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Abstract

The representation theory of the symmetric groups is intimately related to geometry,

algebraic combinatorics, and Lie theory. The spin representation theory of the symmetric

groups was originally developed by Schur. In these lecture notes, we present a coherent ac-

count of the spin counterparts of several classical constructions such as the Frobenius char-

acteristic map, Schur duality, the coinvariant algebra, Kostka polynomials, and Young’s

seminormal form.

1. Introduction

1.1. The representation theory of symmetric groups has many connections

and applications in geometry, combinatorics and Lie theory. The following

classical constructions in representation theory of symmetric groups over the

complex field C are well known:

(1) The characteristic map and symmetric functions

(2) Schur duality

(3) The coinvariant algebra

(4) Kostka numbers and Kostka polynomials

(5) Seminormal form representations and Jucys-Murphy elements
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(1) and (2) originated in the work of Frobenius and Schur, (3) was developed

by Chevalley (see also Steinberg [35], Lusztig [20], and Kirillov [15]). The

Kostka polynomials in (4) have striking combinatorial, geometric and repre-

sentation theoretic interpretations, due to Lascoux, Schützenberger, Lusztig,

Brylinski, Garsia and Procesi [19, 21, 2, 7]. Young’s seminormal form con-

struction of irreducible modules of symmetric groups has been redone by

Okounkov and Vershik [24] using Jucys-Murphy elements.

Motivated by projective (i.e., spin) representation theory of finite groups

and in particular of symmetric groups Sn, Schur [31] introduced a double

cover S̃n of Sn:

1 −→ Z2 −→ S̃n −→ Sn −→ 1.

Let us write Z2 = {1, z}. The spin representation theory of Sn, or equiva-

lently, the representation theory of the spin group algebra CS−
n = CS̃n/〈z+

1〉, has been systematically developed by Schur (see Józefiak [12] for an ex-

cellent modern exposition via a superalgebra approach; also see Stembridge

[36]).

The goal of these lecture notes is to provide a systematic account of

the spin counterparts of the classical constructions (1)-(5) above over C.

Somewhat surprisingly, several of these spin analogues have been developed

only very recently (see for example [41]). It is our hope that these notes will

be accessible to people working in algebraic combinatorics who are interested

in representation theory and to people in super representation theory who

are interested in applications.

In addition to the topics (1)-(5), there are spin counterparts of several

classical basic topics which are not covered in these lecture notes for lack

of time and space: the Robinson-Schensted-Knuth correspondence (due to

Sagan and Worley [30, 44]; also see [8] for connections to crystal basis); the

plactic monoid (Serrano [34]); Young symmetrizers [23, 33]; Hecke algebras

[25, 10, 42, 43]. We refer an interested reader to these papers and the

references therein for details.

Let us explain the contents of the lecture notes section by section.

1.2. In Section 2, we explain how Schur’s original motivation of studying

the projective representations of the symmetric groups leads one to study

the representations of the spin symmetric group algebras. It has become
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increasingly well known (cf. [13, 33, 36, 45] and [18, Chap. 13]) that the

representation theory of spin symmetric group (super)algebra CS−
n is super-

equivalent to its counterpart for Hecke-Clifford (super)algebra Hn = Cln ⋊

CSn. We shall explain such a super-equivalence in detail, and then we

mainly work with the algebra Hn, keeping in mind that the results can be

transferred to the setting for CS−
n . We review the basics on superalgebras

as needed.

The Hecke-Clifford superalgebra Hn is identified as a quotient of the

group algebra of a double cover B̃n of the hyperoctahedral group Bn, and

this allows us to apply various standard finite group constructions to the

study of representation theory of Hn. In particular, the split conjugacy

classes for B̃n (due to Read [27]) are classified.

1.3. It is well known that the Frobenius characteristic map serves as a

bridge to relate the representation theory of symmetric groups to the theory

of symmetric functions.

In Section 3, the direct sum R− of the Grothendieck groups of Hn-

mod for all n is shown to carry a graded algebra structure and a bilinear

form. Following Józefiak [13], we formulate a spin version of the Frobenius

characteristic map

ch− : R− −→ ΓQ

and establish its main properties, where ΓQ is the ring of symmetric functions

generated by the odd power-sums. It turns out that the Schur Q-functions

Qξ associated to strict partitions ξ play the role of Schur functions, and up

to some 2-powers, they correspond to the irreducible Hn-modules Dξ.

1.4. The classical Schur duality relates the representation theory of the

general linear Lie algebras and that of the symmetric groups.

In Section 4, we explain in detail the Schur-Sergeev duality as formulated

concisely in [32]. A double centralizer theorem for the actions of q(n) and the

Hecke-Clifford algebra Hd on the tensor superspace (Cn|n)⊗d is established,

and this leads to an explicit multiplicity-free decomposition of the tensor

superspace as a U(q(n))⊗Hd-module. As a consequence, a character formula

for the simple q(n)-modules appearing in the tensor superspace is derived in

terms of Schur Q-functions. A more detailed exposition on materials covered

in Sections 3 and 4 can be found in [5, Chapter 3].
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1.5. The symmetric group Sn acts on V = Cn and then on the symmetric

algebra S∗V naturally. A closed formula for the graded multiplicity of a

Specht module Sλ for a partition λ of n in the graded algebra S∗V in different

forms has been well known (see Steinberg [35], Lusztig [20] and Kirillov [15]).

More generally, Kirillov and Pak [16] obtained the bi-graded multiplicity of

the Specht module Sλ for any λ in S∗V ⊗ ∧∗V (see Theorem 5.4), where

∧∗V denotes the exterior algebra. We give a new proof here by relating this

bi-graded multiplicity to a 2-parameter specialization of the super Schur

functions.

In Section 5, we formulate a spin analogue of the above graded multi-

plicity formulas. We present formulas with new proofs for the (bi)-graded

multiplicity of a simple Hn-module Dξ in Cln ⊗ S∗V,Cln ⊗ S∗V ⊗ ∧∗V and

Cln⊗S∗V ⊗S∗V in terms of various specializations of the Schur Q-function

Qξ(z). The case of Cln ⊗ S∗V ⊗ S∗V is new in this paper, while the other

two cases were due to the authors [40]. The shifted hook formula for the

principal specialization Qξ(1, t, t
2, . . .) of Qξ(z) was established by the au-

thors [40] with a bijection proof and in a different form by Rosengren [28]

based on formal Schur function identities. Here we present yet a third proof.

1.6. The Kostka numbers and Kostka(-Foulkes) polynomials are ubiquitous

in combinatorics, geometry, and representation theory. Kostka polynomials

have positive integer coefficients (see [19] for a combinatorial proof, and see

[7] for a geometric proof). Kostka polynomials also coincide with Lusztig’s

q-weight multiplicity in finite-dimensional irreducible representations of the

general linear Lie algebra [21, 14], and these are explained by a Brylinski-

Kostant filtration on the weight spaces [2]. More details can be found in the

book of Macdonald [22] and the survey paper [6].

In Section 6, following a very recent work of the authors [41], we formu-

late a notion of spin Kostka polynomials, and establish their main properties

including the integrality and positivity as well as interpretations in terms of

representations of the Hecke-Clifford algebras and the queer Lie superalge-

bras. The graded multiplicities in the spin coinvariant algebra described in

Section 5 are shown to be special cases of spin Kostka polynomials. Our

constructions naturally give rise to formulations of the notions of spin Hall-

Littlewood functions and spin Macdonald polynomials.
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1.7. By studying the action of the Jucys-Murphy elements on the irre-

ducible Sn-modules, Okounkov and Vershik [24] developed a new approach

to the representation theory of symmetric groups. In their approach, one

can see the natural appearance of Young diagrams and standard tableaux,

and obtain in the end Young’s seminormal form. A similar construction for

the degenerate affine Hecke algebra associated to Sn has been obtained by

Cherednik, Ram and Ruff [4, 26, 29].

In Section 7, we explain a recent approach to Young’s seminormal form

construction for the (affine) Hecke-Clifford algebra. The affine Hecke-Clifford

algebra Haff
n introduced by Nazarov [23] provides a natural general frame-

work for Hn. Following the independent works of Hill, Kujawa and Sussan

[9] and the first author [39], we classify and construct the irreducible Haff
n -

modules on which the polynomial generators in Haff
n act semisimply. A sur-

jective homomorphism fromHaff
n toHn allows one to pass the results forHaff

n

to Hn, and in this way we obtain Young’s seminormal form for irreducible

Hn-modules. This recovers a construction of Nazarov [23] and the main re-

sult of Vershik-Sergeev [38] who followed more closely Okounkov-Vershik’s

approach.

2. Spin Symmetric Groups and Hecke-Clifford Algebra

In this section, we formulate an equivalence between the spin representa-

tion theory of the symmetric group Sn and the representation theory of the

Hecke-Clifford algebra Hn. The algebra Hn is then identified as a twisted

group algebra for a distinguished double cover B̃n of the hyperoctahedral

group Bn. We classify the split conjugacy classes of B̃n and show that the

number of simple Hn-modules is equal to the number of strict partitions of

n.

2.1. From spin symmetric groups to Hn

The symmetric group Sn is generated by the simple reflections si =

(i, i+ 1), 1 ≤ i, j ≤ n− 1, subject to the Coxeter relations:

s2i = 1, sisj = sjsi, sisi+1si = si+1sisi+1, |i− j| > 1. (2.1)



96 J. WAN AND W. WANG [March

One of Schur’s original motivations is the study of projective represen-

tations V of Sn, which are homomorphisms Sn → PGL(V ) := GL(V )/C∗

(see [31]). By a sequence of analysis and deduction, Schur showed the study

of projective representation theory (RT for short) of Sn is equivalent to the

study of (linear) representation theory of a double cover S̃n:

Projective RT of Sn ⇔ (Linear) RT of S̃n

A double cover S̃n means the following short exact sequence of groups

(nonsplit for n ≥ 4):

1 −→ {1, z} −→ S̃n
πn−→ Sn −→ 1.

The quotient algebra CS−
n = CS̃n/〈z+1〉 by the ideal generated by (z+1)

is call the spin symmetric group algebra. The algebra CS−
n is an algebra

generated by t1, t2, . . . , tn−1 subject to the relations:

t2i = 1, titi+1ti = ti+1titi+1, titj = −tjti, |i− j| > 1.

(A presentation for the group S̃n can be obtained from the above formulas

by keeping the first two relations and replacing the third one by titj = ztjti.)

CS−
n is naturally a super (i.e., Z2-graded) algebra with each ti being odd,

for 1 ≤ i ≤ n− 1.

By Schur’s lemma, the central element z acts as ±1 on a simple S̃n-

module. Hence we see that

RT of S̃n ⇔ RT of Sn

⊕
RT of CS−

n

Schur then developed systematically the spin representation theory of Sn

(i.e., the representation theory of CS−
n ). We refer to Józefiak [12] for an

excellent modern exposition based on the superalgebra approach.

The development since late 1980’s by several authors shows that the

representation theory of CS−
n is “super-equivalent” to the representation

theory of a so-called Hecke-Clifford algebra Hn:

RT of CS−
n ⇔ RT of Hn (2.2)

We will formulate this super-equivalence precisely in the next subsections.
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2.2. A digression on superalgebras

By a vector superspace we mean a Z2-graded space V = V0̄ ⊕ V1̄. A

superalgebra A = A0̄ ⊕A1̄ satisfies Ai ·Aj ⊆ Ai+j for i, j ∈ Z2. By an ideal

I and a moduleM of a superalgebraA in these lecture notes, we always mean

that I andM are Z2-graded, i.e., I = (I∩A0̄)⊕ (I ∩A1̄), andM =M0̄⊕M1̄

such that AiMj ⊆ Mi+j for i, j ∈ Z2. For a superalgebra A, we let A-mod

denote the category of A-modules (with morphisms of degree one allowed).

This superalgebra approach handles “self-associated and associates of simple

modules” simultaneously in a conceptual way. There is a parity reversing

functor Π on the category of vector superspaces (or module category of a

superalgebra): for a vector superspace V = V0̄ ⊕ V1̄, we let

Π(V ) = Π(V )0̄ ⊕Π(V )1̄, Π(V )i = Vi+1̄,∀i ∈ Z2.

Clearly, Π2 = I.

Given a vector superspace V with both even and odd subspaces of equal

dimension and given an odd automorphism P of V of order 2, we define the

following subalgebra of the endomorphism superalgebra End(V ):

Q(V ) = {x ∈ End(V ) | x and P super-commute}.

In case when V = Cn|n and P is the linear transformation in the block

matrix form

√
−1

(
0 In

−In 0

)
,

we write Q(V ) as Q(n), which consists of 2n× 2n matrices of the form:

(
a b

b a

)
,

where a and b are arbitrary n × n matrices, for n ≥ 0. Note that we have

a superalgebra isomorphism Q(V ) ∼= Q(n) by properly choosing coordinates

in V , whenever dimV = n|n. A proof of the following theorem can be found

in Józefiak [11] or [5, Chapter 3].

Theorem 2.1 (Wall). There are exactly two types of finite-dimensional sim-

ple associative superalgebras over C: (1) the matrix superalgebra M(m|n),



98 J. WAN AND W. WANG [March

which is naturally isomorphic to the endomorphism superalgebra of Cm|n;

(2) the superalgebra Q(n).

The basic results of finite-dimensional semisimple (unital associative)

algebras over C have natural super generalizations (cf. [11]). The proof is

standard.

Theorem 2.2 (SuperWedderburn’s Theorem). A finite-dimensional semisim-

ple superalgebra A is isomorphic to a direct sum of simple superalgebras:

A ∼=
m⊕

i=1

M(ri|si)⊕
q⊕

j=1

Q(nj).

A simple A-module V is annihilated by all but one such summand. We

say V is of type M if this summand is of the form M(ri|si) and of type Q if

this summand is of the form Q(nj). In particular, Cr|s is a simple module

of the superalgebra M(r|s) of type M, and Cn|n is a simple module of the

superalgebra Q(n). These two types of simple modules are distinguished by

the following super analogue of Schur’s Lemma (see [11], [5, Chapter 3] for

a proof).

Lemma 2.3 (Super Schur’s Lemma). If M and L are simple modules over

a finite-dimensional superalgebra A, then

dimHomA(M,L) =





1 if M ∼= L is of type M,

2 if M ∼= L is of type Q,

0 if M 6∼= L.

Remark 2.4. It can be shown (cf. [11]) that a simple module of type M

as an ungraded module remains to be simple (which is sometimes referred

to as “self-associated” in literature), and a simple module of type Q as an

ungraded module is a direct sum of a pair of nonisomorphic simples (such

pairs are referred to as “associates” in literature).

Given two associative superalgebras A and B, the tensor product A⊗B

is naturally a superalgebra, with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)|b|·|a
′|(aa′)⊗ (bb′) (a, a′ ∈ A, b, b′ ∈ B).



2012] LECTURES ON SPIN REPRESENTATION THEORY 99

If V is an irreducible A-module and W is an irreducible B-module,

V ⊗W may not be irreducible (cf. [11], [3], [18, Lemma 12.2.13]).

Lemma 2.5. Let V be an irreducible A-module and W be an irreducible

B-module.

(1) If both V and W are of type M, then V ⊗W is an irreducible A⊗B-module

of type M.

(2) If one of V or W is of type M and the other is of type Q, then V ⊗W is

an irreducible A⊗B-module of type Q.

(3) If both V and W are of type Q, then V ⊗W ∼= X ⊕ ΠX for a type M

irreducible A⊗B-module X.

Moreover, all irreducible A⊗B-modules arise as components of V ⊗W for

some choice of irreducibles V,W .

If V is an irreducible A-module and W is an irreducible B-module,

denote by V ⊛W an irreducible component of V ⊗W . Thus,

V ⊗W =

{
V ⊛W ⊕Π(V ⊛W ), if both V and W are of type Q,

V ⊛W, otherwise .

Example 2.6. The Clifford algebra Cln is the C-algebra generated by ci(1 ≤
i ≤ n), subject to relations

c2i = 1, cicj = −cjci (i 6= j). (2.3)

Note that Cln is a superalgebra with each generator ci being odd, and

dimCln = 2n.

For n = 2k even, Cln is isomorphic to a simple matrix superalgebra

M(2k−1|2k−1). This can be seen by constructing an isomorphism Cl2 ∼=
M(1|1) directly via Pauli matrices, and then using the superalgebra isomor-

phism

Cl2k = Cl2 ⊗ . . .⊗ Cl2︸ ︷︷ ︸
k

.

Note that Cl1 ∼= Q(1). For n = 2k + 1 odd, we have superalgebra isomor-

phisms:

Cln ∼= Cl1 ⊗ Cl2k ∼= Q(1)⊗M(2k−1|2k−1) ∼= Q(2k).
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So Cln is always a simple superalgebra, of type M for n even and of type

Q for n odd. The fundamental fact that there are two types of complex

Clifford algebras is a key to Bott’s reciprocity.

2.3. A Morita super-equivalence

The symmetric group Sn acts as automorphisms on the Clifford algebra

Cln naturally by permuting the generators ci. We will refer to the semi-direct

product Hn := Cln ⋊CSn as the Hecke-Clifford algebra, where

sici = ci+1si, sici+1 = cisi, sicj = cjsi, j 6= i, i+ 1. (2.4)

Equivalently, σci = cσ(i)σ, for all 1 ≤ i ≤ n and σ ∈ Sn. The algebra Hn is

naturally a superalgebra by letting each σ ∈ Sn be even and each ci be odd.

