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Abstract

In this expository paper we present an overview of various graphical categorifications

of the Heisenberg algebra and its Fock space representation. We begin with a discussion

of “weak” categorifications via modules for Hecke algebras and “geometrizations” in terms

of the cohomology of the Hilbert scheme of points on the resolution of a simple singularity.

We then turn our attention to more recent “strong” categorifications involving planar

diagrammatics and derived categories of coherent sheaves on Hilbert schemes.

-

0. Introduction

Heisenberg algebras play a fundamental role in quantum physics. The

Heisenberg algebra of rank r is the unital associative C-algebra with gener-

ators pn, qn, 1 ≤ n ≤ r, and relations

pnqm = qmpn+ δn,m1, pnpm = pmpn, qnqm = qmqn, 1 ≤ n,m ≤ r. (1)

In the physics literature, the relations (1) are sometimes called the canon-

ical commutation relations (often with different constants). Physically, the

generators pn and qn correspond (up to scalar multiples) to position and

Received May 9, 2011 and in revised form July 14, 2011.

AMS Subject Classification: 20C08, 14F05, 17B65.

Key words and phrases: Categorification, Heisenberg algebra, Hecke algebra, planar diagrammat-
ics, Hilbert scheme, Fock space.

The research of the second author was supported by a Discovery Grant from the Natural Sciences
and Engineering Research Council of Canada.

291

mailto:amlicata@math.stanford.edu
mailto:alistair.savage@uottawa.ca


292 ANTHONY LICATA AND ALISTAIR SAVAGE [June

momentum operators in a single particle system with r degrees of freedom.

They are also crucial in the study of the quantum harmonic oscillator, the

quantum-mechanical analogue of the classical harmonic oscillator. The phys-

ical importance of this system comes from the fact that it can be used to ap-

proximate an arbitrary potential in a neighborhood of an equilibrium point,

together with the fact that it is one of the few quantum-mechanical systems

for which a simple, exact solution is known.

The Heisenberg algebra has an irreducible representation, called Fock

space, which plays a prominent role in quantum mechanics. The Stone-von

Neumann Theorem asserts that Fock space is the unique irreducible repre-

sentation of the Heisenberg algebra generated by vacuum vectors annihilated

by the pn. This important theorem was a key step in the early understanding

of quantum mechanics in that it showed that the Schrödinger wave formu-

lation of quantum mechanics and the Heisenberg matrix formulation are

physically equivalent. We refer the reader to the expository article [24] for

further details on the history of this theorem and its implications for physics.

In the current paper, we are concerned with an infinite rank version of

the Heisenberg algebra with generators pn, qn, n ∈ N+ := Z>0, and relations

pnqm = qmpn + δn,m1, pnpm = pmpn, qnqm = qmqn, n,m ∈ N+.

This algebra plays a key role in quantum field theory and in the represen-

tation theory of infinite-dimensional Lie algebras. Our aim is to give an

overview of some of the categorifications of this important algebra.

In general, categorification is a process in which sets are replaced by

categories and equalities by isomorphisms. In categorifying an algebraic

structure, one seeks to find a category that recovers it after passing to the

Grothendieck group. The original algebraic object is then seen to be a

shadow of higher categorical structure. In recent years, there has been con-

siderable interest in the categorification of knot invariants, representations

of Lie algebras, and quantum groups.

We begin in Section 1 by introducing various incarnations of the Heisen-

berg algebra and the Fock space, including quantizations and integral ver-

sions of both. Then, in Section 2, we discuss some of the first indications of

the existence of interesting categorifications of the Heisenberg algebra. In

particular, we describe the work of Geissinger and Zelevnisky, who realized
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the Fock space as the Grothendieck group of the category of modules for

symmetric groups and Hecke algebras. As we explain, these are examples of

“weak” categorifications. We also briefly recall in Section 2 the realizations,

due to Nakajima and Grojnowski, of the Fock space in terms of the cohomol-

ogy of the Hilbert scheme of points on the resoluation of a simple singularity

of type ADE. This gives a geometric realization, or “geometrization”, of the

Fock space. As we will see, these weak categorifications and geometrizations

can be lifted to “strong” categorifications.

In Section 3 we begin our treatment of strong categorifications of the

Heisenberg algebra. We first describe a recent categorification in terms of

planar diagrammatics, which q-deforms a construction of Khovanov [13].

This can be seen as the strong analogue of the aforementioned weak cate-

gorification via modules for Hecke algebras. In Section 4 we present a strong

categorification, also via planar diagrammatics, which arises from the ge-

ometrizations mentioned above. Both the categorifications from Section 3

and Section 4 were inspired by the work of Khovanov, who initiated the

study of graphical categorification of the Heisenberg algebra in [13].

There is much work on the geometrization and categorification of the

Heisenberg algebra and its Fock space that we are not able to cover in detail

in the current paper. We therefore conclude in Section 5 with a brief overview

of some other work appearing in the literature.

1. The Heisenberg algebra and Fock Space

1.1. The Heisenberg algebra

The Heisenberg algebra h in infinitely many variables is the unital asso-

ciative C-algebra with generators pn, qn, n ∈ N+, and relations

pnqm = qmpn + δn,m1, pnpm = pmpn, qnqm = qmqn, n,m ∈ N+. (1.1)

The algebra h occurs naturally in mathematics in several different variations

and with different presentations. We recall some of them here. First, occa-

sionally the generators are rescaled in such a way that the presentation is in

terms of generators pn, n ∈ Z \ {0}, and relations

pnpm = pmpn + nδn,−m1, n,m ∈ Z \ {0}. (1.2)
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In another alternative presentation of the algebra h, less obviously equiv-

alent to the presentation (1.1), the generators are an, bn, n ∈ N+, and the

relations are

anbm = bman + bm−1an−1, anam = aman, bnbm = bmbn, n,m ∈ N+,

(1.3)

(see [13, §1] and [16, §1]). In the above, we declare b0 = a0 = 1. The unital

ring hZ ⊆ h generated by the an and bn is an integral form of the Heisenberg

algebra, i.e. C⊗Z hZ ∼= h.

1.2. Lattice Heisenberg algebras

Let L be a lattice, that is, a finite rank free abelian group equipped with

a symmetric bilinear form 〈·, ·〉 : L × L −→ Z. Fix a basis α1, . . . , αk of L.

The lattice Heisenberg algebra hL associated to L is then defined to be the

unital algebra with generators pi,n, i ∈ {1, . . . , k}, n ∈ Z \ {0}, and relations

pi,npj,m = pj,mpi,n + nδn,−m〈αi, αj〉1, i, j ∈ {1, · · · , k}, n,m ∈ Z \ {0}.

