APPROXIMATE QUATERNARY JORDAN DERIVATIONS ON BANACH QUATERNARY ALGEBRAS

M. Eshaghi Gordji ${ }^{1, a}$, J. M. Rassias ${ }^{2, b}$, M. B. Ghaemi ${ }^{3, c}$ and B. Alizadeh ${ }^{4, d}$
${ }^{1}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran.
${ }^{a}$ E-mail: madjid.eshaghi@gmail.com
2 Section of Mathematics and Informatics, Pedagogical Department, National and Capodistrian University of Athens, 4, Agamemnonos St., Aghia Paraskevi, Athens 15342, Greece.
${ }^{b}$ E-mail: jrassias@primedu.uoa.gr
${ }^{3}$ Department of Mathematics, Iran University of Science and Technology, Tehran, Iran.
${ }^{c}$ E-mail: mghaemi@iust.ac.ir
${ }^{4}$ Tabriz College of Technology, P. O.Box 51745-135, Tabriz, Iran.
${ }^{d}$ E-mail: a_badrkhan@yahoo.com

Abstract

We show that a quaternary Jordan derivation on a quaternary Banach algebra associated with the equation

$$
f\left(\frac{x+y+z}{4}\right)+f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)=2 f(x) .
$$

is satisfied in generalized Hyers-Ulam stability.

1. Introduction

A quaternary algebra is a real or complex linear space, endowed with a linear mapping the so-called a quaternary product $(x, y, z, t) \rightarrow[x y z t]_{A}$ of $A \times A \times A \times A$ into A such that $\left[[x y z t]_{A} w v u\right]_{A}=\left[x[y z t w]_{A} v u\right]_{A}=$ $\left[x y[z t w v]_{A} u\right]_{A}=\left[x y z[t w v u]_{A}\right]_{A}$ for all $x, y, z, t, w, v, u \in A$. If $(A,$.$) is a$ usual binary algebra, then an induced quaternary multiplication can be, of course, defined by $[x y z t]_{A}=((x \cdot y) \cdot z) \cdot t=(x \cdot(y \cdot z)) \cdot t=x \cdot((y \cdot z) \cdot t)=$ $x .(y .(z . t))$. Hence the quaternary algebra is a natural generalization of the

[^0]binary case. If a quaternary algebra $\left(A,[]_{A}\right)$ has a unit, i.e., an element $e \in A$ such that $x=[x e e e]_{A}=[e e e x]_{A}$ for all $x \in A$, then A with the binary product $x . y=[x e e y]_{A}$, is a usual algebra.

A normed quaternary algebra is a quaternary algebra with a norm $\|$. such that $\left\|[x y z t]_{A}\right\| \leq\|x\|\|y\|\|z\|\|t\|$ for $x, y, z, t \in A$. A Banach quaternary algebra is a normed quaternary algebra such that the normed linear space with norm $\|$.$\| is complete. Assume that A$ and B are real or complex quaternary algebras. A linear map $h: A \rightarrow B$ is said to be a quaternary homomorphism if $h[x y z t]_{A}=[h(x) h(y) h(z) h(t)]_{B}$ holds for all $x, y, z, t \in A$.

Let A be a Banach quaternary algebra and X be a Banach space. Then X is called a quaternary Banach A-module, if module operations $A \times A \times A \times$ $X \rightarrow X, A \times A \times X \times A \rightarrow X, A \times X \times A \times A \rightarrow X$, and $X \times A \times A \times A \rightarrow X$, which are \mathbb{C}-linear in every variable. Moreover satisfy

$$
\begin{aligned}
& {\left[[x a b c]_{X} d e f\right]_{X}=\left[x[a b c d]_{A} e f\right]_{X}=\left[x a[b c d e]_{A} f\right]_{X}=\left[x a b[c d e f]_{A}\right]_{X},} \\
& {\left[[a x b c]_{X} d e f\right]_{X}=\left[a[x b c d]_{X} e f\right]_{X}=\left[a x[b c d e]_{A} f\right]_{X}=\left[a x b[c d e f]_{A}\right]_{X},} \\
& {\left[[a b x c]_{X} d e f\right]_{X}=\left[a[b x c d]_{X} e f\right]_{X}=\left[a b[x c d e]_{X} f\right]_{X}=\left[a b x[c d e f]_{A}\right]_{X},} \\
& \left.\left[\begin{array}{lll}
{[a b c x]_{X}} & d e f
\end{array}\right]_{X}=\left[\begin{array}{lll}
a & b c x d
\end{array}\right]_{X} e f\right]_{X}=\left[a b[c x d e]_{X} f\right]_{X}=\left[a b c[x d e f]_{X}\right]_{X}, \\
& {\left[[a b c d]_{A} x e f\right]_{X}=\left[a[b c d x]_{X} e f\right]_{X}=\left[a b[c d x e]_{X} f\right]_{X}=\left[a b c[d x e f]_{X}\right]_{X},} \\
& {\left[[a b c d]_{A} e x f\right]_{X}=\left[a[b c d e]_{A} x f\right]_{X}=\left[a b[c d e x]_{X} f\right]_{X}=\left[a b c[d e x f]_{X}\right]_{X},} \\
& {\left[[a b c d]_{A} \text { ef } x\right]_{X}=\left[a[b c d e]_{A} f x\right]_{X}=\left[a b[c d e f]_{A} x\right]_{X}=\left[a b c[d e f x]_{X}\right]_{X},}
\end{aligned}
$$