Now let us make precise the super-equivalence (2.2).

By a direct computation, there is a superalgebra isomorphism (cf. [32,

45]):

CS−
n ⊗ Cln −→ Hn

ci 7→ ci, 1 ≤ i ≤ n,

tj 7→
1√
−2

sj(cj − cj+1), 1 ≤ j ≤ n− 1.

(2.5)

By Example 2.6, Cln is a simple superalgebra. Hence, there is a unique

(up to isomorphism) irreducible Cln-module Un, of type M for n even and of

type Q for n odd. We have dimUn = 2k for n = 2k or n = 2k − 1. Then the

two exact functors

Fn := −⊗ Un : CS−
n -mod → Hn-mod,

Gn := HomCln(Un,−) : Hn-mod → CS−
n -mod

define a Morita super-equivalence between the superalgebras Hn and CS−
n

in the following sense.

Lemma 2.7. [3, Lemma 9.9] [18, Proposition 13.2.2]
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(1) Suppose that n is even. Then the two functors Fn and Gn are equiva-

lences of categories with

Fn ◦Gn
∼= id, Gn ◦ Fn

∼= id.

(2) Suppose that n is odd. Then

Fn ◦Gn
∼= id⊕Π, Gn ◦ Fn

∼= id⊕Π.

Remark 2.8. The superalgebra isomorphism (2.5) and the Morita super-

equivalence in Lemma 2.7 have a natural generalization to any finite Weyl

group; see Khongsap-Wang [17] (and the symmetric group case here is re-

garded as a type A case).

The group B̃n and the algebra Hn

Let Πn be the finite group generated by ai (i = 1, . . . , n) and the central

element z subject to the relations

a2i = 1, z2 = 1, aiaj = zajai (i 6= j). (2.6)

The symmetric group Sn acts on Πn by σ(ai) = aσ(i), σ ∈ Sn. The semidi-

rect product B̃n := Πn⋊Sn admits a natural finite group structure and will

be called the twisted hyperoctahedral group. Explicitly the multiplication in

B̃n is given by

(a, σ)(a′, σ′) = (aσ(a′), σσ′), a, a′ ∈ Πn, σ, σ
′ ∈ Sn.

Since Πn/{1, z} ≃ Zn
2 , the group B̃n is a double cover of the hyperocta-

hedral group Bn := Zn
2 ⋊Sn, and the order |B̃n| is 2n+1n!. That is, we have

a short exact sequence of groups

1 −→ {1, z} −→ B̃n
θn−→ Bn −→ 1, (2.7)

with θn(ai) = bi, where bi is the generator of the ith copy of Z2 in Bn. We

define a Z2-grading on the group B̃n by setting the degree of each ai to

be 1 and the degree of elements in Sn to be 0. The group Bn inherits a

Z2-grading from B̃n via the homomorphism θn.
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The quotient algebra CΠn/〈z + 1〉 is isomorphic to the Clifford algebra

Cln with the identification āi = ci, 1 ≤ i ≤ n. Hence we have a superalgebra

isomorphism:

CB̃n/〈z + 1〉 ∼= Hn. (2.8)

A B̃n-module on which z acts as −1 is called a spin B̃n-module. As a

consequence of the isomorphism (2.8), we have the following equivalence:

RT of Hn ⇔ Spin RT of B̃n

2.5. The split conjugacy classes for Bn

Recall for a finite group G, the number of simple G-modules coincides

with the number of conjugacy classes of G. The finite group Bn and its

double cover B̃n defined in (2.7) are naturally Z2-graded. Since elements in

a given conjugacy class of Bn share the same parity (Z2-grading), it makes

sense to talk about even and odd conjugacy classes of Bn (and B̃n). One

can show by using the Super Wedderburn’s Theorem 2.2 that the number of

simple B̃n-modules coincides with the number of even conjugacy classes of

B̃n.

For a conjugacy class C of Bn, θ
−1
n (C) is either a single conjugacy class

of B̃n or it splits into two conjugacy classes of B̃n; in the latter case, C is

called a split conjugacy class, and either conjugacy class in θ−1
n (C) will also

be called split. An element x ∈ Bn is called split if the conjugacy class of x

is split. If we denote θ−1
n (x) = {x̃, zx̃}, then x is split if and only if x̃ is not

conjugate to zx̃. By analyzing the structure of the even center of CB̃n using

the Super Wedderburn’s Theorem 2.2 and noting that CB̃n
∼= CBn ⊕ Hn,

one can show the following [11] (also see [5, Chapter 3]).

Proposition 2.9. (1) The number of simple Hn-modules equals the number

of even split conjugacy classes of Bn.

(2) The number of simple Hn-modules of type Q equals the number of odd

split conjugacy classes of Bn.
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Denote by P the set of all partitions and by Pn the set of partitions of

n. We denote by SPn the set of all strict partitions of n, and by OPn the set

of all odd partitions of n. Moreover, we denote

SP =
⋃

n≥0

SPn, OP =
⋃

n≥0

OPn,

and denote

SP
+
n = {λ ∈ SPn | ℓ(λ) is even},

SP
−
n = {λ ∈ SPn | ℓ(λ) is odd}.

The conjugacy classes of the group Bn (a special case of a wreath prod-

uct) can be described as follows, cf. Macdonald [22, I, Appendix B]. Given

a cycle t = (i1, . . . , im), we call the set {i1, . . . , im} the support of t, denoted

by supp(t). The subgroup Zn
2 of Bn consists of elements bI :=

∏
i∈I bi for

I ⊂ {1, . . . , n}. Each element bIσ ∈ Bn can be written as a product (unique

up to reordering) bIσ = (bI1σ1)(bI2σ2) . . . (bIkσk), where σ ∈ Sn is a product

of disjoint cycles σ = σ1 . . . σk, and Ia ⊂ supp(σa) for each 1 ≤ a ≤ k. The

cycle-product of each bIaσa is defined to be the element
∏

i∈Ia
bi ∈ Z2 (which

can be conveniently thought as a sign ±). Let m+
i (respectively, m−

i ) be the

number of i-cycles of bIσ with associated cycle-product being the identity

(respectively, the non-identity). Then ρ+ = (im
+
i )i≥1 and ρ− = (im

−
i )i≥1 are

partitions such that |ρ+|+ |ρ−| = n. The pair of partitions (ρ+, ρ−) will be

called the type of the element bIσ.

The basic fact on the conjugacy classes of Bn is that two elements of Bn

are conjugate if and only if their types are the same.

Example 2.10. Let τ = (1, 2, 3, 4)(5, 6, 7)(8, 9), σ = (1, 3, 8, 6)(2, 7, 9)(4, 5) ∈
S10. Both x = ((+,+,+,−,+,+,+,−,+,−), τ) and y = ((+,−,−,−,+,−,

−,−,+,−), σ) in B10 have the same type (ρ+, ρ−) = ((3), (4, 2, 1)). Then x

is conjugate to y in B10.

The even and odd split conjugacy classes of Bn are classified by Read

[27] as follows. The proof relies on an elementary yet lengthy case-by-case

analysis on conjugation, and it will be skipped (see [5, Chapter 3] for detail).

Theorem 2.11 ([27]). The conjugacy class Cρ+,ρ− in Bn splits if and only

if
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(1) For even Cρ+,ρ−, we have ρ+ ∈ OPn and ρ− = ∅;
(2) For odd Cρ+,ρ−, we have ρ+ = ∅ and ρ− ∈ SP

−
n .

For α ∈ OPn we let C+
α be the split conjugacy class in B̃n which lies in

θ−1
n (Cα,∅) and contains a permutation in Sn of cycle type α. Then zC+

α is the

other conjugacy class in θ−1
n (Cα,∅), which will be denoted by C−

α . By (2.8)

and Proposition 2.9, we can construct a (square) character table (ϕα)ϕ,α

for Hn whose rows are simple Hn-characters ϕ or equivalently, simple spin

B̃n-characters (with Z2-grading implicitly assumed), and whose columns are

even split conjugacy classes C+
α for α ∈ OPn.

Recall the Euler identity that |SPn| = |OPn|. By Proposition 2.9 and

Theorem 2.11, we have the following.

Corollary 2.12. The number of simple Hn-modules equals |SPn|. More

precisely, the number of simple Hn-modules of type M equals |SP+
n | and the

number of simple Hn-modules of type Q equals |SP−
n |.

3. The (spin) Characteristic Map

In this section, we develop systematically the representation theory of

Hn after a quick review of the Frobenius characteristic map for Sn. Follow-

ing [13], we define a (spin) characteristic map using the character table for

the simple Hn-modules, and establish its main properties. We review the

relevant aspects of symmetric functions. The image of the irreducible char-

acters of Hn under the characteristic map are shown to be Schur Q-functions

up to some 2-powers.

3.1. The Frobenius characteristic map

The conjugacy classes of Sn are parameterized by partitions λ of n. Let

zλ =
∏

i≥1

imimi!

denote the order of the centralizer of an element in a conjugacy class of cycle

type λ.
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Let Rn := R(Sn) be the Grothendieck group of Sn-mod, which can be

identified with the Z-span of irreducible characters χλ of the Specht modules

Sλ for λ ∈ Pn. There is a bilinear form on Rn so that (χλ, χµ) = δλµ. This

induces a bilinear form on the direct sum

R =

∞⊕

n=0

Rn,

so that the Rn’s are orthogonal for different n. Here R0 = Z. In addition,

R is a graded ring with multiplication given by fg = Ind
Sm+n

Sm×Sn
(f ⊗ g) for

f ∈ Rm and g ∈ Rn.

Denote by Λ the ring of symmetric functions in infinitely many variables,

which is the Z-span of the monomial symmetric functions mλ for λ ∈ P.

There is a standard bilinear form (·, ·) on Λ such that the Schur functions sλ

form an orthonormal basis for Λ. The ring Λ admits several distinguished

bases: the complete homogeneous symmetric functions {hλ}, the elementary

symmetric functions {eλ}, and the power-sum symmetric functions {pλ}. See
[22].

The (Frobenius) characteristic map ch : R→ Λ is defined by

ch(χ) =
∑

µ∈Pn

z−1
µ χµpµ, (3.1)

where χµ denotes the character value of χ at a permutation of cycle type

µ. Denote by 1n and sgnn the trivial and the sign module/character of Sn,

respectively. It is well known that

• ch is an isomorphism of graded rings.

• ch is an isometry.

• ch(1n) = hn, ch(sgnn) = en, ch(χλ) = sλ.

Moreover, the following holds for any composition µ of n:

ch
(
indCSn

CSµ
1n

)
= hµ, (3.2)

where Sµ = Sµ1 ×Sµ2 × · · · denotes the associated Young subgroup.
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We record the Cauchy identity for later use (cf. [22, I, §4])
∑

µ∈P

mµ(y)hµ(z) =
∏

i,j

1

1− yizj
=
∑

λ∈P

sλ(y)sλ(z). (3.3)

3.2. The basic spin module

The exterior algebra Cln is naturally an Hn-module (called the basic

spin module) where the action is given by

ci.(ci1ci2 . . .) = cici1ci2 . . . , σ.(ci1ci2 . . .) = cσ(i1)cσ(i2) . . . ,

for σ ∈ Sn. Let σ = σ1 . . . σℓ ∈ Sn be a cycle decomposition with cycle

length of σi being µi. If I is a union of some of the supp(σi)’s, say I =

supp(σi1) ∪ . . . ∪ supp(σis), then σ(cI) = (−1)µi1
+...+µis−scI . Otherwise,

σ(cI) is not a scalar multiple of cI . This observation quickly leads to the

following.

Lemma 3.1. The value of the character ξn of the basic spin Hn-module at

the conjugacy class C+
α is given by

ξnα = 2ℓ(α), α ∈ OPn. (3.4)

The basic spin module of Hn should be regarded as the spin analogue

of the trivial/sign modules of Sn.

3.3. The ring R−

Thanks to the superalgebra isomorphism (2.8), Hn-mod is equivalent

to the category of spin B̃n-modules. We shall not distinguish these two

isomorphic categories below, and the latter one has the advantage that one

can apply the standard arguments from the theory of finite groups directly

as we have seen in Section 2. Denote by R−
n the Grothendieck group of

Hn-mod. As in the usual (ungraded) case, we may replace the isoclasses of

modules by their characters, and then regard R−
n as the free abelian group
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with a basis consisting of the characters of the simple Hn-modules. It follows

by Corollary 2.12 that the rank of R−
n is |SPn|. Let

R− :=

∞⊕

n=0

R−
n , R−

Q :=

∞⊕

n=0

Q⊗Z R
−
n ,

where it is understood that R−
0 = Z.

We shall define a ring structure on R− as follows. Let Hm,n be the

subalgebra of Hm+n generated by Clm+n and Sm ×Sn. For M ∈ Hm-mod

and N ∈ Hn-mod, M ⊗N is naturally an Hm,n-module, and we define the

product

[M ] · [N ] = [Hm+n ⊗Hm,n (M ⊗N)],

and then extend by Z-bilinearity. It follows from the properties of the in-

duced characters that the multiplication on R− is commutative and associa-

tive.

Given spin B̃n-modules M,N , we define a bilinear form on R and so on

RQ by letting

〈M,N〉 = dimHom
B̃n

(M,N). (3.5)

3.4. The Schur Q-functions

The materials in this subsection are pretty standard (cf. [22, 12] and [5,

Appendix A]). Recall pr is the rth power sum symmetric function, and for a

partition µ = (µ1, µ2, . . .) we define pµ = pµ1pµ2 · · · . Let x = {x1, x2, . . .} be

a set of indeterminates. Define a family of symmetric functions qr = qr(x),

r ≥ 0, via a generating function

Q(t) :=
∑

r≥0

qr(x)t
r =

∏

i

1 + txi
1− txi

. (3.6)

It follows from (3.6) that

Q(t) = exp
(
2

∑

r≥1,r odd

prt
r

r

)
.
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Componentwise, we have

qn =
∑

α∈OPn

2ℓ(α)z−1
α pα. (3.7)

Note that q0 = 1, and that Q(t) satisfies the relation

Q(t)Q(−t) = 1, (3.8)

which is equivalent to the identities:

∑

r+s=n

(−1)rqrqs = 0, n ≥ 1.

These identities are vacuous for n odd. When n = 2m is even, we obtain

that

q2m =

m−1∑

r=1

(−1)r−1qrq2m−r −
1

2
(−1)mq2m. (3.9)

Let Γ be the Z-subring of Λ generated by the qr’s:

Γ = Z[q1, q2, q3, . . .].

The ring Γ is graded by the degree of functions: Γ =
⊕

n≥0 Γ
n. We set

ΓQ = Q⊗Z Γ. For any partition µ = (µ1, µ2, . . .), we define

qµ = qµ1qµ2 . . . .

Theorem 3.2. The following holds for Γ and ΓQ:

(1) ΓQ is a polynomial algebra with polynomial generators p2r−1 for r ≥ 1.

(2) {pµ | µ ∈ OP} forms a linear basis for ΓQ.

(3) {qµ | µ ∈ OP} forms a linear basis for ΓQ.

(4) {qµ | µ ∈ SP} forms a Z-basis for Γ.

Proof. By clearing the denominator of the identity

Q′(t)

Q(t)
= 2

∑

r≥0

p2r+1t
2r,
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we deduce that

rqr = 2(p1qr−1 + p3qr−3 + . . .).

By using induction on r, we conclude that (i) each qr is expressible as a

polynomial in terms of ps’s with odd s; (ii) each pr with odd r is expressible

as a polynomial in terms of qs’s, which can be further restricted to the odd s.

So, ΓQ = Q[p1, p3, . . .] = Q[q1, q3, . . .], and from this (1), (2) and (3) follow.

To prove (4), it suffices to show that, for any partition λ,

qλ =
∑

µ∈SP,µ≥λ

aµλqµ,

for some aµλ ∈ Z. This can be seen by induction downward on the dormi-

nance order on λ with the help of (3.9). ���

We shall define the Schur Q-functions Qλ, for λ ∈ SP. Let

Q(n) = qn, n ≥ 0.

Consider the generating function

Q(t1, t2) := (Q(t1)Q(t2)− 1)
t1 − t2
t1 + t2

.

By (3.8), Q(t1, t2) is a power series in t1 and t2, and we write

Q(t1, t2) =
∑

r,s≥0

Q(r,s)t
r
1t

s
2.

Noting Q(t1, t2) = −Q(t2, t1), we have Q(r,s) = −Q(s,r), Q(r,0) = qr. In

addition,

Q(r,s) = qrqs + 2
s∑

i=1

(−1)iqr+iqs−i, r > s.

For a strict partition λ = (λ1, . . . , λm), we define the Schur Q-function

Qλ recursively as follows:

Qλ =

m∑

j=2

(−1)jQ(λ1,λj)Q(λ2,...,λ̂j ,...,λm), for m even,
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Qλ =

m∑

j=1

(−1)j−1Qλj
Q(λ1,...,λ̂j ,...,λm), for m odd.

Note that the Qλ above is simply the Laplacian expansion of the pfaffian of

the skew-symmetric matrix (Q(λi,λj)) when m is even (possibly λm = 0).