(1.4)

Moreover, for any v =
∑

imiαi ∈ L, we may define the element pv,n ∈ hL

by linearity: pv,n =
∑

mipi,n. In particular, the isomorphism class of the

algebra hL does not depend on the choice of basis of L. When L = Z and the

bilinear form is multiplication, this definition agrees with the definition of

h given in (1.2). Heisenberg algebras associated with different lattices show

up naturally in a variety of contexts. An important specific example of a

lattice Heisenberg algebra comes from the case when the lattice is associated

to a simply-laced finite or affine Dynkin diagram. More specifically, let IΓ
denote the set of nodes of a simply-laced Dynkin diagram Γ of finite or

affine type (recall that the diagram in affine type has one more node than

the diagram of the corresponding finite type). We let LΓ = Z
IΓ be the

free Z-module spanned by IΓ. To simplify notation, we denote the basis

element corresponding to i ∈ IΓ by i (as opposed to αi). We equip LΓ with

a symmetric bilinear form 〈·, ·〉 by defining

〈i, j〉 =















2 if i = j,

−1 if i 6= j are connected by an edge,

0 if i 6= j are not connected by an edge,
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and extending to all of LΓ bilinearly. Thus the matrix (〈i, j〉)i,j is the corre-

sponding finite or affine Cartan matrix. When Γ is an affine Dynkin diagram,

the associated Heisenberg algebra hLΓ is sometimes called a toroidal Heisen-

berg algebra. These algebras play an important role in the representation

theory of infinite-dimensional Lie algebras and mathematical physics. In

particular, one important feature of the Heisenberg algebra hLΓ is that it

admits a quantization, that is, a deformation over C[t, t−1]. The quantum

Heisenberg algebra hLΓ,t is defined to be the unital algebra generated by pi,n,

i ∈ {1, . . . , k}, n ∈ Z \ {0}, with relations

pi,npj,m = pj,mpi,n + δn,−m[n〈i, j〉]
[n]

n
1.

Here [k+1] = t−k+t−k+2+· · ·+tk−2+tk denotes the quantum integer. Note

that when t = 1, the quantum Heisenberg algebra hLΓ,t becomes the ordinary

Heisenberg algebra hLΓ . Some literature changes the above relations by

introducting a minus sign in front of the term δn,−m[n〈i, j〉] [n]
n
1, though this

change does not change the isomorphism class of the resulting algebra.

For n ≥ 0 and i ∈ IΓ, we define new elements a
(n)
i , b

(n)
i ∈ hLΓ,t using the

generating functions

exp
(

∑

m≥1

pi,−m

[m]
zm) =

∑

n≥0

b
(n)
i zn and exp

(

∑

m≥1

pi,m
[m]

zm) =
∑

n≥0

a
(n)
i zn.

The elements {a
(n)
i , b

(n)
i } also generate hLΓ,t. As shown in [3], the defining

relations in hLΓ,t for these new generators are

a
(n)
i a

(m)
j = a

(m)
j a

(n)
i ,

b
(n)
i b

(m)
j = b

(m)
j b

(n)
i ,

b
(n)
i a

(m)
i =

∑

k≥0

[k + 1]a
(m−k)
i b

(n−k)
i ,

b
(n)
i a

(m)
j =

∑

k=0,1

a
(m−k)
j b

(n−k)
i , when 〈i, j〉 = −1,

b
(n)
i a

(m)
j = a

(m)
j b

(n)
i when 〈i, j〉 = 0.

By convention, we set a
(n)
i = b

(n)
i = 0 for n < 0. Thus the summations in

the above relations are finite.
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We note that much of the representation theory literature on infinite-

dimensional Lie algebras considers the Heisenberg Lie algebra rather than

the Heisenberg algebra h, which is the enveloping algebra of the Lie algebra.

Moreover, the unit 1 in the above relations is often replaced by a central

generator c.

1.3. The Fock Space representation

Let h− denote the unital subalgebra of h generated by the p−i, i ∈ N+,

and let h+ denote the subalgebra of h generated by the pi, i ∈ N+. We then

have an isomorphism of vector spaces h ∼= h+⊗h−. LetW denote the trivial

representation of h+. The induced representation

F = h⊗h+ W

is known as the Fock space representation of the Heisenberg algebra. As a

vector space, F is isomorphic to h−, which is a polynomial algebra in the

generators p−i, i ∈ N+:

F ∼= C[p−1, p−2, . . .].

Moreover, the representation F is faithful and the Heisenberg algebra h may

be thought of as an algebra of differential operators on the above polynomial

algebra. In this realization, p−i ∈ h, i ∈ N+, corresponds to multiplication

by the variable p−i, and the pi of presentation (1.2) corresponds to i ∂
∂p−i

. In

this incarnation, the Heisenberg algebra is often called the Weyl algebra.

The rich interaction between the representation theory of infinite-dimen-

sional Lie algebras and algebraic combinatorics owes much to the fact that

the Fock space representation may be constructed in the language of sym-

metric functions. Specifically, let Sym denote the algebra (over C) of sym-

metric functions in countably many variables {x1, x2, . . .}. The algebra Sym

is isomorphic to a polynomial algebra in the power-sum symmetric functions:

Sym ∼= C[P1, P2, . . .], Pn =

∞
∑

i=1

xni .
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The algebra Sym has many vector space bases which are well-studied in the

algebraic combinatorics literature, and one of the most important is the basis

of Schur functions. The natural inner product

〈·, ·〉 : Sym× Sym −→ C

can be defined in several ways, one of which is to declare the Schur functions

to be orthonormal. The connection with the Heisenberg algebra and the

Fock space is then as follows: the Heisenberg algebra h acts on Sym, with

the generator p−i, i ∈ N+, acting by multiplication by the power sum Pi,

and the generator pi of presentation (1.2) acting by i ∂
∂Pi

, which is the linear

operator adjoint to p−i with respect to the inner product. This representa-

tion of h on symmetric functions is of course isomorphic to the Fock space

F ; moreover, the free abelian group spanned by the Schur functions defines

a natural integral form FZ of the Fock space. Any other realization of the

Fock space is canonically isomorphic to Sym up to scalar multiple. Therefore,

the various natural bases of Sym often acquire interesting interpretations in

other constructions of the Fock space.

The definition of the Fock space FL associated to a lattice Heisenberg

algebra hL or to a quantized Heisenberg algebra is analogous to the definition

of F : induce the trivial representation of the subalgebra generated by the

{pi,n}n>0 to the entire algebra hL. Lattice Heisenberg algebras and their

Fock space representations also have integral forms which arise naturally in

geometric and categorical constructions.