for all $x \in X$ and all $a, b, c, d, e, f \in A$,

$$
\max \left\{\left\|[x a b c]_{X}\right\|,\left\|[a x b c]_{X}\right\|,\left\|[a b x c]_{X}\right\|,\left\|[a b c x]_{X}\right\|\right\} \leq\|a\|\|b\|\|c\|\|x\|
$$

for all $x \in X$ and all $a, b, c \in A$.
Let $\left(A,[]_{A}\right)$ be a Banach quaternary algebra over a scalar field \mathbb{R} or \mathbb{C} and $\left(X,[]_{X}\right)$ be a quaternary Banach A-module. A linear mapping D : $\left(A,[]_{A}\right) \rightarrow\left(X,[]_{X}\right)$ is called a quaternary derivation, if

$$
D\left([x y z t]_{A}\right)=[D(x) y z t]_{X}+[x D(y) z t]_{X}+[x y D(z) t]_{X}+[x y z D(t)]_{X}
$$

for all $x, y, z, t \in A$.
A linear mapping $D:\left(A,[]_{A}\right) \rightarrow\left(X,[]_{X}\right)$ is called a quaternary Jordan derivation, if

$$
D\left([x x x x]_{A}\right)=[D(x) x x x]_{X}+[x D(x) x x]_{X}+[x x D(x) x]_{X}+[x x x D(x)]_{X}
$$

for all $x \in A$.
The stability of functional equations was first introduced by S. M. Ulam 1] in 1940. In 1941, D. H. Hyers [2] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Th. M. Rassias [3] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias [3] is called the Hyers-Ulam-Rassias stability. According to Th. M. Rassias Theorem:

Theorem 1.1. Let $f: E \longrightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \longrightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1) holds for all $x, y \neq 0$, and (2) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is linear.

On the other hand J. M. Rassias [4, 5], generalized the Hyers stability result by presenting a weaker condition controlled by a product of different powers of norms. According to J. M. Rassias Theorem:

Theorem 1.2. If it is assumed that there exist constants $\Theta \geq 0$ and $p_{1}, p_{2} \in$ \mathbb{R} such that $p=p_{1}+p_{2} \neq 1$, and $f: E \rightarrow E^{\prime}$ is a map from a norm space E into a Banach space E^{\prime} such that the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\|x\|^{p_{1}}\|y\|^{p_{2}}
$$

for all $x, y \in E$, then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{\Theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. If in addition for every $x \in E, f(t x)$ is continuous in real t for each fixed x, then T is linear (see [7]-13]).

Stability problems of functional equations have been investigated extensively during the last decade. A large list of references concerning the stability of functional equations can be found in 14], 15], 16, 17, 18], 19] and [20]- 24$]$.

Recently, R. Badora 25] and T. Miura et al. 26] proved the Ulam-Hyers stability, the Isac and Rassias-type stability [27], the Hyers-Ulam-Rassias stability and the Bourgin-type superstability of ring derivations on Banach algebras. On the other hand, C. Park [28], C. Park and M. E. Gordji 29] and Bavand et al. 30 have contributed works to the stability problem of ternary homomorphisms and ternary derivations. For more details about the results concerning stability of functional equations the reader is referred to 31]-70].

The main purpose of the present paper is to offer the Ulam-Hyers stability of quaternary Jordan derivations on Banach quaternary algebras associated with the following functional equation

$$
\begin{equation*}
f\left(\frac{x+y+z}{4}\right)+f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)=2 f(x) . \tag{1.1}
\end{equation*}
$$

2. Quaternary Jordan Derivations on Banach Quaternary Algebras

In this section, we investigate quartenary Jordan derivations on Banach quaternary algebras.

Throughout this section, assume that $\left(A,[]_{A}\right)$ is a Banach quaternary algebra and $\left(X,[]_{X}\right)$ is a quaternary Banach A-module.