It follows from the recursive definition of Qλ and (3.9) that, for λ ∈ SPn,

Qλ = qλ +
∑

µ∈SPn,µ>λ

dλµqµ,

for some dλµ ∈ Z. From this and Theorem 3.2 we further deduce the follow-

ing.

Theorem 3.3. The Qλ for all strict partitions λ form a Z-basis for Γ.

Moreover, for any composition µ of n, we have

qµ =
∑

λ∈SPn,λ≥µ

K̂λµQλ,

where K̂λµ ∈ Z and K̂λλ = 1.

Let x = {x1, x2, . . .} and y = {y1, y2, . . .} be two independent sets of

variables. We have by (3.6) that

∏

i,j

1 + xiyj
1− xiyj

=
∑

α∈OP

2ℓ(α)z−1
α pα(x)pα(y). (3.10)

We define an inner product 〈·, ·〉 on ΓQ by letting

〈pα, pβ〉 = 2−ℓ(α)zαδαβ . (3.11)

Theorem 3.4. We have

〈Qλ, Qµ〉 = 2ℓ(λ)δλµ, λ, µ ∈ SP.

Moreover, the following Cauchy identity holds:

∏

i,j

1 + xiyj
1− xiyj

=
∑

λ∈SP

2−ℓ(λ)Qλ(x)Qλ(y).
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We will skip the proof of Theorem 3.4 and make some comments only.

The two statements therein can be seen to be equivalent in light of (3.10) and

(3.11). One possible proof of the first statement following from the theory

of Hall-Littlewood functions [22], and another direct proof is also available

[12]. The second statement would follow easily once the shifted Robinson-

Schensted-Knuth correspondence is developed (cf. [30, Corollary 8.3]).

3.5. The characteristic map

We define the (spin) characteristic map

ch− : R−
Q −→ ΓQ

to be the linear map given by

ch−(ϕ) =
∑

α∈OPn

z−1
α ϕαpα, ϕ ∈ R−

n . (3.12)

The following theorem is due to Józefiak [13] (see [5, Chapter 3] for an

exposition).

Theorem 3.5. [13]

(1) The characteristic map ch− : R−
Q → ΓQ is an isometry.

(2) The characteristic map ch− : R−
Q → ΓQ is an isomorphism of graded

algebras.

Sketch of a Proof. We first show that ch− is an isometry. Take ϕ,ψ ∈ R−
n .

Since ϕ is a character of a Z2-graded module, we have the character value

ϕα = 0 for α 6∈ OPn. We can reformulate the bilinear form (3.5) using the

standard bilinear form formula on characters of the finite group B̃n as

〈ϕ,ψ〉 =
∑

α∈OPn

2−ℓ(α)z−1
α ϕαψα,

which can be seen using (3.11) to be equal to 〈ch−(ϕ), ch−(ψ)〉.
Next, we show that ch− is a homomorphism of graded algebras. For

φ ∈ R−
m, ψ ∈ R−

n and γ ∈ OPm+n, we obtain a standard induced character
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formula for (φ · ψ)γ evaluated at a conjugacy class C+
γ . This together with

the definition of ch− imply that

ch−(φ · ψ) =
∑

γ∈OP

z−1
γ (φ · ψ)γpγ

=
∑

γ

∑

α,β∈OP,α∪β=γ

z−1
γ

zγ
zαzβ

φαψβpγ = ch−(φ)ch−(ψ).

Recalling the definition of ch− and the basic spin character ξn, it follows

by (3.7) and Lemma 3.1 that ch−(ξn) = qn. Since qn for n ≥ 1 generate the

algebra ΓQ by Theorem 3.2, ch− is surjective. Then ch− is an isomorphism of

graded vector spaces by the following comparison of the graded dimensions

(cf. Corollary 2.12 and Theorem 3.2):

dimq R
−
Q =

∏

r≥1

(1 + qr) = dimq ΓQ.

This completes the proof of the theorem. ���

Recall from the proof above that ch−(ξn) = qn. Regarding ξ
(n) = ξn, we

define ξλ for λ ∈ SP using the same recurrence relations for the Schur Q-

functions Qλ. Then by Theorem 3.5, ch−(ξλ) = Qλ, and 〈ξλ, ξµ〉 = 2ℓ(λ)δλµ,

for λ, µ ∈ SP.

For a partition λ with length ℓ(λ), we set

δ(λ) =

{
0, if ℓ(λ) is even,

1, if ℓ(λ) is odd.
(3.13)

By chasing the recurrence relation more closely, we can show by induction

on ℓ(λ) that the element

ζλ := 2−
ℓ(λ)−δ(λ)

2 ξλ

lies in R−, for λ ∈ SPn. Note that

ch−(ζλ) = 2−
ℓ(λ)−δ(λ)

2 Qλ. (3.14)
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It follows that, for each λ ∈ SPn,

Qλ = 2
ℓ(λ)−δ(λ)

2

∑

α∈OPn

z−1
α ζλαpα.

Given µ ∈ Pn, let us denote Hµ := Hµ1 ⊗ Hµ2 ⊗ · · · , and recall the

Young subgroup Sµ of Sn. The induced Hn-module

Mµ := Hn ⊗CSµ 1n

will be called a permutation module of Hn. By the transitivity of the tensor

product, it can be rewritten as

Mµ = Hn ⊗Hµ (Clµ1 ⊗ Clµ2 ⊗ · · · ).

Since ch−(ξn) = qn and ch− is an algebra homomorphism, we obtain that

ch−(Mµ) = qµ. (3.15)

Theorem 3.6 ([13]). The set of characters ζλ for λ ∈ SPn is a complete

list of pairwise non-isomorphic simple (super) characters of Hn. Moreover,

the degree of ζλ is equal to 2n−
ℓ(λ)−δ(λ)

2 gλ, where

gλ =
n!

λ1! . . . λℓ!

∏

i<j

λi − λj
λi + λj

.

Sketch of a Proof. For strict partitions λ, µ, we have

〈ζλ, ζλ〉 =

{
1 for ℓ(λ) even,

2 for ℓ(λ) odd,
(3.16)

〈ζλ, ζµ〉 = 0, for λ 6= µ.

From this and Corollary 2.12, it is not difficult to see that either ζλ or −ζλ
is a simple (super) character, first for λ with ℓ(λ) even and then for λ with

ℓ(λ) odd.

To show that ζλ instead of −ζλ is a character of a simple module, it

suffices to know that the degree of ζλ is positive. The degree formula can be
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established by induction on ℓ(λ) (see the proof of [12, Proposition 4.13] for

detail). ���

We shall denote by Dλ the irreducible Hn-module whose character is

ζλ, for λ ∈ SPn. The following is an immediate consequence of Theorem 3.3,

(3.14), and (3.15).

Proposition 3.7. Let µ be a composition of d. We have the following de-

composition of Mµ as an Hd-module:

Mµ ∼=
⊕

λ∈SP,λ≥µ

2
ℓ(λ)−δ(λ)

2 K̂λµD
λ,

where K̂λµ ∈ Z+.

4. The Schur-Sergeev Duality

In this section, we formulate a double centralizer property for the ac-

tions of the Lie superalgebra q(n) and of the algebra Hd on the tensor super-

space (Cn|n)⊗d. We obtain a multiplicity-free decomposition of (Cn|n)⊗d as

a U(q(n)) ⊗Hd-module. The characters of the simple q(n)-modules arising

this way are shown to be Schur Q-functions (up to some 2-powers).

4.1. The classical Schur duality

Let us first recall a general double centralizer property. We reproduce

a proof below which can be easily adapted to the superalgebra setting later

on.

Proposition 4.1. Suppose that W is a finite-dimensional vector space, and

B is a semisimple subalgebra of End(W ). Let A = EndB(W ). Then,

EndA(W ) = B.

As an A⊗B-module, W is multiplicity-free, i.e.,

W ∼=
⊕

i

Ui ⊗ Vi,

where {Ui} are pairwise non-isomorphic simple A-modules and {Vi} are pair-

wise non-isomorphic simple B-modules.
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Proof. Assume that Va are all the pairwise non-isomorphic simple B-

modules. Then the Hom-spaces Ua := HomB(Va,W ) are naturallyA-modules.

By the semisimplicity assumption on B, we have a B-module isomorphism:

W ∼=
⊕

a

Ua ⊗ Va.

By applying Schur’s Lemma, we obtain

A = EndB(W ) ∼=
⊕

a

EndB(Ua ⊗ Va) ∼=
⊕

a

End(Ua)⊗ idVa .

Hence A is semisimple and Ua are all the pairwise non-isomorphic simple

A-modules.

Since A is now semisimple, we can reverse the roles of A and B in the

above computation of EndB(W ), and obtain the following isomorphism:

EndA(W ) ∼=
⊕

a

idUa ⊗ End(Va) ∼= B.

The proposition is proved. ���

The natural action of gl(n) on Cn induces a representation (ωd, (C
n)⊗d)

of the general linear Lie algebra gl(n), and we have a representation (ψd,

(Cn)⊗d) of the symmetric group Sd by permutations of the tensor factors.

Theorem 4.2 (Schur duality). The images ωd(U(gl(n))) and ψd(CSd) sat-

isfy the double centralizer property, i.e.,

ωd(U(gl(n))) =EndCSd
((Cn)⊗d),

Endgl(n)((C
n)⊗d) =ψd(CSd).

Moreover, as a gl(n)×Sd-module,

(Cn)⊗d ∼=
⊕

λ∈Pd,ℓ(λ)≤n

L(λ)⊗ Sλ, (4.1)

where L(λ) denotes the irreducible gl(n)-module of highest weight λ.

We will skip the proof of the Schur duality here, as it is similar to a

detailed proof below for its super analogue (Theorems 4.7 and 4.8).
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As an application of the Schur duality, let us derive the character formula

for chL(λ) = trxE11
1 xE22

2 · · · xEnn
n |L(λ), where as usual Eii denotes the matrix

whose (i, i)th entry is 1 and zero else.

Denote by CPd(n) the set of compositions of d of length ≤ n. Set

W = (Cn)⊗d. Given µ ∈ CPd(n), let Wµ indicate the µ-weight space of W .

Observe that Wµ has a linear basis

ei1 ⊗ . . .⊗ eid , with {i1, . . . , id} = {1, . . . , 1︸ ︷︷ ︸
µ1

, . . . , n, . . . , n︸ ︷︷ ︸
µn

}. (4.2)

On the other hand, Sn acts on the basis (4.2) of Wµ transitively, and the

stablizer of the basis element eµ1
1 ⊗ · · · ⊗ eµn

n is the Young subgroup Sµ.

Therefore we have Wµ
∼= IndSd

Sµ
1d and hence

W ∼=
⊕

µ∈CPd(n)

Wµ
∼=

⊕

µ∈CPd(n)

IndSd
Sµ

1d. (4.3)

This and (4.1) imply that

⊕

µ∈CPd(n)

IndSd
Sµ

1d
∼=

⊕

λ∈Pd,ℓ(λ)≤n

L(λ)⊗ Sλ.

Applying the trace operator trxE11
1 xE22

2 · · · xEnn
n and the Frobenius charac-

teristc map ch to both sides of the above isomorphism and summing over d,

we obtain

∑

µ∈P,ℓ(µ)≤n

mµ(x1, . . . , xn)hµ(z) =
∑

λ∈P,ℓ(λ)≤n

chL(λ)sλ(z),

where z = {z1, z2, . . .} is infinite. Then using the Cauchy identity (3.3)

and noting the linear independence of the sλ(z)’s, we recover the following

well-known character formula:

chL(λ) = sλ(x1, x2, . . . , xn). (4.4)

4.2. The queer Lie superalgebras

The associative superalgebra Q(n) (defined in Section 2.2) equipped
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with the super-commutator is called the queer Lie superalgebra and denoted

by q(n). Let

I(n|n) = {1̄, . . . , n̄, 1, . . . , n}.

The q(n) can be explicitly realized as matrices in the n|n block form, indexed

by I(n|n):
(
a b

b a

)
, (4.5)

where a and b are arbitrary n×nmatrices. The even (respectively, odd) part

g0̄ (respectively, g1̄) of g = q(n) consists of those matrices of the form (4.5)

with b = 0 (respectively, a = 0). Denote by Eij for i, j ∈ I(n|n) the standard
elementary matrix with the (i, j)th entry being 1 and zero elsewhere.

The standard Cartan subalgebra h = h0̄ ⊕ h1̄ of g consists of matrices

of the form (4.5) with a, b being arbitrary diagonal matrices. Noting that

[h0̄, h] = 0 and [h1̄, h1̄] = h0̄, the Lie superalgebra h is not abelian. The

vectors

Hi := Ei,i +Eii, i = 1, . . . , n,

is a basis for the h0̄. We let {ǫi|i = 1, . . . , n} denote the corresponding

dual basis in h∗
0̄
. With respect to h0̄ we have the root space decomposition

g = h ⊕⊕α∈Φ gα with roots {ǫi − ǫj|1 ≤ i 6= j ≤ n}. For each root α we

have dimC(gα)i = 1, for i ∈ Z2. The system of positive roots corresponding

to the Borel subalgebra b consisting of matrices of the form (4.5) with a, b

upper triangular is given by {ǫi − ǫj |1 ≤ i < j ≤ n}.

The Cartan subalgebra h = h0̄⊕h1̄ is a solvable Lie superalgebra, and its

irreducible representations are described as follows. Let λ ∈ h∗
0̄
and consider

the symmetric bilinear form 〈·, ·〉λ on h1̄ defined by

〈v,w〉λ := λ([v,w]).

Denote by Rad〈·, ·〉λ the radical of the form 〈·, ·〉λ. Then the form 〈·, ·〉λ
descends to a nondegenerate symmetric bilinear form on h1̄/Rad〈·, ·〉λ, and
it gives rise to a Clifford superalgebra Clλ := Cl(h1̄/Rad〈·, ·〉λ). By definition
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we have an isomorphism of superalgebras

Clλ ∼= U(h)/Iλ,

where Iλ denotes the ideal of U(h) generated by Rad〈·, ·〉λ and a− λ(a) for

a ∈ h0̄.

Let h′
1̄
⊆ h1̄ be a maximal isotropic subspace and consider the subalgebra

h′ = h0̄ ⊕ h′
1̄
. Clearly the one-dimensional h0̄-module Cvλ, defined by hvλ =

λ(h)vλ, extends trivially to h′. Set

Wλ := Indhh′Cvλ.

We see that the action of h factors through Clλ so that Wλ becomes the

unique irreducible Clλ-module and hence is independent of the choice of h′
1̄
.

The following can now be easily verified.

Lemma 4.3. For λ ∈ h∗
0̄
, Wλ is an irreducible h-module. Furthermore,

every finite-dimensional irreducible h-module is isomorphic to some Wλ.

Let V be a finite-dimensional irreducible g-module and let Wµ be an

irreducible h-submodule of V . For every v ∈Wµ we have hv = µ(h)v, for all

h ∈ h0̄. Let α be a positive root with associated root vectors eα and eα in

n+ satisfying degeα = 0̄ and degeα = 1̄. Then the space CeαWµ + CeαWµ

is an h-module on which h0̄ transforms by the character µ + α. Thus by

the finite dimensionality of V there exists λ ∈ h∗
0̄
and an irreducible h-

module Wλ ⊆ V such that n+Wλ = 0. By the irreducibility of V we must

have U(n−)Wλ = V , which gives rise to a weight space decomposition of

V =
⊕

µ∈h∗
0̄
Vµ. The space Wλ = Vλ is the highest weight space of V , and it

completely determines the irreducible module V . We denote V by V (λ).

Let ℓ(λ) be the dimension of space h1̄/Rad〈·, ·〉λ, which equals the num-

ber of i such that λ(Hi) 6= 0. Then the highest weight space Wλ of V (λ)

has dimension 2(ℓ(λ)+δ(λ))/2 . It is easy to see that the h-module Wλ has an

odd automorphism if and only if ℓ(λ) is an odd integer. An automorphism

of the irreducible g-module V (λ) clearly induces an h-module automorphism

of its highest weight space. Conversely, any h-module automorphism on

Wλ induces an automorphism of the g-module IndgbWλ. Since an automor-

phism preserves the maximal submodule, it induces an automorphism of the
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unique irreducible quotient g-module. Summarizing, we have established the

following.

Lemma 4.4. Let g = q(n), and h be a Cartan subalgebra of g. Let λ ∈ h∗
0̄

and V (λ) be an irreducible g-module of highest weight λ. We have

dimEndg(V (λ)) =

{
1, if ℓ(λ) is even,

2, if ℓ(λ) is odd.

4.3. The Sergeev duality

In this subsection, we give a detailed exposition (also see [5, Chapter 3])

on the results of Sergeev [32].