2. Weak Categorifications and Geometrizations

The Heisenberg algebra and its Fock space representation occur as orga-

nizing objects in several places in mathematics, including the representation

theory of Hecke algebras and the geometry of Hilbert schemes. In this sec-

tion we review these appearances of the Heisenberg algebra which lead to

its categorification.

2.1. The Heisenberg algebra and the representation theory of

Hecke algebras

For n ∈ N, let Hn(q) denote the Hecke algebra (over C) of the symmetric
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group Sn at a generic complex number q (that is, a complex number q which

is not a nontrivial root of unity). Explicitly, Hn(q) is the C-algebra generated

by t1, . . . , tn−1 with relations

• t2i = q + (q − 1)ti for i = 1, 2, . . . , n,

• titj = tjti for i, j = 1, 2, . . . , n− 1 such that |j − i| > 1,

• titi+1ti = ti+1titi+1 for i = 1, 2, . . . , n− 2.

By convention, we set H0(q) = H1(q) = C. To simplify notation, we will

write Hn for Hn(q) in the sequel.

For an algebra A, let A-mod denote the category of finite-dimensional

(left) A-modules. The (split) Grothendieck group of A-mod is denoted

K0(A-mod). This Grothendieck group is naturally a Z-module, and we set

K(A-mod) = C⊗Z K0(A-mod).

The vector space K(A-mod) has dimension equal to the number of isomor-

phism classes of irreducible finite-dimensional A-modules. ThusK(Hn-mod)

has dimension equal to the number of partitions of n. Following a common

philosophy in the representation theory of symmetric groups, the vector

spaces K(Hn-mod) should be studied for all n at once, for when taken all

together, these spaces have interesting symmetry. Precisely, there is an iso-

morphism

F ∼=

∞
⊕

n=0

K(Hn-mod) (as h-modules) (2.1)

between the Fock space and the direct sum of all Grothendieck groups. This

statement is essentially a theorem of Zelevinsky [27], though he writes in

the language of “positive, self-adjoint Hopf algebras” and symmetric func-

tions rather than in the language of representations of h. When q = 1, and

Hn is isomorphic to the group algebra of the symmetric group, the isomor-

phism (2.1) appears first in the work of Geissinger [7], again in the language

of the Hopf algebra of symmetric functions.

In [27], Zelevinsky also considers various generalizations, wherein the

Hecke algebra Hn is replaced by the group algebra over C of the finite group
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GLn(Fq) or the wreath product of the symmetric group Sn with an arbi-

trary finite group. Zelevinsky’s work was subsequently further extended

by Frenkel-Jing-Wang [5, 6], who interpreted various natural vertex opera-

tor constructions in the language of the representation theory of symmetric

groups and wreath products.

We now briefly describe the action of h on
⊕

nK(Hn-mod) that gives

rise to the isomorphism (2.1). The embeddings Hn ⊗Hm →֒ Hn+m give rise

to induction functors

Ind n,m : Hn-mod×Hm-mod −→ Hn+m-mod

and restriction functors

Res n,m : Hn+m-mod −→ Hn-mod×Hm-mod.

These functors are exact and biadjoint (i.e. left and right adjoint) to one

another. If M is a representation of Hm, there is an associated functor

Ind n(M) : Hn-mod −→ Hn+m-mod, N 7→ Ind n,mN ⊠M,

which admits a biadjoint Res n(M).

For any finite-dimensional representationM ofHm, the functors Ind n(M)

and Res n(M) are exact, and thus induce linear maps K(Ind n(M)) and

K(Res n(M)) on the associated Grothendieck groups. For n ∈ N+, define

an =
⊕

m

K(Resm(triv)), bn =
⊕

m

K(Indm(sign)),

where triv and sign are the trivial and sign representations of Hn. The linear

operators an and bn satisfy the defining relations (1.3) of h and the resulting

representation of h on
⊕

nK(Hn-mod) turns out to be isomorphic to the

Fock space F , with
⊕

nK0(Hn-mod) isomorphic to its integral form FZ.

The isomorphism (2.1) is called a weak categorification of the Fock space

because the relations in h are shown to hold at the level of the Grothendieck

group. Strong cateorifications of h, which are the main subject of the latter

parts of this survey, consist of lifting equalities in the Grothendieck group to
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specified isomorphisms in the category, and describing the structure of the

space of natural transformations which gives rise to these isomorphisms.

2.2. Heisenberg algebras and the cohomology of Hilbert schemes

An important motivation for the categorified Heisenberg actions to fol-

low is the action of the Heisenberg algebra on the cohomology of Hilbert

schemes. We recall this construction briefly here, referring the reader to [20,

§8] for a more complete discussion.

Let X be a smooth connected (quasi-)projective surface, which, for sim-

plicity of exposition, we assume to have cohomology only in even degree. Let

X [n] denote the Hilbert scheme of n points on X. Like symmetric groups and

Hecke algebras, the Hilbert schemes X [n] can be studied for all n together. In

particular, following Göttsche [8], in order to study the cohomology groups

H∗(X [n],C), it is natural to consider the direct sum
⊕∞

n=0H
∗(X [n],C), which

has interesting symmetry. The intersection form, multiplied by −1, gives

H2(X,Z) the structure of a lattice, and associated to this lattice is the

Heisenberg algebra hH
2(X,Z) (see Section 1.2). Constructions of Nakajima

[20] and Grojnowski [9] then give an isomorphism

FH2(X,Z) ∼=

∞
⊕

n=0

H∗(X [n],C) (as hH
2(X,Z)-modules) (2.2)

between the cohomology of Hilbert schemes and the Fock space representa-

tion FH2(X,Z) of hH
2(X,Z). Nakajima’s construction involves defining explicit

correspondences in the products of Hilbert schemes whose induced maps

on cohomology satisfy the defining Heisenberg relations (1.4). Grojnowski’s

formulation is similar. Of particular interest is the case when X is the min-

imal resolution of a simple singularity, that is, the minimal resolution of

C
2/Γ for Γ a finite subgroup of SL2(C), as in this case the Heisenberg alge-

bra hH
2(X,Z) is a subalgebra of the affine Kac-Moody Lie algebra associated

to Γ. Representations of this Kac-Moody Lie algebra are often studied by

first restricting to the Heisenberg algebra hH
2(X,Z), and then considering the

resulting decomposition of the original representation into copies of Fock

space.
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The Nakajima-Grojnowski constructions are examples of geometriza-

tions of Heisenberg algebra representations, that is, linear actions of the

Heisenberg algebra on the cohomology groups of algebraic varieties. Ge-

ometrizations are similar to weak categorifications in that the defining rela-

tions in the algebra are only checked at the level of cohomology, rather than

at the more refined level of categories of sheaves. A principle goal of strong

Heisenberg categorification is to lift the geometrizations and weak categorifi-

cations described above to strong categorifications. In the rest of this survey

we will describe several examples of such strong categorifications.