Lemma 2.1 (31]). Let V and W be linear spaces and let $f: V \rightarrow W$ be an additive mapping such that $f(\mu x)=\mu f(x)$ for all $x \in V$ and all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$. Then the mapping f is \mathbb{C}-linear.

Lemma 2.2 (32]). Let $f: A \rightarrow X$ be a mapping such that

$$
f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)=2 f(x)
$$

for all $x, y, z \in A$. Then f is \mathbb{C}-linear.
Theorem 2.3. Let $p \neq 1$ and θ be nonnegative real numbers, and let f : $A \rightarrow X$ be a mapping such that

$$
\begin{equation*}
f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)=2 f(x) \tag{2.1}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$,
$\left\|f\left([y y y y]_{A}\right)-[f(y) y y y]_{X}-[y f(y) y y]_{X}-[y y f(y) y]_{X}-[y y y f(y)]_{X}\right\| \leq \theta\|y\|^{4 p}$
for all $y \in A$. Then the mapping $f: A \rightarrow X$ is a quaternary Jordan derivation.

Proof. Assume $p<1$. By Lemma 2.2, the mapping $f: A \rightarrow X$ is \mathbb{C}-linear. It follows from (2.2) that

$$
\begin{aligned}
\| f & \left([y y y y]_{A}\right)-[f(y) y y y]_{X}-[y f(y) y y]_{X}-[y y f(y) y]_{X}-[y y y y f(y)]_{X} \| \\
= & \frac{1}{n^{4}} \| f\left([(n y)(n y)(n y)(n y)]_{A}\right)-[f(n y)(n y)(n y)(n y)]_{X}-[(n y) f(n y)(n y)(n y)]_{X} \\
& -[(n y)(n y) f(n y)(n y)]_{X}-[(n y)(n y)(n y) f(n y)]_{X} \| \\
\leq & \frac{\theta}{n^{4}} n^{4 p}\|y\|^{4 p}
\end{aligned}
$$

for all $y \in A$. Thus, since $p<1$, by letting n tend to ∞ in last inequality, we obtain

$$
f\left([y y y y]_{A}\right)=[f(y) y y y]_{X}+[y f(y) y y]_{X}+[y y f(y) y]_{X}+[y y y f(y)]_{X}
$$

for all $y \in A$. Hence the mapping $f: A \rightarrow X$ is a quaternary Jordan derivation. Similarly, one obtains the result for the case $p>1$.

We prove the following Ulam stability problem for functional equation (1.1) controlled by the mixed type product-sum function

$$
(x, y) \rightarrow \theta\left(\|x\|^{p_{1}}\|y\|^{p_{2}}\|z\|^{p_{3}}+\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \quad\left(p=p_{1}+p_{2}+p_{3}\right)
$$ introduced by J. M. Rassias (see [23]).

Theorem 2.4. Let p, p_{1}, p_{2}, p_{3} be real numbers such that $p<1, p_{1}+p_{2}+p_{3}<$ 1 , and $\theta>0$. Suppose $f: A \rightarrow X$ satisfies

$$
\begin{align*}
& \left\|f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)-2 f(x)\right\| \\
& \quad \leq \theta\left(\|x\|^{p_{1}}\|y\|^{p_{2}}\|z\|^{p_{3}}+\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.3}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$,

$$
\begin{equation*}
\left\|f\left([x x x x]_{A}\right)-[f(x) x x x]_{X}-[x f(x) x x]_{X}-[x x f(x) x]_{X}-[x x x f(x)]_{X}\right\| \leq \theta\|x\|^{4 p} \tag{2.4}
\end{equation*}
$$

for all $x \in A$. Then there exists a unique quaternary Jordan derivation $D: A \rightarrow X$ satisfying

$$
\begin{equation*}
\|f(x)-D(x)\| \leq 2 \theta \frac{2^{p}}{2-2^{p}}\|x\|^{p} \tag{2.5}
\end{equation*}
$$

for all $x \in A$.