Set V = Cn|n. We have a representation (Ωd, V
⊗d) of gl(n|n), hence

of its subalgebra q(n), and we also have a representation (Ψd, V
⊗d) of the

symmetric group Sd defined by

Ψd(si).(v1 ⊗ . . .⊗ vi ⊗ vi+1 ⊗ . . . ⊗ vd)

= (−1)|vi|·|vi+1|v1 ⊗ . . .⊗ vi+1 ⊗ vi ⊗ . . .⊗ vd,

where si = (i, i + 1) is the simple reflection and vi, vi+1 ∈ V are Z2-

homogeneous. Moreover, the actions of gl(n|n) and the symmetric group

Sd on V ⊗d commute with each other. Note in addition that the Clifford

algebra Cld acts on V ⊗d, also denoted by Ψd:

Ψd(ci).(v1 ⊗ . . .⊗ vd) = (−1)(|v1|+...+|vi−1|)v1 ⊗ . . .⊗ vi−1 ⊗ Pvi ⊗ . . .⊗ vd,

where vi ∈ V is assumed to be Z2-homogeneous and 1 ≤ i ≤ n.

Lemma 4.5. Let V = Cn|n. The actions of Sd and Cld above give rise to

a representation (Ψd, V
⊗d) of Hd. Moreover, the actions of q(n) and Hd on

V ⊗d super-commute with each other.

Symbolically, we write

q(n)
Ωd
y V ⊗d Ψd

x Hd.
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Proof. It is straightforward to check that the actions of Sd and Cld on V ⊗d

are compatible and they give rise to an action of Hd. By the definition of

q(n) and the definition of Ψd(ci) via P , the action of q(n) (super)commutes

with the action of ci for 1 ≤ i ≤ d. Since gl(n|n) (super)commutes with Sd,

so does the subalgebra q(n) of gl(n|n). Hence, the action of q(n) commutes

with the action of Hd on V ⊗d. ���

Let us digress on the double centralizer property for superalgebras in

general. Note the superalgebra isomorphism

Q(m)⊗Q(n) ∼=M(mn|mn).

Hence, as a Q(m)⊗Q(n)-module, the tensor product Cm|m⊗Cn|n is a direct

sum of two isomorphic copies of a simple module (which is ∼= Cmn|mn), and

we have HomQ(n)(C
n|n,Cmn|mn) ∼= Cm|m as a Q(m)-module. Let A and B

be two semisimple superalgebras. Let M be a simple A-module of type Q

and let N be a simple B-module of type Q. Then, by Lemma 2.5, the A⊗B-

supermodule M ⊗ N is a direct sum of two isomorphic copies of a simple

moduleM⊛N of type M, and we shall writeM⊛N = 2−1M⊗N ; Moreover,

HomB(N, 2
−1M ⊗N) is naturally an A-module, which is isomorphic to the

A-module M . The usual double centralizer property Proposition 4.1 affords

the following superalgebra generalization (with essentially the same proof

once we keep in mind the Super Schur’s Lemma 2.3).

Proposition 4.6. Suppose that W is a finite-dimensional vector superspace,

and B is a semisimple subalgebra of End(W ). Let A = EndB(W ). Then,

EndA(W ) = B.

As an A⊗B-module, W is multiplicity-free, i.e.,

W ∼=
⊕

i

2−δiUi ⊗ Vi,

where δi ∈ {0, 1}, {Ui} are pairwise non-isomorphic simple A-modules, {Vi}
are pairwise non-isomorphic simple B-modules. Moreover, Ui and Vi are of

same type, and they are of type M if and only if δi = 0.

Theorem 4.7 (Sergeev duality I). The images Ωd(U(q(n))) and Ψd(Hd)

satisfy the double centralizer property, i.e.,

Ωd(U(q(n))) =EndHd
(V ⊗d),
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Endq(n)(V
⊗d) = Ψd(Hd).

Proof. Write g = q(n). We will denote by Q(V ) the associative subalgebra

of endomorphisms on V which super-commute with the linear operator P .

By Lemma 4.5, we have Ωd(U(g)) ⊆ EndHd
(V ⊗d).

We shall proceed to prove that Ωd(U(g)) ⊇ EndHd
(V ⊗d). By examining

the actions of Cld on V ⊗d, we see that the natural isomorphism End(V )⊗d ∼=
End(V ⊗d) allows us to identify EndCld(V

⊗d) ≡ Q(V )⊗d. As we recall Hd =

Cld⋊Sd, this further leads to the identification EndHd
(V ⊗d) ≡ Symd(Q(V )),

the space of Sd-invariants in Q(V )⊗d.

Denote by Yk, 1 ≤ k ≤ d, the C-span of the supersymmetrization

ω(x1, . . . , xk) :=
∑

σ∈Sd

σ.(x1 ⊗ . . . ⊗ xk ⊗ 1d−k),

for all xi ∈ Q(V ). Note that Yd = Symd(Q(V )) ≡ EndHd
(V ⊗d).

Let x̃ = Ω(x) =
∑d

i=1 1
i−1 ⊗ x⊗ 1d−i, for x ∈ g = Q(V ), and denote by

Xk, 1 ≤ k ≤ d, the C-span of x̃1 . . . x̃k for all xi ∈ q(n).

Claim. We have Yk ⊆ Xk for 1 ≤ k ≤ d.

Assuming the claim, we have Ωd(U(g)) = EndHd
(V ⊗d) = EndB(V

⊗d),

forB := Ψd(Hd). Note that the algebraHd, and hence also B, are semisimple

superalgebras, and so the assumption of Proposition 4.6 is satisfied. There-

fore, we have EndU(g)(V
⊗d) = Ψd(Hd).

It remains to prove the Claim by induction on k. The case k = 1 holds,

thanks to ω(x) = (d− 1)!x̃.

Assume that Yk−1 ⊆ Xk−1. Note that ω(x1, . . . , xk−1) · x̃k ∈ Xk. On

the other hand, we have

ω(x1, . . . , xk−1) · x̃k
=
∑

σ∈Sd

σ.(x1 ⊗ . . .⊗ xk−1 ⊗ 1d−k+1) · x̃k

=

d∑

j=1

∑

σ∈Sd

σ.
(
(x1 ⊗ . . .⊗ xk−1 ⊗ 1d−k+1) · (1j−1 ⊗ xk ⊗ 1d−j)

)
,
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which can be written as a sum A1 +A2, where

A1 =
k−1∑

j=1

ω(x1, . . . , xjxk, . . . , xk−1) ∈ Yk−1,

and

A2 =
d∑

j=k

∑

σ∈Sd

σ.(x1 ⊗ . . .⊗ xk−1 ⊗ 1j−k ⊗ xk ⊗ 1d−j)

= (d− k + 1)ω(x1, . . . , xk−1, xk).

Note that A1 ∈ Xk, since Yk−1 ⊆ Xk−1 ⊆ Xk. Hence, A2 ∈ Xk, and so,

Yk ⊆ Xk. This proves the claim and hence the theorem. ���

Theorem 4.8 (Sergeev duality II). Let V = Cn|n. As a U(q(n)) ⊗ Hd-

module, we have

V ⊗d ∼=
⊕

λ∈SPd,ℓ(λ)≤n

2−δ(λ)V (λ)⊗Dλ. (4.6)

Proof. Let W = V ⊗d. It follows from the double centralizer property and

the semisimplicity of the superalgebra Hd that we have a multiplicity-free

decomposition of the (q(n),Hd)-module W :

W ∼=
⊕

λ∈Qd(n)

2−δ(λ)V [λ] ⊗Dλ,

where V [λ] is some simple q(n)-module associated to λ, whose highest weight

(with respect to the standard Borel) is to be determined. Also to be deter-

mined is the index set Qd(n) = {λ ∈ SPd | V [λ] 6= 0}.

We shall identify as usual a weight µ =
∑n

i=1 µiεi occuring in W with a

composition µ = (µ1, . . . , µn) ∈ CPd(n). We have the following weight space

decomposition:

W =
⊕

µ∈CPd(n)

Wµ, (4.7)

where Wµ has a linear basis ei1 ⊗ . . . ⊗ eid , with the indices satisfying the
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following equality of sets:

{|i1|, . . . , |id|} = {1, . . . , 1︸ ︷︷ ︸
µ1

, . . . , n, . . . , n︸ ︷︷ ︸
µn

}.

We have an Hd-module isomorphism:

Wµ
∼=Mµ, (4.8)

where we recall Mµ denotes the permutation Hd-moduleMµ = Hd⊗CSµ 1d.

It follows by Proposition 3.7 and (4.8) that V [λ] =
⊕

µ∈CPd(n),µ≤λ V
[λ]
µ ,

and hence, λ ∈ Pd(n) if V
[λ] 6= 0. Among all such µ, clearly λ corresponds to

a highest weight. Hence, we conclude that V [λ] = V (λ), the simple g-module

of highest weight λ, and that Qd(n) = {λ ∈ SPd | ℓ(λ) ≤ n}. This completes

the proof of Theorem 4.8. ���

4.4. The irreducible character formula for q(n)

A character of a q(n)-module with weight space decomposition M =

⊕Mµ is defined to be

tr xH1
1 . . . xHn

n |M =
∑

µ=(µ1,...,µn)

dimMµ · xµ1
1 . . . xµn

n .

Theorem 4.9. Let λ be a strict partition of length ≤ n. The character of

the simple q(n)-module V (λ) is given by

chV (λ) = 2−
ℓ(λ)−δ(λ)

2 Qλ(x1, . . . , xn).

Proof. By (4.7) and (4.8), we have

V ⊗d =
⊕

µ∈CPd(n)

IndHd
Sµ

1d.

Applying ch− and the trace operator tr xH1
1 . . . xHn

n to this decomposition of

V ⊗d simultaneously, which we will denote by ch2, we obtain that

∑

d

ch2(V ⊗d) =
∑

µ∈P,ℓ(µ)≤n

qµ(z)mµ(x)
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=
∏

1≤i≤n,1≤j

1 + xizj
1− xizj

=
∑

λ∈SP

2−ℓ(λ)Qλ(x1, . . . , xn)Qλ(z),

where the last equation is the Cauchy identity in Theorem 3.4 and the middle

equation can be verified directly.

On the other hand, by applying ch2 to (4.6) and using (3.14), we obtain

that
∑

d

ch2(V ⊗d) =
∑

λ∈SP,ℓ(λ)≤n

2−δ(λ)chV (λ) · 2−
ℓ(λ)−δ(λ)

2 Qλ(z).

Now the theorem follows by comparing the above two identities and noting

the linear independence of the Qλ(z)’s. ���

5. The Coinvariant Algebra and Generalizations

In this section, we formulate a graded regular representation for Hn,

which is a spin analogue of the coinvariant algebra for Sn. We also study

its generalizations which involve the symmetric algebra S∗Cn and the exte-

rior algebra ∧∗Cn. We solve the corresponding graded multiplicity problems

in terms of specializations of Schur Q-functions. In addition, a closed for-

mula for the principal specialization Qξ(1, t, t
2, . . .) of the Schur Q-function

is given.

5.1. A commutative diagram

Recall a homomorphism ϕ (cf. [22, III, §8, Example 10]) defined by

ϕ : Λ −→ Γ,

ϕ(pr) =

{
2pr, for r odd,

0, otherwise,
(5.1)

where pr denotes the rth power sum. Denote

H(t) =
∑

n≥0

hnt
n =

∏

i

1

1− xit
= exp

(∑

r≥1

prt
r

r

)
.
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Note that Q(t) from (3.6) can be rewritten as

Q(t) = exp
(
2

∑

r≥1,r odd

prt
r

r

)
,

and so we see that

ϕ
(
H(t)

)
= Q(t). (5.2)

Hence, we have ϕ(hn) = qn for all n ≥ 0, and

ϕ(hµ) = qµ, ∀µ ∈ P. (5.3)

Given an Sn-module M , the algebra Hn acts naturally on Cln ⊗ M ,

where Cln acts by left multiplication on the first factor and Sn acts diago-

nally. We have an isomorphism of Hn-modules:

Cln ⊗M ∼= IndHn
CSn

M. (5.4)

Following [41], we define a functor for n ≥ 0

Φn :Sn-mod −→ Hn-mod

Φn(M) = indHn
CSn

M.

Such a sequence {Φn} induces a Z-linear map on the Grothendieck group

level:

Φ : R −→ R−,

by letting Φ([M ]) = [Φn(M)] for M ∈ Sn-mod.

Recall that R carries a natural Hopf algebra structure with multiplica-

tion given by induction and comultiplication given by restriction [47]. In the

same fashion, we can define a Hopf algebra structure on R− by induction and

restriction. On the other hand, ΛQ
∼= Q[p1, p2, p3, . . .] is naturally a Hopf

algebra, where each pr is a primitive element, and ΓQ
∼= Q[p1, p3, p5, . . .] is

naturally a Hopf subalgebra of ΛQ. The characteristic map ch : RQ → ΛQ is

an isomorphism of Hopf algebras (cf. [47]). A similar argument easily shows

that the map ch− : R−
Q → ΓQ is an isomorphism of Hopf algebras.
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Proposition 5.1. [41] The map Φ : RQ → R−
Q is a homomorphism of Hopf

algebras. Moreover, we have the following commutative diagram of Hopf

algebras:

RQ
Φ−−−−→ R−

Q

ch

y∼= ch
−

y∼=

ΛQ
ϕ−−−−→ ΓQ

(5.5)

Proof.Using (3.2) and (5.3) we have

ϕ
(
ch(indCSn

CSµ
1n)
)
= qµ.

On the other hand, it follows by (3.15) that

ch−
(
Φ(indCSn

CSµ
1n)
)
= ch−(indHn

CSµ
1n) = qµ.

This establishes the commutative diagram on the level of linear maps, since

Rn has a basis given by the characters of the permutation modules indCSn
CSµ

1n

for µ ∈ Pn.

It can be verified easily that ϕ : ΛQ → ΓQ is a homomorphism of Hopf

algebras. Since both ch and ch− are isomorphisms of Hopf algebras, it follows

from the commutativity of (5.5) that Φ : RQ → R−
Q is a homomorphism of

Hopf algebras. ���

We shall use the commutation diagram (5.5) as a bridge to discuss spin

generalizations of some known constructions in the representation theory of

symmetric groups, such as the coinvariant algebras, Kostka polynomials, etc.

5.2. The coinvariant algebra for Sn

The symmetric group Sn acts on V = Cn and then on the symmetric

algebra S∗V, which is identified with C[x1, . . . , xn] naturally. It is well known

that the algebra of Sn-invariants on S
∗V , or equivalently C[x1, . . . , xn]

Sn , is

a polynomial algebra in e1, e2, . . . , en, where ei = ei[x1, . . . , xn] denotes the

ith elementary symmetric polynomial.
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For a partition λ = (λ1, λ2, . . .) of n, denote

n(λ) =
∑

i≥1

(i− 1)λi. (5.6)

We also denote by hij = λi + λ′j − i− j + 1 the hook length and cij = j − i

the content associated to a cell (i, j) in the Young diagram of λ.

Example 5.2. For λ = (4, 3, 1), the hook lengths are listed in the corre-

sponding cells as follows:

6 4 3 1
4 2 1
1

In this case, n(λ) = 5.

Denote by t• = (1, t, t2, . . .) for a formal variable t. We have the following

principal specialization of the rth power-sum:

pr(t
•) =

1

1− tr
.

The following well-known formula (cf. [22, I, §3, 2]) for the principal spe-

cialization of sλ can be proved in a multiple of ways:

sλ(t
•) =

tn(λ)∏
(i,j)∈λ(1− thij)

. (5.7)

Write formally

StV =
∑

j≥0

tj(SjV ).

Consider the graded multiplicity of a given Specht module Sλ for a partition

λ of n in the graded algebra S∗V , which is by definition

fλ(t) := dimHomSn(S
λ, StV ).

The coinvariant algebra of Sn is defined to be

(S∗V )Sn = S∗V/I,
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where I denotes the ideal generated by e1, . . . , en. By a classical theorem of

Chevalley (cf. [14]), we have an isomorphism of Sn-modules:

S∗V ∼= (S∗V )Sn ⊗ (S∗V )Sn . (5.8)

Define the polynomial

fλ(t) := dimHomSn(S
λ, (StV )Sn).

Closed formulas for fλ(t) and f
λ(t) in various forms have been well known

(cf. Steinberg [35], Lusztig [20], Kirillov [15]). Following Lusztig, fλ(t) is

called the fake degree in connection with Hecke algebras and finite groups

of Lie type. We will skip a proof of Theorem 5.3 below, as it can be read

off by specializing s = 0 in the proof of Theorem 5.4. Thanks to (5.8), the

formula (5.10) is equivalent to (5.9).

Theorem 5.3. The following formulas for the graded multiplicities hold:

fλ(t) =
tn(λ)∏

(i,j)∈λ(1− thij)
, (5.9)

fλ(t) =
tn(λ)(1− t)(1− t2) . . . (1− tn)∏

(i,j)∈λ(1− thij)
. (5.10)

Note that the dimension of the Specht module Sλ is given by the hook

formula

fλ(1) =
n!∏

(i,j)∈λ hij
.

Setting t 7→ 1 in (5.10) confirms that the coinvariant algebra (S∗V )Sn is a

regular representation of Sn.

5.3. The graded multiplicity in S∗V ⊗ ∧∗V and S∗V ⊗ S∗V

Recall that x = {x1, x2, . . .} and y = {y1, y2, . . .} are two independent

sets of variables. Recall a well-known formula relating Schur and skew Schur

functions: sλ(x, y) =
∑

ρ⊆λ sρ(x)sλ/ρ(y). For λ ∈ P, the super Schur function
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(also known as hook Schur function) hsλ(x; y) is defined as

hsλ(x; y) =
∑

ρ⊆λ

sρ(x)sλ′/ρ′(y). (5.11)

In other words, hsλ(x; y) = ωy(sλ(x, y)), where ωy is the standard involution

on the ring of symmetric functions in y. We refer to [5, Appendix A] for

more detail.