3. A Graphical Categorification

In this section, we review the categorification of the Heisenberg algebra

in terms of planar diagrammatics introduced in [16] (see also [13]) and the

related strong categorification of the Fock space representation. We choose

to present these here in the language of monoidal categories instead of the

2-category theoretic language used in [16].

3.1. The graphical category

In this section, for simplicity, we will let q be a complex number which

is not a nontrivial root of unity, though all the constructions and theorems

in this section carry over to the case where q is an indeterminate. We define

an additive C-linear strict monoidal category H′(q) as follows. The set of

objects is generated by two objects Q+ and Q−. Thus an arbitrary object of

H′(q) is a finite direct sum of tensor products Qε := Qε1 ⊗ · · · ⊗Qεn , where

ε = ε1 . . . εn is a finite sequence of + and − signs. The unit object 1 = Q∅.

The space of morphisms HomH′(q)(Qε, Qε′) is the C[q, q
−1]-module gen-

erated by planar diagrams modulo local relations. The diagrams are oriented

compact one-manifolds immersed in the strip R× [0, 1], modulo rel boundary

isotopies. The endpoints of the one-manifold are located at {1, . . . ,m}×{0}

and {1, . . . , k} × {1}, where m and k are the lengths of the sequences ε and

ε′ respectively. The orientation of the one-manifold at the endpoints must

agree with the signs in the sequences ε and ε′ and triple intersections are

not allowed. For example, the diagram
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is a morphism from Q−+−−+ to Q−−+ (note that, in this sense, diagrams

are read from bottom to top). Composition of morphisms is given by the

natural vertical gluing of diagrams and the tensor product of morphisms

is horizontal juxtaposition. An endomorphism of 1 is a diagram without

endpoints. The local relations are as follows.

(3.1)

(3.2)

(3.3)

(3.4)

Definition 3.1 (Karoubi envelope). Let C be a category. The Karoubi

envelope of C is the category whose objects are pairs (A, e) where A is an

object of C and e ∈ Hom C(A,A) is an idempotent endomorphism of A (i.e.

e2 = e). Morphisms (A, e) → (A′, e′) are morphisms f : A → A′ in C such

that the diagram
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commutes. Composition in the Karoubi envelope is as in C, except that the

identity morphism of (A, e) is e.

Let H(q) be the Karoubi envelope of H′(q). In the case q = 1, the

category H(1) was defined by Khovanov in [13].

3.2. Categorification of the Heisenberg algebra

It follows from the local relations (3.1) and (3.2) that upward oriented

crossings satisfy the Hecke algebra relations and so we have a canonical

homomorphism

Hn → EndH′(q)(Q+n). (3.5)

Similarly, since each space of morphisms in H′(q) consists of diagrams up to

isotopy, downward oriented crossings also satisfy the Hecke algebra relations

and give us a canonical homomorphism

Hn → EndH′(q)(Q−n). (3.6)

Introduce the complete q-symmetrizer and q-antisymmetrizer

e(n)=
1

[n]q!

∑

w∈Sn

tw, e
′(n)=

1

[n]q−1 !

∑

w∈Sn

(−q)−l(w)tw, where [n]q=
n−1
∑

i=0

qi.

Both e(n) and e′(n) are idempotents in Hn (see [10, §1]). We will use

the notation e(n) and e′(n) to also denote the image of these idempo-

tents in EndH′(q)(Q+n) and EndH′(q)(Q−n) under the canonical homomor-

phisms (3.5) and (3.6). We then define the following objects in H(q):

Sn
+=(Q+n , e(n)), Sn

−=(Q−n , e(n)), Λn
+=(Q+n , e′(n)), Λn

−=(Q−n , e′(n)).
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Theorem 3.2 ([16, Th. 3.7]). In the category H(q), we have

Sn
− ⊗ Sm

−
∼= Sm

− ⊗ Sn
−,

Λn
+ ⊗ Λm

+
∼= Λm

+ ⊗ Λn
+,

Sn
− ⊗ Λm

+
∼=
(

Λm
+ ⊗ Sn

−

)

⊕
(

Λm−1
+ ⊗ Sn−1

−

)

.

We thus have a well-defined algebra homomorphism F : hZ → K0(H(q))

given by

F(an) = [Sn
−], F(bn) = [Λn

+].

This homomorphism is injective.

Theorem 3.2 was proved in [13] in the case q = 1. It is conjectured in

[16] (and in [13] in the case q = 1) that F is in fact an isomorphism.

3.3. Categorification of Fock space

For 1 ≤ k ≤ n, we can view Hk as a submodule of Hn via the embedding

ti 7→ ti. We introduce here some notation for bimodules. First note that Hn

is naturally an (Hn,Hn)-bimodule. Via our identification of Hk, 1 ≤ k ≤ n,

with a submodule of Hn, we can naturally view Hn as an (Hk,Hl)-bimodule

for 1 ≤ k, l ≤ n. We will write k(n)l to denote this bimodule. If k or l is

equal to n, we will often omit the subscript. Thus, for instance,

• (n) denotes Hn, considered as an (Hn,Hn)-bimodule,

• (n)n−1 denotes Hn, considered as an (Hn,Hn−1)-bimodule, and

• n−1(n) denotes Hn, considered as an (Hn−1,Hn)-bimodule.

Note that tensoring on the left by (n)n−1 (respectively n−1(n)) is the in-

duction functor Hn−1-mod → Hn-mod (respectively the restriction functor

Hn-mod → Hn−1-mod). We have an isomorphism of (Hn,Hn)-bimodules

n(n + 1)n ∼= (n)⊕
(

(n)n−1(n)
)

(see [16, Lem. 4.2]).



2012] HEISENBERG CATEGORIFICATION VIA GRAPHICAL CALCULUS 305

We now define certain bimodule maps which will be the building blocks

needed to define an action of the category H(q) on the category of modules

for Hecke algebras. Here and in what follows, we will use string diagram no-

tation for 2-categories. In particular, the bimodule maps below are denoted

by planar diagrams with regions labeled by elements of N := Z≥0. We only

indicate the label of one region since the labels of the others are uniquely

determined by the rule that as we move from right to left, labels increase

by one as we cross upward pointing strands and decrease by one as we cross

downward pointing strands. We refer the reader to [12] for an overview of

this notation.