Proof. Setting $\mu=1$ and $x=y=z=0$ in (2.3), yields $f(0)=0$. Let us take $\mu=1, z=0$ and $y=x$ in (2.3). Then we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq 2 \theta\|x\|^{p} \tag{2.6}
\end{equation*}
$$

for all $x \in A$. In (2.6), replacing $\frac{x}{2}$ by x and then dividing by 2 , we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq 2^{p} \theta\|x\|^{p} \tag{2.7}
\end{equation*}
$$

for all $x \in A$. We easily prove that by induction that

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2^{n}} f\left(2^{n} x\right)\right\| \leq 2 \theta\|x\|^{p} \sum_{i=1}^{n} 2^{i(p-1)} \tag{2.8}
\end{equation*}
$$

In order to show that the functions $D_{n}(x)=\frac{1}{2^{n}} f\left(2^{n} x\right)$ form a convergent sequence, we use the Cauchy convergence criterion. Indeed, replace x by $2^{m} x$ and divide by 2^{m} in (2.8), where m is an arbitrary positive integer. We
find that

$$
\left\|\frac{1}{2^{m}} f\left(2^{m} x\right)-\frac{1}{2^{m+n}} f\left(2^{m+n} x\right)\right\| \leq 2 \theta\|x\|^{p} \sum_{i=m+1}^{m+n} 2^{i(p-1)}
$$

for all positive integers. Hence by the Cauchy criterion the limit $D(x)=$ $\lim _{n \rightarrow \infty} D_{n}(x)$ exists for each $x \in A$. By taking the limit as $n \rightarrow \infty$ in (2.8) we see that

$$
\|f(x)-D(x)\| \leq 2 \theta\|x\|^{p} \sum_{i=1}^{\infty} 2^{i(p-1)}
$$

and (2.5) holds for all $x \in A$. Now, we have

$$
\begin{aligned}
&\left\|D\left(\frac{x+\mu y+z}{4}\right)+\mu D\left(\frac{3 x-y-4 z}{4}\right)+D\left(\frac{4 x+3 z}{4}\right)-2 D(x)\right\| \\
&= \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \| f\left(\frac{2^{n} x+\mu 2^{n} y+2^{n} z}{4}\right)+\mu f\left(\frac{3.2^{n} x-2^{n} y-4.2^{n} z}{4}\right) \\
&+f\left(\frac{4.2^{n} x+3.2^{n} z}{4}\right)-2 f\left(2^{n} x\right) \|_{A} \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \theta\left(\left\|2^{n} x\right\|^{p_{1}}\left\|2^{n} y\right\|^{p_{2}}\left\|2^{n} z\right\|^{p_{3}}\right. \\
&\left.+\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{p}+\left\|2^{n} z\right\|^{p}\right) \\
&= \lim _{n \rightarrow \infty} 2^{n\left(p_{1}+p_{2}+p_{3}-1\right)} \theta\left(\|x\|^{p_{1}}\|y\|^{p_{2}}\|z\|^{P_{3}}\right) \\
&+\lim _{n \rightarrow \infty} 2^{n(p-1)} \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{P}\right)=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Hence

$$
D\left(\frac{x+\mu y+z}{4}\right)+\mu D\left(\frac{3 x-y-4 z}{4}\right)+D\left(\frac{4 x+3 z}{4}\right)=2 D(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. So by Lemma (2.2), D is \mathbb{C}-linear. On the other hand

$$
\begin{aligned}
\| D(& {\left.[x x x x]_{A}\right)-[D(x) x x x]_{X}-[x D(x) x x]_{X}-[x x D(x) x]_{X}-[x x x D(x)]_{X} \| } \\
= & \lim _{n \rightarrow \infty} \frac{1}{16^{n}} \| f\left(\left[\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right)\right]_{A}\right)-\left[f\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right)\right]_{X} \\
& -\left[\left(2^{n} x\right) f\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right)\right]_{X}-\left[\left(2^{n} x\right)\left(2^{n} x\right) f\left(2^{n} x\right)\left(2^{n} x\right)\right]_{X} \\
& -\left[\left(2^{n} x\right)\left(2^{n} x\right)\left(2^{n} x\right) f\left(2^{n} x\right)\right]_{X} \| \\
\leq & \lim _{n \rightarrow \infty} \frac{\theta}{16^{n}}\left\|2^{n} x\right\|^{4 p} \\
= & \lim _{n \rightarrow \infty} \theta 16^{n(p-1)}\|x\|^{4 p}=0
\end{aligned}
$$

for all $x \in A$, which means that

$$
D\left([x x x x]_{A}\right)=[D(x) x x x]_{X}+[x D(x) x x]_{X}+[x x D(x) x]_{X}+[x x x D(x)]_{X}
$$

Therefore, we conclude that D is a quaternary Jordan derivation. Suppose that there exists another quaternary Jordan derivation $D^{\prime}: A \rightarrow X$ satisfying (2.5). Since $D^{\prime}(x)=\frac{1}{2^{n}} D^{\prime}\left(2^{n} x\right)$, we see that

$$
\begin{aligned}
\left\|D(x)-D^{\prime}(x)\right\| & =\frac{1}{2^{n}}\left\|D\left(2^{n} x\right)-D^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|f\left(2^{n} x\right)-D\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-D^{\prime}\left(2^{n} x\right)\right\|\right) \\
& \leq 4 \theta \frac{2^{p}}{2-2^{p}} 2^{n(p-1)}\|x\|^{p}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. Therefore $D^{\prime}=D$ as claimed and the proof of the theorem is complete.