Since ωy(pr(y)) = (−1)r−1pr(y), pr(x; y) := ωy(pr(x, y)) for r ≥ 1 is

given by

pr(x; y) =
∑

i

xri −
∑

j

(−yj)r.

Applying ωy to the Cauchy identity (3.3) gives us

∑

λ∈P

sλ(z)hsλ(x; y) =

∏
j,k(1 + yjzk)∏
i,k(1− xizk)

. (5.12)

Let a, b be variables. The formula in [22, Chapter I, §3, 3] can be interpreted

as the specialization of hsλ(x; y) at x = at• and y = bt•:

hsλ(at
•; bt•) = tn(λ)

∏

(i,j)∈λ

a+ btcij

1− thij
. (5.13)

The Sn-action on V = Cn induces a natural Sn-action on the exterior

algebra

∧∗V =
n⊕

j=0

∧jV.

This gives rise to a Z+ × Z+ bi-graded CSn-module structure on

S∗V ⊗ ∧∗V =
⊕

i≥0,0≤j≤n

SiV ⊗ ∧jV.

Let s be a variable and write formally

∧sV =

n∑

j=0

sj(∧jV ).
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Let f̂λ(t, s) be the bi-graded multiplicity of the Specht module Sλ for λ ∈ Pn

in S∗V ⊗∧∗V , which is by definition

f̂λ(t, s) = dimHomSn(S
λ, StV ⊗ ∧sV ).

Theorem 5.4. Suppose λ ∈ Pn. Then

1. f̂λ(t, s) = hsλ(t
•; st•).

2. f̂λ(t, s) =
tn(λ)

∏
(i,j)∈λ(1+stcij )

∏
(i,j)∈λ(1−thij )

=
∏

(i,j)∈λ(t
i−1+stj−1)

∏
(i,j)∈λ(1−thij )

.

Formula (2) above in the second expression for f̂λ(t, s) was originally

established with a bijective proof by Kirillov-Pak [16], with (ti + stj) being

corrected as (ti−1 + stj−1) above. Our proof below is different, making clear

the connection with the specialization of super Schur functions.

Proof. It suffices to prove (1), as (2) follows from (5.13) and (1).

By the definition of f̂λ(t, s) and the characteristic map, we have

ch(StV ⊗ ∧sV ) = f̂λ(t, s)sλ(z). (5.14)

Take σ = (1, 2, . . . , µ1)(µ1 + 1, . . . , µ1 + µ2) · · · in Sn of type µ =

(µ1, µ2, . . . , µℓ) with ℓ = ℓ(µ). Note that σ permutes the monomial basis

for S∗V , and the monomials fixed by σ are of the form

(x1x2 . . . xµ1)
a1(xµ1+1 . . . xµ1+µ2)

a2 . . . (xµ1+...+µℓ−1+1 . . . xn)
aℓ ,

where a1 . . . , aℓ ∈ Z+. Let us denote by dx1 . . . , dxn the generators for ∧∗V .

Similarly, the exterior monomials fixed by σ up to a sign are of the form

(dx1dx2 . . . dxµ1)
b1(dxµ1+1 . . . dxµ1+µ2)

b2 . . . (dxµ1+...+µℓ−1+1 . . . dxn)
bℓ ,

where b1 . . . , bℓ ∈ {0, 1}. The sign here is (−1)
∑

i bi(µi−1).

From these we deduce that

trσ|StV⊗∧sV =
∑

a1,...,aℓ≥0,(b1,...,bℓ)∈Z
n
2

t
∑ℓ

i=1 aiµis
∑ℓ

i=1 biµi(−1)
∑

i bi(µi−1)

=
(1− (−s)µ1)(1− (−s)µ2) . . . (1− (−s)µℓ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
.
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We shall denote [un]g(u) the coefficient of un in a power series expansion of

g(u). Applying the characteristic map ch, we obtain that

ch(StV ⊗ ∧sV ) (5.15)

=
∑

µ∈Pn

z−1
µ

(1− (−s)µ1)(1 − (−s)µ2) . . . (1− (−s)µℓ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
pµ

= [un]
∑

µ∈P

z−1
µ u|µ|pµ(t

•; st•)pµ

= [un]
∏

j≥0

∏

i

1 + ustjzi
1− utjzi

=
∑

λ∈Pn

hsλ(t
•; st•)sλ(z),

where the last equation used the Cauchy identity (5.12). By comparing

(5.14) and (5.15), we have proved (1). ���

We can also consider the bi-graded multiplicity of Specht modules Sλ

for λ ∈ Pn in the CSn-module S∗V ⊗ S∗V , which by definition is

f̃λ(t, s) = dimHomSn(S
λ, StV ⊗ SsV ).

Theorem 5.5. [1] We have f̃λ(t, s) = sλ(t
•s•), for λ ∈ P, where t•s• indi-

cates the variables {tjsk | j, k ≥ 0}.

Proof. By the definition of f̃λ(t, s), we have

ch(StV ⊗ SsV ) = f̃λ(t, s)sλ(z). (5.16)

Arguing similarly as in the proof of Theorem 5.4, one deduces that

ch(StV ⊗ SsV ) (5.17)

=
∑

µ∈Pn

z−1
µ

1

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
· 1

(1− sµ1)(1− sµ2) . . . (1− sµℓ)
pµ

= [un]
∑

µ∈P

z−1
µ u|µ|pµ(t

•s•)pµ

= [un]
∏

j,k≥0

∏

i

1

1− utjskzi



132 J. WAN AND W. WANG [March

=
∑

λ∈Pn

sλ(t
•s•)sλ(z),

where the last equation used the Cauchy identity (3.3). The theorem is

proved by comparing (5.16) and (5.17). ���

Remark 5.6. By (5.8) and Theorem 5.5, the graded multiplicity of Sλ for

λ ∈ Pn in the Sn-module (S∗V )Sn⊗(S∗V )Sn is
∏n

r=1(1−tr)(1−sr)sλ(t•s•).
This recovers Bergeron-Lamontagne [1, Theorem 6.1 or (6.4)].

5.4. The spin coinvariant algebra for Hn

Suppose that the main diagonal of the Young diagram λ contains r cells.

Let αi = λi − i be the number of cells in the ith row of λ strictly to the

right of (i, i), and let βi = λ′i − i be the number of cells in the ith column of

λ strictly below (i, i), for 1 ≤ i ≤ r. We have α1 > α2 > · · · > αr ≥ 0 and

β1 > β2 > · · · > βr ≥ 0. Then the Frobenius notation for a partition is λ =

(α1, . . . , αr|β1, . . . , βr). For example, if λ = (5, 4, 3, 1) whose corresponding

Young diagram is

λ =

then α = (4, 2, 0), β = (3, 1, 0) and hence λ = (4, 2, 0|3, 1, 0) in Frobenius

notation.

Suppose that ξ is a strict partition of n. Let ξ∗ be the associated shifted

diagram, that is,

ξ∗ = {(i, j) | 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1}

which is obtained from the ordinary Young diagram by shifting the kth row

to the right by k − 1 squares, for each k. Denoting ℓ(ξ) = ℓ, we define

the double partition ξ̃ to be ξ̃ = (ξ1, . . . , ξℓ|ξ1 − 1, ξ2 − 1, . . . , ξℓ − 1) in

Frobenius notation. Clearly, the shifted diagram ξ∗ coincides with the part

of ξ̃ that lies above the main diagonal. For each cell (i, j) ∈ ξ∗, denote by

h∗ij the associated hook length in the Young diagram ξ̃, and set the content

cij = j − i.



2012] LECTURES ON SPIN REPRESENTATION THEORY 133

Example 5.7. Let ξ = (4, 3, 1). The corresponding shifted diagram ξ∗ and

double diagram ξ̃ are

ξ∗ = ξ̃ =

The contents of ξ are listed in the corresponding cell of ξ∗ as follows:

0 1 2 3
0 1 2

0

The shifted hook lengths for each cell in ξ∗ are the usual hook lengths for

the corresponding cell in ξ∗, as part of the double diagram ξ̃, as follows:

7 5 4 2
4 3 1

1

7 5 4 2
4 3 1

1

Since (S∗V )Sn is a regular representation of Sn, Cln ⊗ (S∗V )Sn is a

regular representation of Hn by (5.4). Denote by

dξ(t) = dimHomHn(D
ξ,Cln ⊗ StV ),

dξ(t) = dimHomHn(D
ξ,Cln ⊗ (StV )Sn).

The polynomial dξ(t) will be referred to as the spin fake degree of the simple

Hn-module Dξ, and it specializes to the degree of Dξ as t goes to 1. Note

dξ(t) = dξ(t)
∏n

r=1(1− tr).

Theorem 5.8 ([40]). Let ξ be a strict partition of n. Then

1. dξ(t) = 2−
ℓ(ξ)−δ(ξ)

2 Qξ(t
•).

2. dξ(t) = 2−
ℓ(ξ)−δ(ξ)

2 tn(ξ)
∏n

r=1(1−tr)
∏

(i,j)∈ξ∗ (1+tcij )
∏

(i,j)∈ξ∗ (1−t
h∗
ij )

.

Proof. Let us first prove (1). By Lemma 3.1, the value of the character

ξn of the basic spin Hn-module at an element σ ∈ Sn of cycle type µ ∈
OPn is ξnµ = 2ℓ(µ). When combining with the computation in the proof of



134 J. WAN AND W. WANG [March

Theorem 5.4, we have

trσ|Cln⊗StV =
2ℓ(µ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
.

Applying the characteristic map ch− : R− → ΓQ, we obtain that

ch−(Cln ⊗ StV ) =
∑

µ∈OPn

z−1
µ

2ℓ(µ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
pµ (5.18)

= [un]
∑

µ∈OP

2ℓ(µ)z−1
µ u|µ|pµ(t

•)pµ

= [un]
∏

m≥0

∏

i

1 + utmzi
1− utmzi

=
∑

λ∈SPn

2−ℓ(ξ)Qξ(t
•)Qξ(z),

where the last two equations used (3.10) and the Cauchy identity from The-

orem 3.4. It also follows by (3.14) and the definition of dξ(t) that

ch−(Cln ⊗ StV ) =
∑

ξ∈SPn

2−
ℓ(ξ)+δ(ξ)

2 dξ(t)Qξ(z).

Comparing these two different expressions for ch−(Cln⊗StV ) and noting

the linear independence of Qξ(z), we have proved (1). Part (2) follows by

(1) and applying Theorem 5.9 below. ���

Theorem 5.9. The following holds for any ξ ∈ SP:

Qξ(t
•) = tn(ξ)

∏

(i,j)∈ξ∗

1 + tcij

1− th
∗
ij

=
∏

(i,j)∈ξ∗

ti−1 + tj−1

1− th
∗
ij

.

Theorem 5.9 in a different form was proved by Rosengren [28] using

formal Schur function identities, and in the current form was proved in [40,

Section 2] by setting up a bijection between marked shifted tableaux and

new combinatorial objects called colored shifted tableaux. The following

new proof follows an approach suggested by a referee of [40].

Proof. Recall the homomorphism ϕ : Λ → Γ from (5.1). For λ ∈ P, let
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Sλ ∈ Γ be the determinant (cf. [22, III, §8, 7(a)])

Sλ = det(qλi−i+j).

It follows by the Jacobi-Trudi identity for sλ and (5.3) that

ϕ(sλ) = Sλ. (5.19)

Applying ϕ to the Cauchy identity (3.3) and using (5.2) with t = zi, we

obtain that
∏

i,j≥1

1 + xizj
1− xizj

=
∑

λ∈P

sλ(z)Sλ(x). (5.20)

This together with (5.12) implies that

Sλ(x) = hsλ(x;x). (5.21)

Recall the definition of the double diagram ξ̃ from Section 5.4. It follows

from [46, Theorem 3] (cf. [22, III, §8, 10]) that

ϕ(s
ξ̃
) = 2−ℓ(ξ)Q2

ξ , ∀ξ ∈ SPn,

and hence by (5.19) we have

Q2
ξ = 2ℓ(ξ)S

ξ̃
, ∀ξ ∈ SPn. (5.22)

By (5.13) and (5.21), we have

S
ξ̃
(t•) = tn(ξ̃)

∏

(i,j)∈ξ̃

1 + tcij

1− thij
=
∏

(i,j)∈ξ̃

ti−1 + tj−1

1− thij
. (5.23)

Let ℓ = ℓ(ξ). Denote by Hr the rth hook which consists of the cells

below or to the right of a given cell (r, r) on the diagonal of ξ̃ (including

(r, r)). For a fixed r, we have

∏

(i,j)∈Hr

(ti−1 + tj−1) =
(tr−1 + tξr+r−1)

tr−1 + tr−1

∏

r≤j≤ξr+r−1

(tr−1 + tj−1)2
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=
1 + tξr

2

∏

(r,j)∈ξ∗

(tr−1 + tj−1)2.

Hence,

∏

(i,j)∈ξ̃

(ti−1 + tj−1) =
∏

1≤r≤ℓ

∏

(i,j)∈Hr

(ti−1 + tj−1) (5.24)

= 2−ℓ
ℓ∏

r=1

(1 + tξr)
∏

(i,j)∈ξ∗

(ti−1 + tj−1)2.

On the other hand, for a fixed i, the hook lengths hij for (i, j) ∈ ξ̃ with

j > i are exactly the hook lengths h∗ij for (i, j) ∈ ξ∗, which are 1, 2, . . . , ξi, ξi+

ξi+1, ξi+ξi+2, . . . , ξi+ξℓ with exception ξi−ξi+1, ξi−ξi+2, . . . , ξi−ξℓ (cf. [22,
III, §8, 12]). Meanwhile, one can deduce that the hook lengths hki for (k, i) ∈
ξ̃ with k ≥ i for a given i are 1, 2, . . . , ξi−1, 2ξi, ξi+ ξi+1, ξi+ ξi+2, . . . , ξi+ ξℓ

with exception ξi − ξi+1, ξi − ξi+2, . . . , ξi − ξℓ. This means

∏

(i,j)∈ξ̃

(1− thij) =
∏

(i,j)∈ξ∗

(1− th
∗
ij)2

ℓ∏

i=1

1− t2ξi

1− tξi
=

∏

(i,j)∈ξ∗

(1− th
∗
ij)2

ℓ∏

i=1

(1+ tξi).

(5.25)

Now the theorem follows from (5.22), (5.23), (5.24), and (5.25). ���

Remark 5.10. The formulas in Theorem 5.8 appear to differ by a factor

2δ(ξ) from [40, Theorem A] because of a different formulation due to the type

Q phenomenon.

5.5. The graded multiplicity in Cln⊗S∗V ⊗∧∗V and Cln⊗S∗V ⊗S∗V

Similarly, we can consider the multiplicity of Dξ for ξ ∈ SPn in the

bi-graded Hn-modules Cln ⊗ S∗V ⊗ ∧∗V and Cln ⊗ S∗V ⊗ S∗V , and let

d̂ξ(t, s) = dimHomHn(D
ξ,Cln ⊗ StV ⊗ ∧sV ),

d̃ξ(t, s) = dimHomHn(D
ξ,Cln ⊗ StV ⊗ SsV ).

Theorem 5.11. Suppose ξ ∈ SPn. Then
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(1) d̂ξ(t, s) = 2−
ℓ(λ)−δ(λ)

2 Qξ(t
•, st•).

(2) d̃ξ(t, s) = 2−
ℓ(λ)−δ(λ)

2 Qξ(t
•s•).

Part (1) here is [40, Theorem C] with a different proof, while (2) is new.

Proof. By Lemma 3.1 and the computation at the beginning of the proof

of Theorem 5.4, we have

trσ|Cln⊗StV⊗∧sV = 2ℓ(µ) · (1− (−s)µ1)(1− (−s)µ2) . . . (1− (−s)µℓ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
,

for any σ ∈ Sn of cycle type µ = (µ1, µ2, . . .) ∈ OPn. Applying the charac-

teristic map ch− : R− → ΓQ, we obtain that

ch−(Cln ⊗ StV ⊗ ∧sV )

=
∑

µ∈OPn

z−1
µ

2ℓ(µ)(1− (−s)µ1)(1 − (−s)µ2) . . . (1− (−s)µℓ)

(1− tµ1)(1− tµ2) . . . (1− tµℓ)
pµ

= [un]
∑

µ∈OP

2ℓ(µ)z−1
µ u|µ|pµ(t

•; st•)pµ

= [un]
∏

j≥0

∏

i

1 + utjzi
1− utjzi

1 + ustjzi
1− ustjzi

=
∑

λ∈SPn

2−ℓ(ξ)Qξ(t
•, st•)Qξ(z), (5.26)

where the last two equalities used (3.10) and Cauchy identity from Theo-

rem 3.4. It follows by (3.14) and the definition of d̂ξ(t, s) that

ch−(Cln ⊗ StV ⊗ ∧sV ) =
∑

ξ∈SPn

2−
ℓ(ξ)+δ(ξ)

2 d̂ξ(t, s)Qξ(z).