Define

n+ 1 : (n+ 1)n(n+ 1) → (n+ 1), x⊗ y 7→ xy, (3.7)

to be the map given by multiplication. Define the inclusion

n : (n) →֒ n(n+ 1)n, z 7→ z. (3.8)

Define

n : n(n+ 1)n → (n) (3.9)

to be the map that is the identity on Hn and that maps tn to zero. Finally,

define

n+ 1 : (n+ 1) → (n+ 1)n(n+ 1) (3.10)

to be the map determined by

1n+1 7→

n+1
∑

i=1

qi−(n+1)ti · · · tn−1tn ⊗ tntn−1 · · · ti.

We set tn+1 = 1 above, so that the i = n+ 1 term in the sum is 1⊗ 1. The

maps defined in (3.7)–(3.10) are adjunction maps that make (Res , Ind ) into

a biadjoint pair (see [16, Prop. 4.4]).

Our final diagrammatic ingredient is the crossing, which we define as

follows:

n : (n+ 2)n → (n+ 2)n, z 7→ ztn+1. (3.11)
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It follows from [16, Prop. 4.5] that any two isotopic diagrams involving this

crossing as well as cups and caps will give rise to the same bimodule map

(see below).

For n,m ∈ N, let mbimodn be the category of finite-dimensional (Hm,Hn)-

bimodules and let bimodn =
⊕

m∈N mbimodn. By [16, Prop. 4.7], the re-

lations (3.1)–(3.4) hold when these diagrams are interpreted as maps of bi-

modules (with any labelings of the regions). For n ∈ N, we therefore have a

well-defined functor An : H′(q) → bimodn defined as follows. For an object

Qε of H′(q), ε = ε1ε2 . . . εℓ, A(Qε) is the tensor product of induction of

restriction bimodules, where each + corresponds to the induction bimodule

and each − corresponds to the restriction bimodule. For instance,

Ak(Q+−−+−++)

= (n+ 1)n(n+ 1)n+1(n+ 2)n+2(n+ 2)n+1(n+ 2)n+2(n+ 2)n+1(n+ 1)n.

In remains to define An on planar diagrams (morphisms of H′(q)). This is

done as follows. Let D be a morphism of H′(q). We label the rightmost

region of the diagram D with n. We then label all other regions of the

diagram with integers such that as we move across the diagram from right

to left, labels increase by one when we cross upward pointing strands and

decrease by one when we cross downward pointing strands. It is easy to see

that there is a unique way to do this. For instance, the following diagram

would be labeled as indicated.

The functor An then maps the labeled diagram D to the corresponding bi-

module map according to the definitions (3.7)–(3.11). More precisely, we

isotope D so that it contains left and right cups and caps in addition to

upward pointing crossings (alternatively, one can directly compute the bi-

module maps corresponding to the other crossings and then there is no need

to isotope D). Then D is mapped to the corresponding composition of the

maps (3.7)–(3.11). We adopt the convention that D is mapped to zero if any

of its regions is labeled by a negative integer. Since the category bimodn is
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idempotent complete, the functorAn induces a functorAn : H(q) → bimodn
which we denote by the same symbol.

For abelian or triangulated categories C,D, let Fun(C,D) denote the cat-

egory of exact functors from C to D (with morphisms being natural transfor-

mations). Any element of Fun(C,D) induces a Z-linear mapK0(C) → K0(D).

We thus have a natural map

K0 : Fun(C,D) → Hom Z(K0(C),K0(D)).

Now, for m,n ∈ N, there is natural functor from mbimodn to Fun(Hn

-mod,Hm-mod). Namely, an (Hm,Hn)-bimodule M is sent to the functor

M⊗Hn
· (i.e. the functor given by tensoring on the left withM) and bimodule

maps are sent to the corresponding natural transformations. We then define

the functor A to be the composition

A : H(q)

⊕
n∈N

An

−−−−−−→
⊕

m,n∈N

mbimodn →
⊕

m,n∈N

Fun(Hn-mod,Hm-mod)

−→ Fun

(

⊕

n∈N

Hn-mod,
⊕

n∈N

Hn-mod

)

. (3.12)

Thus A defines a representation of the category H(q) on the category
⊕

n∈NHn-mod.

Theorem 3.3 (Categorification of Fock space). We have a commutative

diagram

(3.13)

where the arrow hZ → End ZFZ is the action of the integral version of the

Heisenberg algebra hZ on the integral version FZ of the Fock space represen-

tation described in Section 2. Thus the action of H(q) on
⊕

n∈NHn-mod is

a (strong) categorification of the Fock space representation of the Heisenberg
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algebra (one can recover the usual, non-integral version, after tensoring with

C or by replacing K0 by K everywhere in the above).

There is an isomorphism from FZ
∼= Z[b1, b2, . . .] to the ring of symmetric

functions, taking bi to the elementary symmetric function, usually denoted

ei. Theorem 3.3 endows the Fock space with another natural basis, namely,

the classes of irreducible Hn-modules in the Grothendieck group. One can

show that under the isomorphism to symmetric functions, these classes get

mapped to the basis of Schur functions.

As is usual in the theory of categorification, the category H(q) has con-

siderably more structure than the ring hZ which it categorifies. Much of this

extra structure appears in the Hom-spaces of H(q). It turns out that one

can give an explicit description of these Hom-spaces.

In order to simplify our pictures, we will use a hollow dot to denote a

right curl and a hollow dot labeled d to denote d right curls.

(3.14)

We note that in [13, 16], right curls were denoted by solid dots. We choose

to use hollow dots here to match the notation of [3] and used in Section 4.

Define cd to be a clockwise oriented circle with d right curls.

Cd := d

Let H+
n be the C-algebra with generators ti, yi, 1 ≤ i ≤ n, and defining

relations

yitk = tkyi, i 6= k, k + 1,

tiyi+1 = yiti + (q − 1)yi+1 + q,

yi+1ti = tiyi + (q − 1)yi+1 + q.

If q 6= 1, H+
n is isomorphic to a natural subalgebra of the affine Hecke algebra

of type A (see [16, Lem. 2.7]). Moreover, when q = 1, H+
n is isomorphic to

the degenerate affine Hecke algebra of type A.
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It follows from [16, Lem. 2.3] that there is a natural morphism

φn : H+
n → EndH(q)(Q+n)

taking tk to the crossing of the k and (k + 1)-st strands and taking yk to

a right curl (or hollow dot) on the k-th strand. More generally, there is a

natural morphism

ψn = φn ⊗ ψ0 : H
+
n ⊗C[q,q−1] C[q, q

−1][c0, c1, . . .] → EndH′(q)(Q+n),

where the dotted clockwise circles corresponding to elements of C[c0, c1, . . .]

are placed to the right of the diagrams corresponding to elements of H+
n . By

[16, Th. 2.8], ψn is in fact an isomorphism of algebras, thus giving a precise

description of the space EndH′(q)(Q+n).