Theorem 2.5. Let p, p_{1}, p_{2}, p_{3} be real numbers such that $p>1, p_{1}+p_{2}+p_{3}>$ 1 , and $\theta>0$. Suppose $f: A \rightarrow X$ satisfies

$$
\begin{align*}
& \left\|f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)-2 f(x)\right\| \tag{2.9}\\
& \quad \leq \theta\left(\|x\|^{p_{1}}\|y\|^{p_{2}}\|z\|^{p_{3}}+\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.10}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$,
$\left\|f\left([x x x x]_{A}\right)-[f(x) x x x]_{X}-[x f(x) x x]_{X}-[x x f(x) x]_{X}-[x x x f(x)]_{X}\right\| \leq \theta\|x\|^{4 p}$
for all $x \in A$. Then there exists a unique quaternary Jordan derivation $D: A \rightarrow X$ satisfying

$$
\begin{equation*}
\|D(x)-f(x)\| \leq 2 \theta \frac{2^{p}}{2^{p}-2}\|x\|^{p} \tag{2.12}
\end{equation*}
$$

for all $x \in A$.

Proof. Setting $\mu=1$ and $x=y=z=0$ in (2.9), yields $f(0)=0$. Let us take $\mu=1, z=0$ and $y=x$ in (2.9). Then we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq 2 \theta\|x\|^{p} \tag{2.13}
\end{equation*}
$$

for all $x \in A$. By induction, we get

$$
\begin{equation*}
\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)\right\| \leq 2 \theta\|x\|^{p} \sum_{i=0}^{n-1} 2^{i(1-p)} \tag{2.14}
\end{equation*}
$$

In order to show that the functions $D_{n}(x)=2^{n} f\left(\frac{x}{2^{n}}\right)$ form a convergent sequence, we use the Cauchy convergence criterion. Indeed, replace x by $\frac{x}{2^{m}}$ and multiply by 2^{m} in (2.14), where m is an arbitrary positive integer. We find that

$$
\left\|2^{m+n} f\left(\frac{x}{2^{m+n}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq 2 \theta\|x\|^{p} \sum_{i=m}^{m+n-1} 2^{i(1-p)}
$$

for all positive integers. Hence by the Cauchy criterion the limit $D(x)=$ $\lim _{n \rightarrow \infty} D_{n}(x)$ exists for each $x \in A$. By taking the limit as $n \rightarrow \infty$ in (2.14) we see that

$$
\|D(x)-f(x)\| \leq 2 \theta\|x\|^{p} \sum_{i=0}^{\infty} 2^{i(1-p)}
$$

and (2.11) holds for all $x \in A$. Thus, we have

$$
\begin{aligned}
\| D(& \left.\frac{x+\mu y+z}{4}\right)+\mu D\left(\frac{3 x-y-4 z}{4}\right)+D\left(\frac{4 x+3 z}{4}\right)-2 D(x) \| \\
= & \lim _{n \rightarrow \infty} 2^{n} \| f\left(\frac{2^{-n} x+\mu 2^{-n} y+2^{-n} z}{4}\right)+\mu f\left(\frac{3.2^{-n} x-2^{-n} y-4.2^{-n} z}{4}\right) \\
& +f\left(\frac{4.2^{-n} x+3.2^{-n} z}{4}\right)-2 f\left(2^{-n} x\right) \| \\
\leq & \lim _{n \rightarrow \infty} 2^{n} \theta\left(\left\|2^{-n} x\right\|^{p_{1}}\left\|2^{-n} y\right\|^{p_{2}}\left\|2^{-n}\right\|^{p_{3}}\right. \\
& \left.+\left\|2^{-n} x\right\|^{p}+\left\|2^{-n} y\right\|^{p}+\left\|2^{-n} z\right\|^{p}\right)=\lim _{n \rightarrow \infty} 2^{n\left(1-p_{1}+p_{2}+p_{3}\right)} \theta\left(\|x\|^{p_{1}}\|y\|^{p_{2}}\|z\|^{P_{3}}\right) \\
& +\lim _{n \rightarrow \infty} 2^{n(1-p)} \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{P}\right)=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Hence

$$
D\left(\frac{x+\mu y+z}{4}\right)+\mu D\left(\frac{3 x-y-4 z}{4}\right)+D\left(\frac{4 x+3 z}{4}\right)=2 D(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. So by Lemma 2.2, D is \mathbb{C}-linear. Thus, we
have