Comparing these two different expressions for ch−(Cln ⊗ StV ⊗ ∧sV ) and

noting the linear independence of the Qξ(z)’s, we prove (1).

Using a similar argument, one can verify (2) with the calculation of the

character values of S∗V ⊗ S∗V in the proof of Theorem 5.5 at hand. ���

Remark 5.12. It will be interesting to find closed formulas for sλ(t
•s•) and

Qξ(t
•, st•).
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6. Spin Kostka polynomials

In this section, following our very recent work [41] we introduce the spin

Kostka polynomials, and show that the spin Kostka polynomials enjoy fa-

vorable properties parallel to the Kostka polynomials. Two interpretations

of the spin Kostka polynomials in terms of graded multiplicities in the rep-

resentation theory of Hecke-Clifford algebras and q-weight multiplicity for

the queer Lie superalgebras are presented.

6.1. The ubiquitous Kostka polynomials

For λ, µ ∈ P, let Kλµ be the Kostka number which counts the number

of semistandard tableaux of shape λ and weight µ. We write |λ| = n for

λ ∈ Pn. The dominance order on P is defined by letting

λ ≥ µ⇔ |λ| = |µ| and λ1 + . . .+ λi ≥ µ1 + . . .+ µi,∀i ≥ 1.

Let λ, µ ∈ P. The Kostka(-Foulkes) polynomial Kλµ(t) is defined by

sλ(x) =
∑

µ

Kλµ(t)Pµ(x; t), (6.1)

where Pµ(x; t) are the Hall-Littlewood functions (cf. [22, III, §2]). The

following is a summary of some main properties of the Kostka polynomials.

Theorem 6.1 (cf. [22](III, §6)). Suppose λ, µ ∈ Pn. Then the Kostka

polynomials Kλµ(t) satisfy the following properties:

(1) Kλµ(t) = 0 unless λ ≥ µ; Kλλ(t) = 1.

(2) The degree of Kλµ(t) is n(µ)− n(λ).

(3) Kλµ(t) is a polynomial with non-negative integer coefficients.

(4) Kλµ(1) = Kλµ.

(5) K(n)µ(t) = tn(µ).

(6) Kλ(1n) =
tn(λ

′)(1− t)(1− t2) · · · (1− tn)∏
(i,j)∈λ(1− thij)

.

Let B be the flag variety for the general linear group GLn(C). For a

partition µ of n, the Springer fiber Bµ is the subvariety of B consisting

of flags preserved by the Jordan canonical form Jµ of shape µ. According
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to the Springer theory, the cohomology group H•(Bµ) of Bµ with complex

coefficient affords a graded representation of Sn (which is the Weyl group

of GLn(C)). Define Cλµ(t) to be the graded multiplicity

Cλµ(t) =
∑

i≥0

ti HomSn(S
λ,H2i(Bµ)). (6.2)

Theorem 6.2 (cf. [22](III, 7, Ex. 8), [7](5.7)). The following holds for

λ, µ ∈ P:

Kλµ(t) = Cλµ(t
−1)tn(µ).

Denote by {ǫ1, . . . , ǫn} the basis dual to the standard basis {Eii | 1 ≤ i ≤
n} in the standard Cartan subalgebra of gl(n). For λ, µ ∈ P with ℓ(λ) ≤ n

and ℓ(µ) ≤ n, define the q-weight multiplicity of weight µ in an irreducible

gl(n)-module L(λ) to be

mλ
µ(t) = [eµ]

∏
α>0(1− e−α)∏
α>0(1− te−α)

chL(λ),

where the product
∏

α>0 is over all positive roots {ǫi − ǫj | 1 ≤ i < j ≤ n}
for gl(n) and [eµ]f(eǫ1 , . . . , eǫn) denotes the coefficient of the monomial eµ

in a formal series f(eǫ1 , . . . , eǫn). A conjecture of Lusztig proved by Sato

[14, 21] states that

Kλµ(t) = mλ
µ(t). (6.3)

Let e be a regular nilpotent element in the Lie algebra gl(n). For each µ ∈ P

with ℓ(µ) ≤ n, define the Brylinski-Kostant filtration {Jk
e (L(λ)µ)}k≥0 on the

µ-weight space L(λ)µ with

Jk
e (L(λ)µ) = {v ∈ L(λ)µ | ek+1v = 0}.

Define a polynomial γλµ(t) by letting

γλµ(t) =
∑

k≥0

(
dim Jk

e (L(λ)µ)/J
k−1
e (L(λ)µ)

)
tk.

The following theorem is due to R. Brylinski (see [2, Theorem 3.4] and

(6.3)).
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Theorem 6.3. Suppose λ, µ ∈ P with ℓ(λ) ≤ n and ℓ(µ) ≤ n. Then we have

Kλµ(t) = γλµ(t).

6.2. The spin Kostka polynomials

Denote by P′ the ordered alphabet {1′ < 1 < 2′ < 2 < 3′ < 3 · · · }. The
symbols 1′, 2′, 3′, . . . are said to be marked, and we shall denote by |a| the
unmarked version of any a ∈ P′; that is, |k′| = |k| = k for each k ∈ N. For a

strict partition ξ, a marked shifted tableau T of shape ξ, or a marked shifted

ξ-tableau T , is an assignment T : ξ∗ → P′ satisfying:

(M1) The letters are weakly increasing along each row and column.

(M2) The letters {1, 2, 3, . . .} are strictly increasing along each column.

(M3) The letters {1′, 2′, 3′, . . .} are strictly increasing along each row.

For a marked shifted tableau T of shape ξ, let αk be the number of cells

(i, j) ∈ ξ∗ such that |T (i, j)| = k for k ≥ 1. The sequence (α1, α2, α3, . . .)

is called the weight of T . The Schur Q-function associated to ξ can be

interpreted as (see [30, 36, 22])

Qξ(x) =
∑

T

xT ,

where the summation is taken over all marked shifted tableaux of shape ξ,

and xT = xα1
1 xα2

2 xα3
3 · · · if T has weight (α1, α2, α3, . . .). Set

K−
ξµ = #{T | T is a marked shifted tableau of shape ξ and weight µ}.

Then we have

Qξ(x) =
∑

µ

K−
ξµmµ(x), (6.4)

where K−
ξµ is related to K̂ξµ appearing in Theorem 3.3 by

K−
ξµ = 2ℓ(ξ)K̂ξµ.
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Definition 6.4. [41] The spin Kostka polynomials K−
ξµ(t) for ξ ∈ SP and

µ ∈ P are given by

Qξ(x) =
∑

µ

K−
ξµ(t)Pµ(x; t). (6.5)

For ξ ∈ SP, write

Qξ(x) =
∑

λ∈P

bξλsλ(x), (6.6)

for some suitable structure constants bξλ.

Proposition 6.5. The following holds for ξ ∈ SP and µ ∈ P:

K−
ξµ(t) =

∑

λ∈P

bξλKλµ(t).

Proof. By (6.1) and (6.6), one can deduce that

∑

µ

K−
ξµ(t)Pµ(x; t) =

∑

λ,µ∈Pn

bξλKλµ(t)Pµ(x; t).

The proposition now follows from the fact that the Hall-Littlewood functions

Pµ(x; t) are linearly independent in Z[t]⊗Z Λ. ���

The usual Kostka polynomial satisfies that Kλµ(0) = δλµ. It follows

from Proposition 6.5 that

K−
ξµ(0) = bξµ.

For ξ ∈ SP, λ ∈ P, set

gξλ = 2−ℓ(ξ)bξλ. (6.7)

Up to some 2-power, gξλ has the following interpretation of branching

coefficient for the restriction of a q(n)-module V (λ) to gl(n).

Lemma 6.6. As a gl(n)-module, V (ξ) can be decomposed as

V (ξ) ∼=
⊕

λ∈P,ℓ(λ)≤n

2
ℓ(ξ)+δ(ξ)

2 gξλL(λ).
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Proof. It suffices to verify on the character level. The corresponding char-

acter identity indeed follows from (6.6), (6.7) and Theorem 4.9, as the

character of L(λ) is given by the Schur function sλ. ���

Lemma 6.7. [36, Theorem 9.3] [22, III, (8.17)] The following holds for

ξ ∈ SP, λ ∈ P:

gξλ ∈ Z+; gξλ = 0 unless ξ ≥ λ; gξξ = 1. (6.8)

Stembridge [36] proved Lemma 6.7 by providing a combinatorial for-

mula for gξλ in terms of marked shifted tableaux. We give a representation

theoretic proof below.

Proof. It follows by Lemma 6.6 that gξλ ≥ 0, and moreover, gξλ = 0 unless

ξ ≥ λ (the dominance order for compositions coincide with the dominance

order of weights for q(n)). The highest weight space for the q(n)-module

V (ξ) is Wξ, which has dimension 2
ℓ(ξ)+δ(ξ)

2 . Hence, gξξ = 1, by Lemma 6.6

again.

By Theorem 4.9, 2−
ℓ(ξ)+δ(ξ)

2 chV (ξ) = 2−ℓ(ξ)Q(x1, . . . , xn), which is known

to lie in Λ, cf. [22] (this fact can also be seen directly from representation the-

ory of q(n)). Hence, 2−ℓ(ξ)Q(x1, . . . , xn) is a Z-linear combination of Schur

polynomials sλ. Combining with Lemma 6.6, this proves that gξλ ∈ Z. ���

The following is a spin counterpart of the properties of Kostka polyno-

mials listed in Theorem 6.1.

Theorem 6.8. [41] The spin Kostka polynomials K−
ξµ(t) for ξ ∈ SPn, µ ∈ Pn

satisfy the following properties:

(1) K−
ξµ(t) = 0 unless ξ ≥ µ; K−

ξξ(t) = 2ℓ(ξ).

(2) The degree of the polynomial K−
ξµ(t) is n(µ)− n(ξ).

(3) 2−ℓ(ξ)K−
ξµ(t) is a polynomial with non-negative integer coefficients.

(4) K−
ξµ(1) = K−

ξµ; K−
ξµ(−1) = 2ℓ(ξ)δξµ.

(5) K−
(n)µ(t) = tn(µ)

∏ℓ(µ)
i=1 (1 + t1−i).

(6) K−
ξ(1n)(t) =

tn(ξ)(1− t)(1− t2) · · · (1− tn)
∏

(i,j)∈ξ∗(1 + tcij )
∏

(i,j)∈ξ∗(1− th
∗
ij)

.
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Proof. Combining Theorem 6.1(1)-(3), Lemma 6.7 and Proposition 6.5,

we can easily verify that the spin Kostka polynomial K−
ξµ(t) must satisfy

the properties (1)-(3) in the theorem. It is known that Pµ(x; 1) = mµ and

hence by (6.4) we have K−
ξµ(1) = K−

ξµ. Also, Qξ = 2ℓ(ξ)Pξ(x;−1), and

{Pµ(x;−1) | µ ∈ P} forms a basis for Λ (see [22, p.253]). Hence (4) is

proved.

By [22, III, §3, Example 1(3)] we have

∏

i≥1

1 + xi
1− xi

=
∑

µ

tn(µ)
ℓ(µ)∏

j=1

(1 + t1−j)Pµ(x; t). (6.9)

Comparing the degree n terms of (6.9) and (3.6), we obtain that

Q(n)(x) = qn(x) =
∑

µ∈Pn

tn(µ)
ℓ(µ)∏

j=1

(1 + t1−j)Pµ(x; t).

Hence (5) is proved.

Part (6) actually follows from Theorem 5.8 and Theorem 6.10 in Sec-

tion 6.3 below, and let us postpone its proof after completing the proof of

Theorem 6.10. ���

6.3. Spin Kostka polynomials and graded multiplicity

Recall the characteristic map ch and ch− from (3.1) and (3.12). Note

that ch− is related to ch as follows:

ch−(ζ) = ch
(
resHn

CSn
ζ
)
, for ζ ∈ R−

n . (6.10)

Recall that the Sn-module Sλ and Hn-module Dξ have characters given

by χλ and ζξ, respectively. Up to some 2-power as in Lemma 6.6, gξλ has

another representation theoretic interpretation.

Lemma 6.9. Suppose ξ ∈ SPn, λ ∈ Pn. The following holds:

dimHomHn(D
ξ, indHn

CSn
Sλ) = 2

ℓ(ξ)+δ(ξ)
2 gξλ.
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Proof. Since the Hn-module indHn
CSn

Sλ is semisimple, we have

dimHomHn(D
ξ, indHn

CSn
Sλ) =dimHomHn(ind

Hn
CSn

Sλ,Dξ)

=dimHomCSn(S
λ, resHn

CSn
Dξ)

=(sλ, ch(res
Hn
CSn

Dξ))

=(sλ, ch
−(Dξ))

=(sλ, 2
−

ℓ(ξ)−δ(ξ)
2 Qξ(x))

=2
ℓ(ξ)+δ(ξ)

2 gξλ,

where the second equation uses the Frobenius reciprocity, the third equation

uses the fact that ch is an isometry, the fourth, fifth and sixth equations

follow from (6.10), (3.14) and (6.6), respectively. ���

For µ ∈ Pn and ξ ∈ SPn, recalling (6.2), we define a polynomial C−
ξµ(t)

as a graded multiplicity of the graded Hn-module indHn
CSn

H•(Bµ) ∼= Cln ⊗
H•(Bµ):

C−
ξµ(t) :=

∑

i≥0

ti
(
dimHomHn(D

ξ,Cln ⊗H2i(Bµ))
)
. (6.11)

Theorem 6.10 ([41]). Suppose ξ ∈ SPn, µ ∈ Pn. Then we have

K−
ξµ(t) = 2

ℓ(ξ)−δ(ξ)
2 C−

ξµ(t
−1)tn(µ).

Proof. By Proposition 6.5 and Theorem 6.2, we obtain that

K−
ξµ(t) =

∑

λ∈Pn

bξλKλµ(t) =
∑

λ∈Pn

bξλCλµ(t
−1)tn(µ).

On the other hand, we have by Lemma 6.9 that

C−
ξµ(t) =

∑

i≥0

ti
(
dimHomHn

(
Dξ, indHn

CSn
H2i(Bµ)

))

=
∑

λ

Cλµ(t) dimHomHn(D
ξ, indHn

CSn
Sλ)

= 2−
ℓ(ξ)−δ(ξ)

2

∑

λ∈Pn

bξλCλµ(t).
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Now the theorem follows by comparing the above two identities. ���

With Theorem 6.10 at hand, we can complete the proof of Theorem 6.8(6).

Proof of Theorem 6.8(6). Suppose ξ ∈ SPn. Observe that B(1n) = B

and it is well known that H•(B) is isomorphic to the coinvariant algebra of

the symmetric group Sn. Hence by Theorem 5.8 we obtain that

C−
ξ(1n)(t)=d

ξ(t)=2−
ℓ(ξ)−δ(ξ)

2

tn(ξ)(1−t)(1−t2) · · · (1− tn)
∏

(i,j)∈ξ∗(1 + tcij )
∏

(i,j)∈ξ∗(1− th
∗
ij )

,

where ξ∗ is the shifted diagram associated to ξ, cij , h
∗
ij are contents and

shifted hook lengths for a cell (i, j) ∈ ξ. This together with Theorem 6.10

gives us

K−
ξ(1n)(t) =

t
n(n−1)

2
−n(ξ)(1− t−1)(1− t−2) · · · (1− t−n)

∏
(i,j)∈ξ∗(1 + t−cij)

∏
(i,j)∈ξ∗(1− t−h∗

ij)

=
t−n−n(ξ)+

∑
(i,j)∈ξ∗ h∗

ij(1− t)(1− t2) · · · (1− tn)
∏

(i,j)∈ξ∗(1 + tcij)

t
∑

(i,j)∈ξ∗ cij
∏

(i,j)∈ξ∗(1− th
∗
ij)

=
tn(ξ)(1− t)(1− t2) · · · (1− tn)

∏
(i,j)∈ξ∗(1 + tcij)

∏
(i,j)∈ξ∗(1− th

∗
ij)

,

where the last equality can be derived by noting that the contents cij are

0, 1, . . . , ξi− 1 and the fact (cf. [22, III, §8, Example 12]) that in the ith row

of ξ∗, the hook lengths h∗ij for i ≤ j ≤ ξi+ i− 1 are 1, 2, . . . , ξi, ξi+ ξi+1, ξi+

ξi+2, . . . , ξi + ξℓ with exception ξi − ξi+1, ξi − ξi+2, . . . , ξi − ξℓ. ���

6.4. Spin Kostka polynomials and q-weight multiplicity

Observe that there is a natural isomorphism q(n)0̄
∼= gl(n). Regarding

a regular nilpotent element e in gl(n) as an even element in q(n), for ξ ∈
SP, µ ∈ P with ℓ(ξ) ≤ n, ℓ(µ) ≤ n, we define a Brylinski-Kostant filtration

{Jk
e

(
V (ξ)µ

)
}k≥0 on the µ-weight space V (ξ)µ of the irreducible q(n)-module

V (ξ), where

Jk
e (V (ξ)µ) := {v ∈ V (ξ)µ | ek+1v = 0}.
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Define a polynomial γ−ξµ(t) by letting

γ−ξµ(t) =
∑

k≥0

(
dim Jk

e (V (ξ)µ)/J
k−1
e (V (ξ)µ)

)
tk.

We are ready to establish the Lie theoretic interpretation of spin Kostka

polynomials.