It is also possible to give an explicit basis for an arbitrary Hom-space

HomH′(q)(Qε, Qε′) for any sequences ε, ε′. Let k denote the total number

of +s in ǫ and −s in ǫ′. We clearly have HomH′(q)(Qǫ, Qǫ′) = 0 if the total

number of −s in ǫ and +s in ǫ′ is not also equal to k. Thus, we assume from

now on that k is also the total number of −s in ǫ and +s in ǫ′.

Proposition 3.4 ([16, Prop. 2.10]). For any sign sequences ε, ε′, a basis of

the C[q, q−1]-module HomH′(q)(Qε, Qε′) is given by the set B(ε, ε′), which is

the set of planar diagrams obtained in the following manner:

• The sequences ε and ε′ are written at the bottom and top (respectively)

of the plane strip R× [0, 1].

• The elements of ε and ε′ are matched by oriented segments embedded

in the strip in such a way that their orientations match the signs (that

is, they start at either a + of ǫ or a − of ǫ′, and end at either a − of ǫ

or a + of ǫ′), each two segments intersect at most once, and no triple

intersections are allowed.

• Any number of hollow dots may be placed on each interval near its out

endpoint (i.e. between its out endpoint and any intersections with other

intervals).

• In the rightmost region of the diagram, a finite number of clockwise

disjoint nonnested circles with any number of hollow dots may be drawn.
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Thus the set of diagrams B(ε, ε′) is parameterized by k! possible matchings of

the 2k oriented endpoints, a sequence of k nonnegative integers determining

the number of hollow dots on each interval, and by a finite sequence of non-

negative integers determining the number of clockwise circles with various

numbers of hollow dots.

An example of an element of B(− − + − +,+ − + − + − −) is drawn

below.

It turns out that the hollow dots (right curls) have a nice interpretation

in terms of the Fock space categorification via modules for Hecke algebras.

For k = 0, 1, 2, . . . n, let

Lk+1 =

k
∑

i=1

qi−kti · · · tk · · · ti

= tk+q
−1tk−1tktk−1+q

−2tk−2tk−1tktk−1tk−2+· · ·+q1−kt1 · · · tk · · · t1.

By convention, L1 = 0. The Lk (or, more precisely, q−1Lk) are called Jucys-

Murphy elements of Hn+1 (see, for example, [18, Sec. 3.3]). By [16, Prop.

4.12], the functor A (see (3.12)) maps the single right curl

n

to the bimodule map

(n+ 1)n → (n+ 1)n, z 7→ zLn+1.

Thus right curls correspond to Jucys-Murphy elements, which play a signif-

icant role in the theory of Hecke algebras. The observation that right curls

correspond to Jucys-Murphy elements was first made by Khovanov in the

case q = 1 (see [13, §4]).
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The category H(q) also acts on the category
⊕

nC[GLn(Fq)]-mod of

modules over finite general linear groups. In this case, upward and down-

ward oriented strands correspond to certain parabolic induction and restric-

tion functors. This action yields a second categorification of the Fock space

representation of hZ. We refer the reader to [16, §5] for details.

4. Quantum Heisenberg Categorification, Finite Subgroups of

SL2(C), and Hilbert Schemes

In this section we describe the strong categorification, developed in [3],

that is related to the geometrization via the Hilbert scheme described in

Section 2.2.

Let Γ be a finite subgroup of SL2(C). To each conjugacy class of finite

subgroup one can associate an affine Dynkin diagram, which we also denote

by Γ, and hence one of the lattices LΓ from Section 1. This correspondence

is due originally to McKay [19]. We will review a slightly modified version

of this correspondence, which constructs a t-deformation of the lattice LΓ

from the finite group Γ.

The inclusion Γ ⊆ SL2(C) defines a 2-dimensional representation V of

Γ. As a result, Γ acts by automorphisms on the exterior algebra
∧∗(V ),

and one can form the smash product algebra BΓ := C[Γ]#
∧∗(V ). The

algebra BΓ is a finite-dimensional Frobenius algebra with a nondegenerate

trace tr : BΓ → C. This algebra inherits a Z-grading from the natural

grading on the exterior algebra.

Let BΓ-gpmod be the category of finite-dimensional graded projective

BΓ-modules, and let K0(BΓ-gpmod) be its (split) Grothendieck group. Be-

cause we are considering graded modules,K0(BΓ-gpmod) is actually a Z[t, t−1]

module, where multiplication by t and t−1 on the Grothendieck group come

from positive and negative grading shifts in the category BΓ-gpmod,

t±1[M ] := [M〈±1〉].

The Hom bifunctor

Hom : BΓ-gpmod×BΓ-gpmod −→ gVect,
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whose image is the category gVect of finite-dimensional Z-graded vector

spaces, descends to a Z[t, t−1] semilinear pairing on K0(BΓ-gpmod):

〈[M ], [N ]〉 = dimt(Hom BΓ
(M,N)) ∈ K0(gVect) ∼= Z[t, t−1].

In the above, if W =
⊕

n∈ZW (n) is a Z-graded vector space, then dimt(W )

is its graded dimension:

dimt(W ) =
∑

n∈Z

tn dimCW (n).

This pairing is a t-deformation of the bilinear form of Section 1.

4.1. Categorification of the quantized Heisenberg algebra

Recall the presentation of the quantized Heisenberg algebra hLΓ,t asso-

ciated to the affine Dynkin diagram Γ from Section 1.2. In this section, we

recall the graphical calculus giving rise to a strong categorification of hLΓ,t

constructed in [3].

We define an additive strict monoidal category H′
Γ as follows. The set

of objects of H′
Γ is generated by symbols Q+〈n〉 and Q−〈n〉, for n ∈ Z (the

symbols Q+ and Q− were denoted by P and Q, respectively, in [3]). Just as

in Section 3, the monoidal unit object is denoted 1 = Q∅〈0〉. Moreover, the

modoidal structure is declared to be compatible with shifts 〈·〉 in the sense

that Qε〈s〉 ⊗ Qε′〈s
′〉 = Qεε′〈s + s′〉. Thus an arbitrary object of H′

Γ is a

finite direct sum of tensor products Qε〈s〉 := Qε1〈s1〉⊗ · · · ⊗Qεn〈sn〉, where

ε = ε1 . . . εn is a finite sequence of + and − signs, and s1 + · · ·+ sn = s.