$$
\begin{aligned}
\| D(& {\left.[x x x x x]_{A}\right)-[D(x) x x x]_{X}-[x D(x) x x]_{X}-[x x D(x) x]_{X}-[x x x D(x)]_{X} \| } \\
= & \lim _{n \rightarrow \infty} 16^{n} \| f\left(\left[2^{-n} x\left(2^{-n} x\right)\left(2^{-n} x\right)\left(2^{-n} x\right)\right]_{A}\right)-\left[f\left(2^{-n} x\right)\left(2^{-n} x\right)\left(2^{-n} x\right)\right]_{X} \\
& -\left[\left(2^{-n} x\right) f\left(2^{-n} x\right)\left(2^{-n} x\right)\left(2^{-n} x\right)\right]_{X}-\left[\left(2^{-n} x\right)\left(2^{-n} x\right) f\left(2^{-n} x\right)\left(2^{-n} x\right)\right]_{X} \\
& -\left[\left(2^{-n} x\right)\left(2^{-n} x\right)\left(2^{-n} x\right) f\left(2^{-n} x\right)\right]_{X} \| \\
\leq & \lim _{n \rightarrow \infty} 16^{n} \theta\left\|\frac{x}{2^{n}}\right\|^{4 p} \\
= & \lim _{n \rightarrow \infty} \theta 16^{n(1-p)}\|x\|^{4 p}=0
\end{aligned}
$$

for all $x \in A$, which means that

$$
D\left([x x x x]_{A}\right)=[D(x) x x x]_{X}+[x D(x) x x]_{X}+[x x D(x) x]_{X}+[x x x D(x)]_{X} .
$$

Therefore, we conclude that D is a quaternary Jordan derivation. Suppose that there exists another quaternary Jordan derivation $D^{\prime}: A \rightarrow X$ satisfying (2.11). Since $D^{\prime}(x)=2^{n} D^{\prime}\left(\frac{x}{2^{n}}\right)$, we see that

$$
\begin{aligned}
\left\|D(x)-D^{\prime}(x)\right\| & =2^{n}\left\|D\left(\frac{x}{2^{n}}\right)-D^{\prime}\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left(\left\|f\left(\frac{x}{2^{n}}\right)-D\left(\frac{x}{2^{n}}\right)\right\|+\left\|f\left(\frac{x}{2^{n}}\right)-D^{\prime}\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& \leq 4 \theta \frac{2^{p}}{2^{p}-2} 2^{n(1-p)}\|x\|^{p}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. Hence, $D^{\prime}=D$ as claimed and proof of theorem is complete.

We are going to investigate the Hyers-Ulam-Rassias stability problem for functional equation (1.1).

Corollary 2.6. Let $P \in(-\infty, 1) \cup(1, \infty), \theta>0$. Suppose $f: A \rightarrow X$ satisfies
$\left\|f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)-2 f(x)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$,
for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$,
$\left\|f\left([x x x x]_{A}\right)-[f(x) x x x]_{X}-[x f(x) x x]_{X}-[x x f(x) x]_{X}-[x x x f(x)]_{X}\right\| \leq \theta\|x\|^{4 p}$
for all $x \in A$. Then there exists a unique quaternary Jordan derivation $D: A \rightarrow X$ satisfying

$$
\|f(x)-D(x)\| \leq 2 \theta \frac{2^{p}}{\left|2-2^{p}\right|}\|x\|^{p}
$$

for all $x \in A$.
By Theorems [2.4 and 2.5 we solve the following Hyers-Ulam stability problem for functional equation (1.1).

Corollary 2.7. Let θ be a positive real number. Suppose $f: A \rightarrow X$ satisfies

$$
\left\|f\left(\frac{x+\mu y+z}{4}\right)+\mu f\left(\frac{3 x-y-4 z}{4}\right)+f\left(\frac{4 x+3 z}{4}\right)-2 f(x)\right\| \leq \theta
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$,
$\left\|f\left([x x x x]_{A}\right)-[f(x) x x x]_{X}-[x f(x) x x]_{X}-[x x f(x) x]_{X}-[x x x f(x)]_{X}\right\| \leq \theta\|x\|$
for all $x \in A$. Then there exists a unique quaternary Jordan derivation $D: A \rightarrow X$ satisfying

$$
\|f(x)-D(x)\| \leq \theta
$$

for all $x \in A$.