Theorem 6.11. [41] Suppose ξ ∈ SP, µ ∈ P with ℓ(ξ) ≤ n, ℓ(µ) ≤ n. Then

we have

K−
ξµ(t) = 2

ℓ(ξ)−δ(ξ)
2 γ−ξµ(t).

Proof. The Brylinski-Kostant filtration is defined via a regular nilpotent

element in gl(n) ∼= q(n)0̄, and thus it is compatible with the decomposition

in Lemma 6.6. Hence, we have Jk
e

(
V (ξ)µ

) ∼= ⊕λ2
ℓ(ξ)+δ(ξ)

2 gξλJ
k
e

(
L(λ)µ

)
. It

follows by the definitions of the polynomials γ−ξµ(t) and γλµ(t) that

γ−ξµ(t) =
∑

λ

2
ℓ(ξ)+δ(ξ)

2 gξλγλµ(t).

Then by Theorem 6.3 we obtain that

γ−ξµ(t) =
∑

λ

2
ℓ(ξ)+δ(ξ)

2 gξλKλµ(t) =
∑

λ

2−
ℓ(ξ)−δ(ξ)

2 bξλKλµ(t).

This together with Proposition 6.5 proves the theorem. ���

Remark 6.12. We can define spin Hall-Littlewood functions H−
µ (x; t) via

the spin Kostka polynomials as well as spin Macdonald polynomials H−
µ (x; q,

t) and the spin q, t-Kostka polynomials K−
ξµ(q, t). The use of Φ and ϕ makes

such a q, t-generalization possible (see [41] for details). There is also a com-

pletely different vertex operator approach developed by Tudose and Zabrocki

[37] toward a different version of spin Kostka polynomials and spin Hall-

Littlewood functions, which did not seem to admit representation theoretic

interpretation.
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7. The Seminormal form Construction

In this section, we formulate the seminormal form for the irreducible

Hn-modules, analogous to Young’s seminormal form for the irreducible CSn-

modules. Following the independent works of [9] and [39] (which was built

on the earlier work of Nazarov [23]), we first work on the generality of affine

Hecke-Clifford algebras, and then specialize to the (finite) Hecke-Clifford

algebras to give an explicit construction of Young’s seminormal form for the

irreducible Hn-modules.

7.1. Jucys-Murphy elements and Young’s seminormal form for Sn

The Jucys-Murphy elements in the group algebra of the symmetric group

Sn are defined by

Lk =
∑

1≤j<k

(j, k), (7.1)

where (j, k) is the transposition between j and k. Observe that Lk is the

difference between the sum of all transpositions in Sk and the sum of all

transpositions in Sk−1. Hence the Jucys-Murphy elements L1, . . . , Ln com-

mute and act semisimply on irreducible CSn-modules.

The Gelfand-Zetlin subalgebra An of CSn is defined to be the subalge-

bra consisting of the diagonal matrices in the Wedderburn decomposition of

CSn. It is not difficult to show by induction on n (see [24, Corollary 4.1]

and [18, Lemma 2.1.4]) that An is generated by the centers of the subalge-

bras CS1,CS2, . . . ,CSn, and that it is also generated by the Jucys-Murphy

elements L1, . . . , Ln.

The moral is that the subalgebra An of CSn plays a role of a Cartan

subalgebra of a semsimple Lie algebra. Every irreducible CSn-module V

can be decomposed as

V =
⊕

i=(i1,...,in)∈Cn

Vi,

where Vi = {v ∈ V | Lkv = ikv, 1 ≤ k ≤ n} is the simultaneous eigenspace

of L1, . . . , Ln with eigenvalues i1, . . . , in. By the description of An above, we
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have either Vi = 0 or dimVi = 1. If Vi 6= 0, we say that i is a weight of V

and Vi is the i-weight space of V , and we fix a nonzero vector vi ∈ Vi.

Suppose λ ∈ Pn and T is a standard tableau of shape λ. Define its con-

tent sequence c(T ) = (c(T1), . . . , c(Tn)) ∈ Cn by letting c(Tk) be the content

of the cell occupied by k in T for 1 ≤ k ≤ n. By analyzing the structures

of weights, we can show that the sequences c(T ) for standard tableaux T

with n cells are exactly all the weights for irreducible Sn-modules. Now we

are ready to formulate the Young’s seminormal form for irreducible CSn-

modules. For λ ∈ Pn, define V
λ =

∑
T CvT , where the summation is taken

over standard tableaux of shape λ. For 1 ≤ k ≤ n− 1, define

skvT =
(
c(Tk+1)− c(Tk)

)−1
vT +

√
1−

(
c(Tk+1)− c(Tk)

)−2
vskT , (7.2)

where skT indicates the standard tableau obtained by switching k and k+1

in T and vskT = 0 if skT is not standard. In this way Okounkov and Vershik

[24] established the following.

Theorem 7.1 (Young’s seminormal form). For λ ∈ Pn, V
λ affords an

irreducible Sn-module given by (7.2). Moreover, {V λ | λ ∈ Pn} forms a

complete set of non-isomorphic irreducible Sn-modules.

7.2. Jucys-Murphy elements for Hn

As in the group algebra of symmetric groups, there also exist Jucys-

Murphy elements Jk(1 ≤ k ≤ n) in Hn defined as (see [23])

Jk =
∑

1≤j<k

(1 + cjck)(j, k). (7.3)

Lemma 7.2. The following holds:

(1) JiJk = JkJi, for 1 ≤ i 6= k ≤ n.

(2) ciJi = −Jici, ciJk = Jkci, for 1 ≤ i 6= k ≤ n.

(3) siJi = Ji+1si − (1 + cici+1), for 1 ≤ i ≤ n− 1.

(4) siJk = Jksi, for k 6= i, i + 1.

Proof. It follows by a direct computation that ciJn = Jnci, and σJn = Jnσ,

for 1 ≤ i ≤ n−1 and σ ∈ Sn−1. Hence, Jn commutes withHn−1, and whence

(1). The remaining properties can be also verified by direct calculations. ���



2012] LECTURES ON SPIN REPRESENTATION THEORY 149

7.3. Degenerate affine Hecke-Clifford algebras Haff
n

For n ∈ Z+, the affine Hecke-Clifford algebra Haff
n is defined to be the

superalgebra generated by even generators s1, . . . , sn−1, x1, . . . , xn and odd

generators c1, . . . , cn subject to the following relations (besides the relations

(2.1), (2.3) and (2.4)):

xixj = xjxi, 1 ≤ i, j ≤ n, (7.4)

sixi = xi+1si − (1 + cici+1), 1 ≤ i ≤ n− 1, (7.5)

sixj = xjsi, j 6= i, i+ 1, 1 ≤ i, j ≤ n, (7.6)

xici = −cixi, xicj = cjxi, 1 ≤ i 6= j ≤ n. (7.7)

Remark 7.3. The affine Hecke-Clifford algebra Haff
n was introduced by

Nazarov [23] (sometimes called affine Sergeev algebra). The Morita super-

equivalence (2.5) between Hn and CS−
n has been extended to one between

Haff
n and the affine spin Hecke algebras [42, Proposition 3.4] and for other

classical type Weyl groups [17, Theorem 4.4].

Denote by Pc
n the superalgebra generated by even generators x1, . . . , xn

and odd generators c1, . . . , cn subject to the relations (2.3), (7.4) and (7.7).

For α = (α1, . . . , αn) ∈ Zn
+ and β ∈ Zn

2 , set xα = xα1
1 · · · xαn and cβ =

cβ1
1 · · · cβn

n . Then we have the following.

Lemma 7.4. [23][3, Theorem 2.2] The set {xαcβw | α ∈ Zn
+, β ∈ Zn

2 , w ∈
Sn} forms a basis of Haff

n .

Proof.[Sketch of a proof] One can construct a representation π of Haff
n on

the polynomial-Clifford algebra Pc
n, where the xi and ci for all i act by left

multiplication (and the action of si’s is then determined uniquely). Then

one checks that the linear operators π(xαcβw) are linearly independent. We

refer to the proof of [17, Theorem 3.4] for detail. ���

By [23], there exists a surjective homomorphism

̥ : Haff
n −→ Hn (7.8)

ck 7→ ck, sl 7→ sl, xk 7→ Jk, (1 ≤ k ≤ n, 1 ≤ l ≤ n− 1),

and the kernel of ̥ coincides with the ideal 〈x1〉 of Haff
n generated by x1.

Hence the category of finite-dimensional Hn-modules can be identified as
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the category of finite-dimensional Haff
n -modules which are annihilated by x1.

For the study of Haff
n -modules, we shall mainly focus on the so-called finite-

dimensional integral modules, on which x21, . . . , x
2
n have eigenvalues of the

form

q(i) = i(i + 1), i ∈ Z+.

It is easy to see that a finite-dimensional Haff
n -module M is integral if all of

eigenvalues of x2j for a fixed j onM are of the form q(i) (cf. [3, Lemma 4.4] or

[18, Lemma 15.1.2]). Hence the category of finite-dimensional Hn-modules

can be identified with the subcategory of integral Haff
n -modules on which

x1 = 0.

By Lemma 7.4, Pc
n can be identified with the subalgebra of Haff

n gen-

erated by x1, . . . , xn and c1, . . . , cn. For i ∈ Z+, denote by L(i) the 2-

dimensional Pc
1-module with L(i)0̄ = Cv0 and L(i)1̄ = Cv1 and

x1v0 =
√
q(i)v0, x1v1 = −

√
q(i)v1, c1v0 = v1, c1v1 = v0.

Note that L(i) is irreducible of type M if i 6= 0, and irreducible of type Q if

i = 0. Moreover L(i), i ∈ Z+ form a complete set of pairwise non-isomorphic

integral irreducible Pc
1-module. Since Pc

n
∼= Pc

1⊗· · ·⊗Pc
1, Lemma 2.5 implies

the following.

Lemma 7.5. {L(i) = L(i1)⊛L(i2)⊛ · · ·⊛L(in)| i = (i1, . . . , in) ∈ Zn
+} form

a complete set of pairwise non-isomorphic integral irreducible Pc
n-modules.

Furthermore, dim L(i) = 2n−⌊
γ0
2
⌋, where γ0 denotes the number of 1 ≤ j ≤ n

with ij = 0, and ⌊γ02 ⌋ denotes the greatest integer less than or equal to γ0
2 .

The following definition of [9, 39] is motivated by similar studies for the

affine Hecke algebras in [4, 26, 29].

Definition 7.6. A representation of Haff
n is called completely splittable if

x1, . . . , xn act semisimply.

Since the polynomial generators x1, . . . , xn commute, a finite-dimensional

integral completely splittable Haff
n -module M can be decomposed as

M =
⊕

i∈Zn
+

Mi,
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where

Mi = {z ∈M | x2kz = q(ik)z, 1 ≤ k ≤ n}.

IfMi 6= 0, then i is called a weight ofM andMi is called a weight space. Since

x2k, 1 ≤ k ≤ n commute with c1, . . . , cn, each Mi is actually Pc
n-submodule

of M .

Following Nazarov, we define the intertwining elements as

φk := sk(x
2
k − x2k+1) + (xk + xk+1) + ckck+1(xk − xk+1), 1 ≤ k < n. (7.9)

It is known [23] and easy to check directly that

φ2k = 2(x2k + x2k+1)− (x2k − x2k+1)
2, (7.10)

φkxk = xk+1φk, φkxk+1 = xkφk, φkxl = xlφk, (7.11)

φkck = ck+1φk, φkck+1 = ckφk, φkcl = clφk, (7.12)

φjφk = φkφj , φkφk+1φk = φk+1φkφk+1, (7.13)

for all admissible j, k, l with l 6= k, k + 1 and |j − k| > 1.

7.4. Weights and standard skew shifted tableaux

This subsection is technical though elementary in nature, and we rec-

ommend the reader to skip most of the proofs in a first reading. The upshot

of this subsection is Proposition 7.12 which identifies the weights as content

vectors associated to standard skew shifted tableaux.

Lemma 7.7. Suppose thatM is an integral completely splittable Haff
n -module

and that i = (i1, . . . , in) ∈ Zn
+ is a weight of M . Then ik 6= ik+1 for all

1 ≤ k ≤ n− 1.

Proof. Suppose ik = ik+1 for some 1 ≤ k ≤ n − 1. Let 0 6= z ∈ Mi. One

can show using (7.5) that

x2ksk = skx
2
k+1 −

(
xk(1− ckck+1) + (1− ckck+1)xk+1

)
(7.14)

x2k+1sk = skx
2
k +

(
xk+1(1 + ckck+1) + (1 + ckck+1)xk

)
. (7.15)
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SinceM is completely splittable, (x2k−q(ik))z = 0 = (x2k+1−q(ik+1))z. This

together with (7.14) shows that

(x2k−q(ik))skz = (x2k−q(ik+1))skz = −
(
xk(1−ckck+1)+(1−ckck+1)xk+1

)
z,

(7.16)

and hence

(x2k − q(ik))
2skz = −

(
xk(1− ckck+1) + (1− ckck+1)xk+1

)
(x2k − q(ik))z = 0.

Similarly, we see that

(x2k+1 − q(ik+1))
2skz = 0.

Hence skz ∈Mi, i.e., (x
2
k − q(ik))skz = 0, and therefore (7.16) implies that

(
xk(1− ckck+1) + (1− ckck+1)xk+1

)
z = 0,

2(x2k + x2k+1)z =
(
xk(1− ckck+1) + (1− ckck+1)xk+1

)2
z = 0.

This means that q(ik+1) = −q(ik) and hence q(ik) = q(ik+1) = 0 since

ik = ik+1. We conclude that xk = 0 = xk+1 on Mi. This implies that

xk+1skz = 0 since skz ∈Mi as shown above. Then

(1 + ckck+1)z = xk+1skz − skxkz = 0,

and hence z = 1
2 (1− ckck+1)(1 + ckck+1)z = 0, which is a contradiction. ���

Lemma 7.8. Assume that i = (i1, . . . , in) ∈ Zn
+ is a weight of an irreducible

integral completely splittable Haff
n -module M . Fix 1 ≤ k ≤ n− 1.

1. If ik 6= ik+1 ± 1, then φkz is a nonzero weight vector of weight sk · i for
any 0 6= z ∈Mi. Hence sk · i is a weight of M .

2. If ik = ik+1 ± 1, then φk = 0 on Mi.

Proof. It follows from (7.11) that φkMi ⊆Msk·i. By (7.10), we have

φ2kz=
(
2(x2k +x

2
k+1)−(x2k−x2k+1)

2
)
z=
(
2(q(ik)+ q(ik+1))−(q(ik)−q(ik+1))

2
)
z

for any z ∈ Mi. A calculation shows that 2(q(ik) + q(ik+1)) − (q(ik) −
q(ik+1))

2 6= 0 when ik 6= ik+1 ± 1 and hence φ2kz 6= 0. This proves (1).
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Assume now that ik = ik+1 ± 1. Suppose φkz 6= 0 for some z ∈ Mi.

Since M is irreducible, there exists a sequence 1 ≤ a1, a2, . . . , am ≤ n − 1

such that

φam · · ·φa2φa1φkz = αz (7.17)

for some 0 6= α ∈ C. Assume that m is minimal such that (7.17) holds.

Let σ = sam · · · sa1sk ∈ Sn. Then σ · i = i. If σ 6= 1, then there exists

1 ≤ b1 ≤ b2 ≤ n such that ib1 = ib2 , and σ = (i1, i2) by the minimality of

m. Hence, ib1 and ib2 can be brought to be adjacent by the permutation

saj · · · sa1sk · i for some 1 ≤ j ≤ m. That is, saj · · · sa1sk · i is a weight of

M of the form (· · · , β, β, · · · ), which contradicts Lemma 7.7. Hence σ = 1

and sam · · · sa2sa1 = sk. We further claim that m = 1. Suppose that m > 1.

Then, by the exchange condition for Coxeter groups, there exists 1 ≤ p <

q ≤ m such that sam · · · saq · · · sap · · · sa1 = sam · · · šaq · · · šap · · · sa1 , where š
means the very term is removed. This leads to an identity similar to (7.17)

for a product of (m − 1) φ’s, contradicting the minimality of m. Therefore

m = 1 and then a1 = k, which together with (7.17) leads to φ2kz = αz 6= 0.

This is impossible by a simple computation:

φ2k = 2(x2k+x
2
k+1)−(x2k−x2k+1)

2 = 2(q(ik)+q(ik+1))−(q(ik)−q(ik+1))
2 = 0

on Mi since ik = ik+1 ± 1. This proves (2). ���

Corollary 7.9. Assume that i = (i1, . . . , in) ∈ Zn
+ is a weight of an irre-

ducible integral completely splittable Haff
n -module M . If ik = ik+2 for some

1 ≤ k ≤ n− 2, then ik = ik+2 = 0 and ik+1 = 1.

