t)A1(x), (10)

where a1 = A1(1), b1 = B1(1).

From (8) we directly get

yBd
i (x) = 2i(si−1t+ ti−1s)xAi(x

i−1, y) − 2(si + ti)yAd
i (x) (11)

for every 2 ≤ i ≤ 5. Letting y = x we have

Bd
i (x) = 2[i(si−1t+ ti−1s) − si − ti]Ad

i (x) (12)

for every 2 ≤ i ≤ 5.

On the other side putting y = 1 in (8) and multiplying both sides by y we

get

yBd
i (x) = 2i(si−1t+ ti−1s)xyAi(x

i−1, 1) − 2(si + ti)yAd
i (x) (13)

for every 2 ≤ i ≤ 5. Now, if we compare (11) and (13) we obtain

2i(si−1t+ ti−1s)xAi(x
i−1, y) = 2i(si−1t+ ti−1s)xyAi(x

i−1, 1).

Since s2 6= t2 and s, t 6= 0 then si−1t+ ti−1s = st(si−2 + ti−2) 6= 0 and thus

Ai(x
i−1, y) = yAi(x

i−1, 1).

Using Lemma 2 we get that Ai are linear, that is

Ad
i (x) = aix

i (14)
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where ai are arbitrary real constants for every 2 ≤ i ≤ 5. Using (12) we also

get

Bd
i (x) = 2(isi−1t+ iti−1s− si − ti)aix

i (15)

for every 2 ≤ i ≤ 5. Now, putting (14) in (9) and comparing the terms of

the same degree we obtain

i−2∑

j=1

(
i

j

)

(si−jtj + ti−jsj)aix
i−jyj+1 =

i−1∑

j=2

(
i

j

)

(si−jtj + ti−jsj)aix
i−j+1yj

for i = 3, 4, 5. For i = 3 we have identity. For i = 4 we get

4(s3t+ t3s)a4x
3y2 + 12s2t2a4x

2y3 = 12s2t2a4x
3y2 + 4(st3 + ts3)a4x

2y3,

thus

st(s2 + t2 − 3st)a4x
2y2(x− y) = 0.

Since x and y are arbitrary, s, t 6= 0 and the equality s2 + t2 − 3st = 0 is

fulfilled for s = 3±
√

5
2 t, which is impossible as we assumed that s, t ∈ Q, we

have

a4 = 0. (16)

For i = 5 we get

5(s4t+ t4s)a5x
4y2 + 10(s3t2 + t3s2)a5x

3y3 + 10(s2t3 + t2s3)a5x
2y4

= 10(s3t2 + t3s2)a5x
4y2 + 10(s2t3 + t2s3)a5x

3y3 + 5(st4 + s4t)a5x
2y4,

thus

st(s3 + t3 − 2s2t− 2st2)a5x
2y2(x2 − y2) = 0.

Again, since x and y are arbitrary, s, t 6= 0 and the equality s3 + t3 − 2st(s+

t) = 0 is fulfilled for s = −t or s = 3±
√

5
2 t, which is impossible as we assumed

that s2 6= t2 and s, t ∈ Q, then we also have

a5 = 0. (17)

Finally from (5), (14), (16) and (17) we obtain

k(x) = a3x
3 + a2x

2 +A1(x) + a0,
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from (4), (10), (15), (16) and (17) we get

f(x) = 2(3st(s + t) − s3 − t3)a3x
3 + 2(4st− s2 − t2)a2x

2 +B1(x) + b0

and from (3), (6), (10), (15), (16) and (17) we have h(x) = g(x) and

g(x) = 2(3st(s + t) − s3 − t3)a3x
4 + 2(4st− s2 − t2)a2x

3 +B1(x)x+ b0x

+2(s3 + t3)a3x
4 + 2(s2 + t2)a2x

3 + 2(s + t)A1(x)x+ 4a0x+ b0x+ c0

= 6st(s+ t)a3x
4 + 8sta2x

3 + (b1 + 2(s + t)a1)x
2 + 2(b0 + 2a0)x+ c0.

Now let us state the first of our main results.

Theorem 1. Let s, t ∈ Q be any two nonzero parameters with s2 6= t2. The

functions f, g, h, k : R → R satisfy the equation (1) for all x, y ∈ R if and

only if h(x) = g(x) and

g(x) = 6st(s+ t)a3x
4 + 8sta2x

3 + (b1 + 2(s+ t)a1)x
2 + 2(b0 + 2a0)x+ c0

f(x) = 2(3st(s + t) − s3 − t3)a3x
3 + 2(4st− s2 − t2)a2x

2 +B1(x) + b0

k(x) = a3x
3 + a2x

2 +A1(x) + a0,

where A1 : R → R is an arbitrary additive function, B1 : R → R is given by

(10), a1 = A1(1), b1 = B1(1) and a3, a2, a0, b0, c0 are arbitrary real constants.

Now we will solve functional equation (2) in the case s2 6= t2 for rational

s, t without any regularity assumptions. We will use Theorem 1 and the

following lemma (cf.[8; Lemma 2]).

Lemma 3. Let s and t be any two nonzero real parameters with s2 6= t2.

Functions φ,ψ : R → R satisfy the equation

(y − x)[ψ(x) + φ(sx+ ty) − φ(tx+ sy) − ψ(y)] = 0 (18)

for all x, y ∈ R if and only if

ψ(x) = (t2 − s2)Ed
2 (x) + (t− s)E1(x) + F0, (19)

φ(x) = Ed
2 (x) + E1(x) + E0, (20)
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where Ed
2 is a diagonalization of a biadditive symmetric function E2 : R ×

R → R, E1 : R → R is an additive function and E0, F0 are arbitrary real

constants.