References

1. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940.
2. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
3. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
4. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2), 108 (1984), No. 4, 445-446.
5. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J.Funct. Anal., 46 (1982), No. 1, 126-130.
6. J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III, 34(54) (1999), No. 2, 243-252.
7. J. M. Rassias, Complete solution of the multi-dimensional problem of Ulam, Discuss. Math., 14 (1994), 101-107.
8. J. M. Rassias, On the stability of a multi-dimensional Cauchy type functional equation. Geometry, Analysis and Mechanics, 365-375, World Sci.Publ., River Edge, NJ, 1994.
9. J. M. Rassias, Solution of a stability problem of Ulam. Functional analysis, Approximation Theory and Numerical Analysis, 241-249, World Sci.Publ., River Edge, NJ, 1994.
10. J. M. Rassias, Solution of a stability problem of Ulam, Discuss. Math., 12 (1992), 95-103 (1993).
11. J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), No. 3, 268-273.
12. J. M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discuss. Math. 7 (1985), 193-196.
13. J. M. Rassias and H. M. Kim, Approximate homomorphisms and derivations between C^{*}-ternary algebras, J. Math. Phys., 49 (2008), No. 6, 063507, 10 pp. 46Lxx (39B82).
14. M. Amyari, C. Baak and M. S. Moslehian, Nearly ternary derivations, Taiwanese J. Math., 11, (2007), No. 5, 1417-1424.
15. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2(1950), 64-66.
16. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. MR0758860 (86d:39016)
17. S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type, Hadronic Press, 2003.
18. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14(1991), 431-434.
19. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, 1998.
20. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62 (2000), 23-130. MR1778016 (2001j:39042)
21. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284. MR1790409 (2003b:39036)
22. Th. M. Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), No. 2, 352-378.
23. K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat., 3 (2008), A08, 36-46. 39B55 (39B82).
24. K. Ravi, J. M. Rassias and B. V. Senthil Kumar, Ulam stability of reciprocal difference and adjoint functional equations, To appear in Australian Journal of Mathematical Analysis and Applications.
25. R. Badora, On approximate derivations, Math. Inequal. Appl., 9 (2006), 167-173.
26. T. Miura, G. Hirasawa and S. E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl., 319 (2006), 522-530.
27. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of additive mappings, J. Approx. Theorey, 72 (1993), 131-137.
28. C. Park, Isomorphisms between C*-ternary algebras, J. Math. Anal. Appl., 327 (2007), 101-115.
29. C. Park, M. E. Gordji, Comment on pproximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys., 50, 042303 (2009)], J. Math. Phys., 51, 044102 (2010); doi:10.1063/1.3299295 (7 pages).
30. M. Bavand Savadkouhi, M. E. Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys., 50, 042303 (2009), 9 pages.
31. S. Abbaszadeh, Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl., 1 (2010), No. 2, 100-124.
32. A. Ebadian, A. Najati, M. E. Gordji, On approximate additive-quartic and quadraticcubic functional equations in two variables on abelian groups, Results Math., DOI 10.1007/s00025-010-0018-4 (2010).
33. M. Eshaghi Gordji, Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc., 47 (2010), No. 3, 491-502.
34. M. Eshaghi Gordji, Stability of an additive-quadratic functional equation of two variables in F-spaces, Journal of Nonlinear Sciences and Applications, 2 (2009), No. 4, 251-259.
35. M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Ineq. Appl., 2009, Article ID 153084, 26 pages.
36. M. Eshaghi Gordji, M. Bavand Savadkouhi, N. Ghobadipour, A. Ebadian and C. Park, Approximate ternary Jordan homomorphisms on Banach ternary algebras, Abs. Appl. Anal., 2010, Art. ID:467525.
37. M. Eshaghi Gordji, M. Bavand-Savadkouhi, J. M. Rassias and S. Zolfaghari, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abs. Appl. Anal., 2009, Article ID 417473, 14 pages doi:10.1155/2009/417473.
38. M. Eshaghi Gordji and M. Bavand Savadkouhi, On approximate cubic homomorphisms, Advances in Difference Equations, 2009, Article ID 618463, 11 pages ,doi:10.1155/2009/618463.
39. M. Eshaghi Gordji and A. Bodaghi, On the Hyers-Ulam-Rasias Stability problem for quadratic functional equations, East Journal On Approximations, 16(2010), No. 2, 123-130.
40. M. Eshaghi Gordji and A. Bodaghi, On the stability of quadratic double centralizers on Banach algebras, J. Comput. Anal. Appl. (in press).