Proof. If ik 6= ik+1±1, then sk ·i is a weight ofM of the form (· · · , u, u, · · · )
by Lemma 7.8(1), which contradicts Lemma 7.7. Hence ik = ik+1 ± 1. By

Lemma 7.8(2), we have

(a− b)skz = −
(
(xk + xk+1) + ckck+1(xk − xk+1)

)
z,

(a− b)sk+1z = −
(
(xk+1 + xk+2) + ck+1ck+2(xk+1 − xk+2)

)
z,

for z ∈ Mi, where a = q(ik) = q(ik+2), b = q(ik+1). A direct calculation

shows that

(a− b)(b− a)(a− b)(sksk+1sk − sk+1sksk+1)z
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=
(
(xk + xk+2)(6x

2
k+1 + 2xkxk+2)+ckck+2(xk−xk+2)(6x

2
k+1−2xkxk+2)

)
z

= 0. (7.18)

for z ∈ Mi since sksk+1sk = sk+1sksk+1. Decompose Mi as Mi = N1 ⊕N2,

where N1 = {z ∈ Mi | xkz = xk+2z = ±√
az} and N2 = {z ∈ Mi | xkz =

−xk+2z = ±√
az}. Now applying the equality (7.18) to z in N1 and N2, we

obtain that

2
√
q(ik)

(
6q(ik+1) + 2q(ik)

)
= 0,

which, thanks to ik+1 = ik ± 1, is equivalent to one of the following two

identities:

if ik+1 = ik − 1, then
√
ik(ik + 1)(4ik − 2)ik = 0; (7.19)

if ik+1 = ik + 1, then
√
ik(ik + 1)(4ik + 6)(ik + 1) = 0. (7.20)

There is no solution for (7.19), and the solution of (7.20) is ik = 0,

ik+1 = 1. ���

Denote by W(n) the set of weights of all integral irreducible completely

splittable Haff
n -modules.

Proposition 7.10. Assume i ∈ W(n) and ik = iℓ = a for some 1 ≤ k <

ℓ ≤ n.

1. If a = 0, then 1 ∈ {ik+1, . . . , iℓ−1}.

2. If a ≥ 1, then {a− 1, a+ 1} ⊆ {ik+1, . . . , iℓ−1}.

Proof. Without loss of generality, we can assume that a /∈ {ik+1, . . . , iℓ−1}.
If a = 0 but 1 6∈ {ik+1, . . . , iℓ−1}, we can repeatedly swap iℓ with

iℓ−1 then with iℓ−2, etc., all the way to obtain a weight of M of the form

(· · · , 0, 0, · · · ) by Lemma 7.8. This contradicts Lemma 7.7. This proves (1).

Now assume a ≥ 1 and a+1 /∈ {ik+1, . . . , iℓ−1}. If a−1 does not appear

between ik+1 and iℓ−1 in i, then we can swap iℓ with iℓ−1 then with iℓ−2,

etc., and by Lemma 7.8 this gives rise to a weight of M having the form

(· · · , a, a, · · · ), which contradicts Lemma 7.7. If a − 1 appears only once

between ik+1 and iℓ−1 in i, then again by swapping iℓ with iℓ−1 then with

iℓ−2, etc. we obtain a weight of M of the form (· · · , a, a − 1, a, · · · ), which
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contradicts Corollary 7.9. Hence a − 1 appears at least twice between ik+1

and il−1 in i. This implies that there exist k < k1 < ℓ1 < ℓ such that

ik1 = iℓ1 = a− 1, {a, a − 1} ∩ {ik1+1, . . . , iℓ1−1} = ∅.

An identical argument shows that there exist k1 < k2 < ℓ2 < ℓ1 such that

ik2 = iℓ2 = a− 2, {a, a − 1, a− 2} ∩ {ik2+1, . . . , iℓ2−1} = ∅.

Continuing in this way, we obtain k < s < t < l such that

is = it = 0, {a, a − 1, . . . , 1, 0} ∩ {is+1, . . . , it−1} = ∅,

which contradicts (1).

Now assume that a ≥ 1 and a − 1 /∈ {ik+1, . . . , iℓ−1}. Then a + 1

must appear in the subsequence (ik+1, . . . , iℓ−1) at least twice, otherwise we

can repeatedly swap iℓ with iℓ−1 then with iℓ−2, etc., all the way to obtain a

weight ofM of the form (· · · , a, a+1, a · · · ) by Lemma 7.8, which contradicts

Corollary 7.9. Continuing this way we see that any integer greater than a

will appear in the finite sequence (ik+1, . . . , il−1) which is impossible. This

completes the proof of (2). ���

For ν, ξ ∈ SP such that ν ⊆ ξ, the diagram obtained by removing the

subdiagram ν∗ from the shifted diagram ξ∗ is called a skew shifted diagram

and denoted by ξ/ν. It is possible that a skew shifted diagram is realized by

two different pairs ν ⊆ ξ and ν̃ ⊆ ξ̃.

Example 7.11. Assume ξ = (5, 3, 2, 1) and ν = (5, 1). Then the corre-

sponding skew shifted Young diagram ξ/ν is

A filling by 1, 2, . . . , n in a skew shifted diagram ξ/ν with |ξ/ν| = n such

that the entries strictly increase from left to right along each row and down

each column is called a standard skew shifted tableau of size n. Denote

W
′(n) = {i ∈ Zn

+ satisfying the properties in Proposition 7.10},
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F(n) = {standard skew shifted tableaux of size n}.

Proposition 7.12. There exists a canonical bijection between W′(n) and

F(n).

Proof. For T ∈ F(n), set

c(T ) = (c(T1), c(T2), . . . , c(Tn)) ∈ Zn
+,

where c(Tk) denotes the content of the cell occupied by k in T , for 1 ≤ k ≤ n.

It is easy to show that c(T ) ∈ W′(n). Then we define

Θ : F(n) −→ W
′(n), Θ(T ) = c(T ). (7.21)

To show that Θ is a bijection, we shall construct by induction on n a unique

tableau T (i) ∈ F(n) satisfying Θ(T (i)) = i, for a given i = (i1, . . . , in) ∈
W′(n). If n = 1, let T (i) ∈ F(n) be a cell labeled by 1 of content i1. Assume

that T (i′) ∈ F(n−1) is already defined, where i′ = (i1, . . . , in−1) ∈ W′(n−1).

Set u = in.

Case 1: T (i′) contains neither a cell of content u − 1 nor a cell of content

u+1. Adding a new component consisting of one cell labeled by n of content

u to T ′, we obtain a new standard tableau T ∈ F(n). Set T (i) = T .

Case 2: T (i′) contains cells of content u − 1 but no cell of content u + 1.

This implies u+1 /∈ {i1, . . . , in}. Since (i1, . . . , in) belongs to W′(n), u does

not appear in i′ and hence u− 1 appears only once in i′ by Propostion 7.10.

Therefore there is no cell of content u and only one cell denoted by A of

content u− 1 in T (i′). So we can add a new cell labeled by n with content

u to the right of A to obtain a new tableau T . Set T (i) = T . Observe that

there is no cell above A in the column containing A since there is no cell of

content u in T (i′). Hence T (i) ∈ F(n).

Case 3: T (i′) contains cells of content u + 1 but no cell of content u − 1.

This implies u − 1 /∈ {i1, . . . , in}. Since (i1, . . . , in) is in W′(n), u does not

appear in i′ and hence u + 1 appears only once in i′ by Proposition 7.10.

Therefore T (i′) contains only one cell denoted by B of content u+1 and no

cell of content u. This means that there is no cell below B in T (i′). Adding
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a new cell labeled by n of content u below B, we obtain a new tableau T .

Set T (i) = T . Clearly T (i) ∈ F(n).

Case 4: T (i′) contains cells of contents u− 1 and u+1. Let C and D be the

last cells on the diagonals of content u− 1 and u+ 1, respectively. Suppose

that C is labeled by s and D is labeled by t. Then is = u−1, it = u+1, and

moreover u− 1 /∈ {it+1, . . . , in−1}, u+ 1 /∈ {is+1, . . . , in−1}. Since in = u, by

Proposition 7.10 we see that u /∈ {it+1, . . . , in−1} and u /∈ {is+1, . . . , in−1}.
This implies that there is no cell below C and no cell to the right of D in

T (i′). Moreover C and D must be of the following shape

C
D

.

Add a new cell labeled by n to the right of D and below C to obtain a new

tableau T . Set T (i) = T . Again it is clear that T (i) ∈ F(n). ���

Example 7.13. Suppose n = 5. Then the standard skew shifted tableau

corresponding to i = (1, 2, 0, 1, 0) ∈ W′(5) is

T (i) =
1 2
3 4

5
.

7.5. Classification of irreducible completely splittable Haff
n -modules

For a skew shifted diagram ξ/ν of size n, denote by F(ξ/ν) the set of

standard skew shifted tableaux of shape ξ/ν, and form a vector space

Û ξ/ν =
⊕

T∈F(ξ/ν)

ClnvT .

Define

xivT =
√
q(c(Ti))vT , 1 ≤ i ≤ n, (7.22)

skvT =
( 1√

q(c(Tk+1))−
√
q(c(Tk))

+
1√

q(c(Tk+1)) +
√
q(c(Tk))

ckck+1

)
vT

+

√
1− 2(q(c(Tk+1)) + q(c(Tk)))

(q(c(Tk+1))− q(c(Tk)))2
vskT , 1 ≤ k ≤ n− 1, (7.23)
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where skT denotes the tableau obtained by switching k and k + 1 in T and

vskT = 0 if skT is not standard.

Proposition 7.14. Suppose ξ/ν is a skew shifted diagram of size n. Then

Û ξ/ν affords a completely splittable Haff
n -module under the action defined

by (7.22) and (7.23).

Proof. We check the defining relations (2.1), (2.4), (7.5), and (7.6). It

is routine to check (7.5), (7.6) and (2.4). It remains to check the Coxeter

relations (2.1).

It is clear by (7.6) that sksl = slsk if |l − k| > 1. We now prove s2k = 1.

Let T ∈ F(ξ/ν). A direct calculation shows that if skT is standard then

s2kvT =
( 2(q(c(Tk+1))+q(c(Tk))

(q(c(Tk+1))−q(c(Tk)))2
)
vT+

(
1− 2(q(c(Tk+1))+q(c(Tk))

(q(c(Tk+1))−q(c(Tk)))2
)
vT =vT .

Otherwise, if skT is not standard then c(Tk) = c(Tk+1)± 1, and we have

s2kvT =
( 2(q(c(Tk+1)) + q(c(Tk))

(q(c(Tk+1))− q(c(Tk)))2

)
vT = vT .

So it remains to prove that sksk+1sk = sk+1sksk+1. Fix 1 ≤ k ≤ n − 2

and T ∈ F(ξ/ν). Let a = q(c(Tk)), b = q(c(Tk+1)), c = q(c(Tk+2)). If c(Tk) =

c(Tk+2), then by Corollary 7.9 we have c(Tk) = c(Tk+2) = 0, c(Tk+1) = 1

and hence a = c = 0, b = 2. Then (a− b)2 = 2(a + b). By (7.23), we obtain

that

skvT =

√
2

2
(1 + ckck+1)vT , sk+1vT =

√
2

2
(−1 + ck+1ck+2)vT .

Then one can check that sksk+1skvT = sk+1sksk+1vT .

Now assume c(Tk) 6= c(Tk+2) and hence a, b, c are distinct. Then it

suffices to show φkφk+1φkvT = φk+1φkφk+1vT for the intertwining elements

φk, φk+1 defined via (7.9). It is clear by (7.23) that

φrvT =
√

(q(c(Tr+1))− q(c(Tr)))2 − 2(q(c(Tr+1)) + q(c(Tr)))vsrT ,

if srT is standard and φrvT = 0 otherwise for 1 ≤ r ≤ n − 1. Now for

our fixed 1 ≤ k ≤ n − 2, if one of c(Tk) − c(Tk+1), c(Tk+1) − c(Tk+2) and
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c(Tk) − c(Tk+2) is ±1, then φkφk+1φkvT = 0 = φk+1φkφk+1vT . Otherwise,

one can check that

φkφk+1φkvT

=
(√

(a− b)2 − 2(a+ b)
√

(b− c)2 − 2(b+ c)
√

(a− c)2 − 2(a+ c)
)
vT

= φk+1φkφk+1vT .

Therefore the proposition is proved. ���

For a skew shifted diagram ξ/ν of size n, pick a standard skew shifted

tableau T ξ/ν of shape ξ/ν. Observe that the Pc
n-module ClnvT ξ/ν con-

tains an irreducible submodule L(ξ/ν) which is isomorphic to L(c(T
ξ/ν
1 ))⊛

L(c(T
ξ/ν
2 ))⊛ · · ·⊛ L(c(T

ξ/ν
n )) and moreover

ClnvT ξ/ν
∼= (L(ξ/ν))⊕2⌊

ℓ(ξ)−ℓ(ν)
2 ⌋

. (7.24)

Set

U ξ/ν :=
∑

σ∈Sn

φσL(ξ/ν) ⊆ Û ξ/ν ,

where φσ = φi1φi2 · · ·φik with a reduced expression σ = si1si2 · · · sik .

Lemma 7.15. Suppose ξ/ν is a skew shifted diagram of size n. Then U ξ/ν

is a Haff
n -submodule of Û ξ/ν.

Proof. Clearly, U ξ/ν is a Pc
n-submodule of Û ξ/ν by (7.11) and (7.12). Let

σ ∈ Sn and z ∈ L(ξ/ν) be such that φσz 6= 0. Then

φkφσz =
(
sk(x

2
k − x2k+1) + (xk + xk+1) + ckck+1(xk − xk+1)

)
φσz ∈ U ξ/ν .

Meanwhile (x2k − x2k+1) acts as a nonzero scalar on φσz and hence skφσz ∈
U ξ/ν . ���

The following theorem is due independently to [9, 39]. The results of

the paper of the first author [39] were actually formulated and established

over any characteristic p 6= 2.

Theorem 7.16. Suppose ξ/ν and ξ′/ν ′ are skew shifted diagrams of size n.

Then
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(1) U ξ/ν is an irreducible Haff
n -module.

(2) U ξ/ν ∼= U ξ′/ν′ if and only if ξ/ν = ξ′/ν ′.

(3) Û ξ/ν ∼= (U ξ/ν)⊕2⌊
ℓ(ξ)−ℓ(ν)

2 ⌋

.

(4) dimU ξ/ν = 2n−⌊
ℓ(ξ)−ℓ(ν)

2
⌋gξ/ν, where gξ/ν denotes the number of standard

skew shifted tableaux of shape ξ/ν.

(5) Every integral irreducible completely splittable Haff
n -module is isomorphic

to U ξ/ν for some skew shifted diagram ξ/ν of size n.

Proof. Suppose N is a nonzero submodule of U ξ/ν . Then Ni 6= 0 for some

i = σ · c(T ξ/ν) and σ ∈ Sn, and hence Nc(T ξ/ν) 6= 0. Observe that U
ξ/ν

c(T ξ/ν)
∼=

L(ξ/ν). This implies that Nc(T ξ/ν) = U
ξ/ν

c(T ξ/ν )
as L(ξ/ν) is irreducible as

Pc
n-module. Therefore N = U ξ/ν . This proves (1). If U ξ/ν ∼= U ξ′/ν′ , then

T ξ/ν ∈ F(ξ′/ν ′). Hence, ξ/ν = ξ′/ν ′ and whence (2). Part (3) follows by the

definition of Û ξ/ν and (7.24), and (4) follows from (3).

It remains to prove (5). Suppose U is an integral irreducible completely

splittable Haff
n -module and let ui be a non-zero weight vector of U . By

Propositions 7.10 and 7.12, there exists T ∈ F(n) such that i = c(T ).

Assume T is of shape ξ/ν. Observe that there always exists a sequence

of simple transpositions sk1 , . . . , skr such that skj · · · sk1T is standard for

1 ≤ j ≤ r and skr · · · sk1T = T ξ/ν . Then it follows by Lemma 7.8 that

uξ/ν := φskr · · ·φsk1ui is a non-zero weight vector of U of weight c(T ξ/ν).

Hence Uc(T ξ/ν) 6= 0 and it must contain a Pc
n-submodule U ′ isomorphic to

L(ξ/ν). Again by Lemma 7.8,
∑

σ∈Sn
φσU

′ forms a Haff
n -submodule of U .

Thus U =
∑

σ∈Sn
φσU

′. Let τ : U ′ → L(ξ/ν) be a Pc
n-module isomorphism.

Then it is easy to check that the map τ :
∑

σ∈Sn
φσU

′ → U ξ/ν , which sends

φσz to φστ(z) for all z ∈ U ′, is an Haff
n -module isomorphism. ���

7.6. The seminormal form construction for Hn

When restricting Theorem 7.16 to the case of shifted diagrams, we have

the following.

Theorem 7.17. {U ξ |ξ ∈ SPn} forms a complete set of non-isomorphic irre-

ducible Hn-modules. The Jucys-Murphy elements J1, J2, . . . , Jn act semisim-

ply on each U ξ.
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Proof. Consider the Haff
n -modules Û ξ and U ξ, for ξ ∈ SPn. For any stan-

dard shifted tableau T of shape ξ, we have c(T1) = 0 and hence x1vT = 0.

Hence the action of Haff
n on Û ξ and U ξ factors through to an action of Hn

and xk acts as Jk by (7.8), as Hn
∼= Haff

n /〈x1〉. The theorem now follows

from Theorem 7.16. ���

The construction ofHn-modules U ξ above can be regarded a seminormal

form for irreducible Hn-modules. Theorem 7.17 in different forms has been

established via different approaches in [23, 38, 9, 39].
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