Proof. From equation (18) we easily get

ψ(x) + φ(sx+ ty) − φ(tx+ sy) − ψ(y) = 0 (21)

for x 6= y, and in fact for all x and y. Hence we obtain directly from Lemma

1 that ψ is a generalized polynomial of degree at most equal to 2, i.e.

ψ(x) =

2∑

i=0

F d
i (x), (22)

where F d
2 is a diagonalization of a biadditive symmetric function F2 : R×R →

R, F1 : R → R is an additive function and F0 is an arbitrary real constant.

Taking now u = sx+ ty, v = x we get that x = v, y = 1
t
u− s

t
v and

ψ(v) + φ(u) − φ

(
s

t
u+

(

t−
s2

t

)

v

)

− ψ

(
1

t
u−

s

t
v

)

= 0. (23)

Again, using Lemma 1, we get that φ is a generalized polynomial of degree

at most equal to 2, i.e.

φ(x) =
2∑

i=0

Ed
i (x), (24)

where Ed
2 is a diagonalization of a biadditive symmetric function E2 : R ×

R → R, E1 : R → R is an additive function and E0 is an arbitrary real

constant.

Inserting (22) and (24) to equation (21) we obtain

F d
2 (x) + F1(x) + Ed

2 (sx+ ty) + E1(sx+ ty)

= Ed
2 (tx+ sy) + E1(tx+ sy) + F d

2 (y) + F1(y).

Putting y = 0 and comparing the terms of the same degree we arrive at the

following conditions

F d
2 (x) = (t2 − s2)Ed

2 (x),
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F1(x) = (t− s)E1(x),

thus ψ and φ fulfill conditions (19) and (20), respectively. ���

Theorem 2. Let s, t ∈ Q be any two nonzero parameters with s2 6= t2.

Functions g1, f1, f2, f3, f4, f5 : R → R satisfy functional equation (2) for all

x, y ∈ R if and only if g1(x) = f1(x) and

f1(x) = 6st(s+ t)a3x
4 + 8sta2x

3 + (b1 + 2(s + t)a1)x
2 + 2(b0 + 2a0)x+ c0

f2(x) = 2(3st(s + t) − s3 − t3)a3x
3 + 2(4st− s2 − t2)a2x

2 +B1(x) + b0+

(t2 − s2)Ed
2 (x) + (t− s)E1(x) + F0

f3(x) = 2a3x
3 + 2a2x

2 + 2A1(x) + 2a0 + Ed
2 (x) + E1(x) + E0

f4(x) = 2a3x
3 + 2a2x

2 + 2A1(x) + 2a0 − Ed
2 (x) − E1(x) − E0

f5(x) = 2(3st(s + t) − s3 − t3)a3x
3 + 2(4st− s2 − t2)a2x

2 +B1(x) + b0−

(t2 − s2)Ed
2 (x) − (t− s)E1(x) − F0,

where Ed
2 is a diagonalization of a biadditive symmetric function E2 : R ×

R → R, A1 : R → R and E1 : R → R are arbitrary additive functions, B1 :

R → R is given by (10), a1 = A1(1), b1 = B1(1) and a3, a2, a0, b0, c0, E0, F0

are arbitrary real constants.

Proof. To prove Theorem 2 we repeat the method used in the proof of [8],

Theorem 1.

Letting y = x in (2) we see that g1(x) = f1(x) for all x ∈ R. Thus

f1(y) − f1(x) = (y − x)[f2(x) + f3(sx+ ty) + f4(tx+ sy) + f5(y)]. (25)

Interchanging x and y in (25) we obtain

f1(y) − f1(x) = (y − x)[f2(y) + f3(sy + tx) + f4(ty + sx) + f5(x)]. (26)

Adding and subtracting (25) and (26) respectively the followings are ob-

tained

g(y) − g(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)], (27)
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(y − x)[ψ(x) + φ(sx+ ty) − φ(tx+ sy) − ψ(y)] = 0, (28)

where






f(x) = f2(x) + f5(x)

k(x) = 1
2 [f3(x) + f4(x)] ,

g(x) = 2f1(x)

(29)

{

ψ(x) = f2(x) − f5(x)

φ(x) = f3(x) − f4(x)
(30)

for all x, y ∈ R. Hence







f1(x) = 1
2g(x)

f2(x) = 1
2 [f(x) + ψ(x)]

f3(x) = 1
2 [2k(x) + φ(x)]

f4(x) = 1
2 [2k(x) − φ(x)]

f5(x) = 1
2 [f(x) − ψ(x)]

(31)

and without loss of generality (since (2) is linear with respect to unknown

functions)






f1(x) = g(x)

f2(x) = f(x) + ψ(x)

f3(x) = 2k(x) + φ(x)

f4(x) = 2k(x) − φ(x)

f5(x) = f(x) − ψ(x)

(32)

Now, using Theorem 1, Lemma 3 and (32) we obtain thesis of Theorem 2. ���

Remark 2. The above results also hold true (mutatis mutandis) in the

case where the equations are considered for mappings from a group G to a

divisible group H. This is due to the fact that Lemma 2 is valid in such a

general case.

Remark 3. In [8] the following problem is asked (Problem 1): we have

assumed that the functions f1, f2, f5 : R −→ R are twice differentiable

and f3, f4 : R −→ R are four times differentiable. The proof of [Theo-

rem 1 from [8]] heavily relies on this differentiability assumption. Thus we

pose the following problem: Determine the general solution of the functional
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equation (2) without any regularity assumptions on the unknown functions

f1, f2, f3, f4, f5. Theorem 2 actually answers the Sahoo’s question, at least

for rational parameters s and t.
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