The space of morphisms HomH′

Γ
(Qε〈s〉, Qε′〈s

′〉) is the vector space gen-

erated by planar diagrams modulo local relations. The diagrams are oriented

compact one-manifolds immersed in the strip R × [0, 1], modulo rel bound-

ary isotopies. Each such diagram has a grading, to be defined later in this

section, which determines the difference in shift in the domain and codomain.

In a given planar diagram, the endpoints of the one-manifold are located

at {1, . . . ,m}×{0} and {1, . . . , k}×{1}, wherem and k are the lengths of the

sequences ε and ε′ respectively (this is very similar to the setup of Section 3).

The orientation of the one-manifold at the endpoints must agree with the

signs in the sequences ε and ε′, and triple intersections are not allowed. A
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new feature appearing here which did not appear in Section 3 is that each

immersed one-manifold is allowed to carry dots labeled by elements b ∈ BΓ.

For example,

is an element of HomH′

Γ
(Q+〈s〉, Q+〈s+ deg(b) + deg(b′) + deg(b′′)〉) for

every s ∈ Z, while

is an element of HomH′

Γ
(Q+−〈s〉, Q−+〈s + deg(c)〉) for every s ∈ Z. Note

that the domain of a morphism is specified (up to shift) at the bottom of the

diagram, the codomain is specified (up to shift) at the top, and compositions

of morphisms are read from bottom to top. That the difference between the

shifts in the domain and codomain is deg(b) + deg(b′) + deg(b′′) in the first

picture and deg(c) in the second picture will be clear once the degrees of

these diagrams have been defined.

The local relations imposed are the following. First we have relations

involving the movement of dots along the carrier strand. We allow dots to

move freely along strands and through intersections:

The U-turn 2-morphisms (i.e. the left and right cups and caps) are adjunc-

tions making Q+ and Q− biadjoint up to a grading shift. Collision of dots

is controlled by multiplication in the algebra BΓ:
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Dots on distinct strands supercommute when they move past one another:

In addition to specifying how dots collide and slide we also impose the fol-

lowing local relations:

(4.1)

(4.2)

(4.3)

In the first equation in (4.2), the summation is taken over a basis B

of BΓ, and this morphism is easily seen to be independent of the choice of

basis. We assign a Z-grading to the space of planar diagrams by defining

and by defining the degree of a dot labeled by b to be the degree of b in the
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graded algebra BΓ. When equipped with these assignments, all of the graph-

ical relations are homogeneous, and composition of morphisms is compatible

with the grading.

Just as in Section 3.2, we denote by HΓ the Karoubi envelope of H′
Γ

(see Definition 3.1). Since HΓ is a graded category, the (split) Grothendieck

group K0(HΓ) of HΓ is an algebra over Z[t, t−1], where multiplication by t

corresponds to the shift 〈1〉.

It follows from the local relations in H′
Γ that upward oriented crossings

satisfy the symmetric group relations, while dots labeled by elements of Γ

satisfy the relations in Γ. Furthermore, upward crossings and dots labeled

by elements of Γ satisfy the relations of the wreath product Sn ≀Γ := Sn⋊Γn.

Thus we have a canonical homomorphism

C[Sn ≀ Γ] → EndH′

Γ
(Q+n). (4.4)

Similarly, since each space of morphisms in H′
Γ consists of diagrams up to

isotopy, downward oriented crossings and dots labeled by elements of Γ also

satisfy the wreath product relations and give us a canonical homomorphism

C[Sn ≀ Γ] → EndH′

Γ
(Q−n). (4.5)

As explained in [3, Sec. 3.1.1], to each irreducible representation i ∈ IΓ of Γ,

there is a naturally associated idempotent ei(n) ∈ C[Sn ≀Γ]. We will use the

notation ei(n) to also denote the images of this idempotent in EndH′

Γ
(Q+n)

and EndH′

Γ
(Q−n) under the canonical homomorphisms (4.4) and (4.5). We

then define the following objects in H′
Γ:

Sn
i,+ = (Q+n , ei(n)), Sn

i,− = (Q−n , ei(n)).

Theorem 4.1 ([3, Th. 1]). In the category HΓ, for i, j ∈ IΓ, we have

Sn
i,+ ⊗ Sm

j,+
∼= Sm

j,+ ⊗ Sn
i,+,

Sn
i,− ⊗ Sm

j,−
∼= Sm

j,− ⊗ Sn
i,−,

Sn
i,− ⊗ Sm

i,+
∼=
⊕

k≥0

Sm−k
i,+ ⊗ Sn−k

i,− ⊗H∗(Pk),

Sn
i,− ⊗ Sm

j,+
∼=
⊕

k=0,1

Sm−k
j,+ ⊗ Sn−k

i,− , when 〈i, j〉 = −1,
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Sn
i,− ⊗ Sm

j,+
∼= Sm

j,+ ⊗ Sn
i,− when 〈i, j〉 = 0.

We thus have a well-defined algebra homomorphism F : h
LΓ,t

Z
→ K0(HΓ),

given by

F(b
(n)
i ) = [Sn

i,−], F(a
(n)
i ) = [Sn

i,+].

The homomorphism F is an isomorphism.

In the above, the cohomology of projective space H∗(Pk) is notation for

a direct sum of copies of shifts of the identity, symmetric about the origin,

so that, for an object A of HΓ, we have

A⊗H∗(Pk) ∼= A〈−k〉 ⊕A〈−k + 2〉 ⊕ · · · ⊕A〈k − 2〉 ⊕A〈k〉.

The shifts 〈k〉 should not be confused with the pairing 〈i, j〉 on the lattice.

Note that in Theorem 3.2, the analogous homomorphism F is only

known to be injective; that it is an isomorphism is a conjecture. The rea-

son that F can be shown to be an isomorphism in Theorem 4.1 is that

each endomorphism algebra in HΓ has a nontrivial grading, inherited from

the nontrivial grading on the algebra BΓ, with finite-dimensional graded

pieces. This allows one to show that endomorphism algebras in HΓ have the

Krull-Schmidt property, and hence that objects of HΓ decompose uniquely

as direct sums of indecomposable objects. The category H(q) lacks such a

grading, which makes identifying the Grothendieck group more difficult.

4.2. Categorification of quantized Fock space

Let XΓ denote the minimal resolution of the singular variety C
2/Γ. By

the Nakajima-Grojnowski constructions described in Section 2.2, the Heisen-

berg algebra hH
2(XΓ,Z) acts on the cohomology of all Hilbert schemes, giving

a geometrization of the Fock space representation,

FH2(XΓ,Z) ∼=

∞
⊕

n=0

H∗(X
[n]
Γ ,C) (as hH

2(XΓ,Z)-modules).