41. M. E. Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abs. Appl. Anal., 2008, Article ID 801904, 17 pages.
42. M. E. Gordji, M.B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J^{*}-derivations, Journal of Geometry and Physics, 60(2010), No. 3, 454459.
43. M. E. Gordji, M. B. Ghaemi, H. Majani, Generalized Hyers-Ulam-Rassias Theorem in menger probabilistic normed spaces, Discrete Dynamics in Nature and Society, 2010, Article ID 162371, 11 pages.
44. M. E. Gordji, M. B. Ghaemi, H. Majani, C. Park, Generalized Ulam-Hyers Stability of Jensen Functional Equation in rstnev PN Spaces, J. Ineq. Appl., 2010, Article ID 868193, 14 pages.
45. M. E. Gordji, N. Ghobadipour, Stability of (α, β, γ)-derivations on Lie C^{*}-algebras, To appear in International Journal of Geometric Methods in Modern Physics (IJGMMP).
46. M. E. Gordji, S. Kaboli Gharetapeh, T. Karimi , E. Rashidi and M. Aghaei, Ternary Jordan derivations on C^{*}-ternary algebras, Journal of Computational Analysis and Applications, $12(2010)$, No.2, 463-470.
47. M. E. Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Advances in Difference EquationsVolume 2009 (2009), Article ID 395693, 20 pages.
48. M. E. Gordji, S. Kaboli Gharetapeh, J.M. Rassias and S. Zolfaghari, Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in Difference Equations, 2009, Article ID 826130, 17 pages,
49. M. E. Gordji, T. Karimi, S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl., 2009, Article ID 870843, 8 pages.
50. M. E. Gordji, R. Khodabakhsh, H. Khodaei and C. Park, Approximation of a functional equation associated with inner product spaces, J. Ineq. Appl., 2010, Art. ID: 428324.
51. M. E. Gordji, H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abs. Appl. Anal., 2009, Article ID 923476, 11 pages.
52. M. E. Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis-TMA 71 (2009), 5629-5643.
53. M. E. Gordji, H. Khodaei and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull., Series A, textbf72(2010), Iss. 3, 69-84.
54. M. E. Gordji and A. Najati, Approximately J^{*}-homomorphisms: A fixed point approach, Journal of Geometry and Physics 60 (2010), 809-814.
55. M. E. Gordji and M. S. Moslehian, A trick for investigation of approximate derivations, Math. Commun., 15 (2010), No. 1, 99-105.
56. M. E. Gordji, J.M. Rassias, N. Ghobadipour, Generalized Hyers-Ulam stability of the generalized (n, k)-derivations, Abs. Appl. Anal., 2009, Article ID 437931, 8 pages.
57. M. E. Gordji, M. B. Savadkouhi, Approximation of generalized homomorphisms in quasi-Banach algebras, Analele Univ. Ovidius Constata, Math series, 17(2009), No.2, 203-214.
58. M. E. Gordji and M. B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., 110 (2010), 1321-1329.
59. M. E. Gordji and M. B. Savadkouhi, Stability of a mixed type cubic and quartic functional equations in random normed spaces, J. Ineq. Appl., 2009, Article ID 527462, 9 pages.
60. M. E. Gordji and M. B. Savadkouhi, Stability of a mixed type cubic uartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23(2010), No.10, 1198-1202.
61. M. E. Gordji, M. B. Savadkouhi and M. Bidkham, Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, Journal of Computational Analysis and Applications, 12(2010), No.2, 454-462.
62. M. E. Gordji, M. B. Savadkouhi and C. Park, Quadratic-quartic functional equations in RN-spaces, J. Ineq. Appl., 2009, Article ID 868423, 14 pages.
63. R. Farokhzad and S. A. R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Int. J. Nonlinear Anal. Appl. 1 (2010), No. 1, 42-53.
64. P. Gǎvruta and L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1 (2010), No. 2, 11-18.
65. H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010), No. 1, 22-41.
66. H. Khodaei and M. Kamyar, Fuzzy approximately additive mappings, Int. J. Nonlinear Anal. Appl., 1 (2010), No.2, 44-53.
67. C. Park, M. Eshaghi Gordji, Comment on pproximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010); doi:10.1063/1.3299295 (7 pages).
68. C. Park and A. Najati, Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl., 1(2010), No. 2, 54-62.
69. C. Park and Th.M. Rassias, Isomorphisms in unital C^{*}-algebras, Int. J. Nonlinear Anal. Appl., 1 (2010), No.2, 1-10.
70. S. Shakeri, R. Saadati and C. Park, Stability of the quadratic functional equation in non-Archimedean \mathcal{L}-fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1 (2010), No.2, 72-83.

[^0]: Received September 6, 2010 and in revised form October 5, 2010.
 AMS Subject Classification: Primary 39B52; Secondary 39B82, 46B99, 17A40.
 Key words and phrases: Hyers-Ulam stability, quaternary algebra, n-ary algebra, quaternary Jordan derivation.