The multiplicative group C
∗ acts on C

2 by scaling, and this action com-

mutes with the action of Γ. Thus X
[n]
Γ inherits an action of C∗. In view of
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this fact, and by analogy with geometric constructions of representations of

quantum affine algebras via quiver varieties [21], it is natural to suspect that

the quantized Heisenberg algebra hLΓ,t acts on the C
∗-equivariant K-theory

of these Hilbert schemes. In fact, a much stronger statement is true, as we

now explain.

Let Db
C∗(X

[n]
Γ ) denote the bounded derived category of C∗-equivariant

coherent sheaves on X
[n]
Γ . For n ∈ N, let Dn =

⊕

m≥0D
b
C∗(X

[n]
Γ × X

[m]
Γ ).

In [3, Sec. 4], a functor AΓ
n : HΓ → Dn is defined. (Note that there is

some inconsistency between the notation here and the notation in [3]; in

that paper, the notation AΓ
n was used for an algebra, and notation for the

functor from HΓ to Dn was not introduced.)

Now, for m,n ∈ N, there is a natural functor from Db
C∗(X

[n]
Γ × X

[m]
Γ )

to Fun(Db(X
[n]
Γ ),Db(X

[m]
Γ )). If A ∈ Db

C∗(X
[n]
Γ ×X

[m]
Γ ), then the associated

functor, which is known as the Fourier-Mukai transform, is defined by

B 7→ π2∗(π
∗
1(B)⊗A),

where π1 and π2 are the projections from X
[n]
Γ ×X

[m]
Γ to the first and second

factors respectively, and all operations are derived. In general, when the

spaces involved are not compact, one needs to take care when defining the

functor associated to a kernel. However, in this case the objects of interest

in Dn are proper over both factors, and the non-compactness of XΓ does

not cause any technical difficulty. We refer the reader to [11] for more in-

formation about derived categories of coherent sheaves and Fourier-Mukai

transforms.

We now define the functor AΓ to be the composition

AΓ : HΓ

⊕
n∈N

AΓ
n

−−−−−−→
⊕

m,n∈N

Db
C∗(X

[n]
Γ ×X

[m]
Γ )→

⊕

m,n∈N

Fun(Db(X
[n]
Γ ),Db(X

[m]
Γ ))

−→ Fun

(

⊕

n∈N

Db
C∗(X

[n]
Γ ),

⊕

n∈N

Db
C∗(X

[n]
Γ )

)

. (4.6)

Thus AΓ defines a representation of the category HΓ on the category
⊕

nD
b
C∗(X

[n]
Γ ).
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Theorem 4.2 (Categorification of quantized Fock space). We have a com-

mutative diagram

(4.7)

where the arrow h
LΓ,t

Z
→ EndFLΓ

Z
is the action of the integral form of the

quantized Heisenberg algebra on the integral form of the quantized Fock space.

As an immediate corollary, we recover an action of the quantized Heisen-

berg algebra hLΓ,t on the C
∗-equivariant K-theory of Hilbert schemes, an-

swering a question of Nakajima [20, Question 8.35]. Thus the action of the

quantized Heisenberg algebra on C
∗-equivariant K-theory yields a geometric

realization of a quantized Fock space.

The categories Db
C∗(X

[n]
Γ ) can be replaced by equivalent derived cate-

gories of modules over a finite-dimensional Koszul algebra, see [3, Sec. 8].

After this replacement, the representation ofHΓ becomes abelian rather than

triangulated: the endofunctors assigned to each object are given by explicit

flat bimodules (rather than complexes thereof) and the natural transforma-

tions are bimodule maps. This abelian construction, while less geometric

than the construction on Hilbert schemes, is closer in spirit to the construc-

tion of Section 3.3.

As with the Heisenberg categorifications of [16] and [13], the category

HΓ has a considerable amount of structure at the level of morphisms. For

example, although left curls on an upward pointing strand are zero, right

curls (which have degree 2) are interesting morphisms. As shorthand, we will

draw right curls in HΓ as hollow dots (see (3.14)). These hollow dots satisfy

an “affine Hecke” type relation with crossings which involves the creation of

labeled solid dots,
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where the summations are over a basis B of the finite-dimensional Frobenius

algebra BΓ. These relations are reminiscent of relations in the degenerate

affine Hecke algebra associated to wreath products, see [3, Sec. 3.5.1] and

references therein.

5. Further Historical Remarks

We have not been able to treat all aspects of the categorification of

the Heisenberg algebra in this paper. We therefore conclude by indicating

some other related results that have appeared it the literature. It would be

interesting to further elucidate the connection between the results below and

the strong categorifications described above.

In [26], Shan and Vasserot defined an action of the Heisenberg algebra

on the Grothendieck group of a certain category of modules for cyclotomic

rational double affine Hecke algebras. In this way they obtain a categorifica-

tion of the Fock space representations. They then describe the relationship

between a certain filtration on the Grothendieck group (by support) and a

representation theoretic grading on the Fock space, allowing them to prove a

conjecture of Etingof and compute the number of finite-dimensional simple

objects in the representation category.

We also hope that the constructions of [3] can be modified to cover the

case where Γ is trivial and XΓ = C
2. This case is particularly interesting

because of the relationship between Hilbert schemes of points on C
2 and

many other algebraic structures, including elliptic Hall algebras, shuffle al-

gebras, and Macdonald polynomials. At the level of localized equivariant

K-theory, the Hilbert scheme of points on C
2 has been studied by Feigen-

Tsymbaliuk [4] and Schiffmann-Vasserot [25]. It would be interesting to lift

their constructions to strong categorifications.

Many other fundamental structures related to Heisenberg algebras and

vertex operator algebras have been studied at the level of geometrization

and weak categorification. We cannot do justice in this expository paper
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to the large body of work done by many mathematicians over the last 15

years on this subject. As an imperfect compromise, we refer the readers to

Frenkel-Jing-Wang [5, 6], Carlsson-Okounkov [2], Carlsson [1], Lehn-Soerger

[14], Qin-Wang [23], Li-Qin-Wang [15], Okounkov-Pandharipande [22], and

Licata-Savage [17], each of which describes some aspect of the relationship

between algebraic structures like Heisenberg algebras and vertex operators

and the geometry of Hilbert schemes or representation theory of symmetric

groups. Lifting the mathematics studied in these and many other closely

related papers to strong categorifications is an important area of current

activity.
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