SOME CRITERIA FOR STRONGLY STARLIKE MULTIVALENT FUNCTIONS

DINGGONG YANG ${ }^{1}$ AND NENG XU ${ }^{2, b}$

${ }^{1}$ Department of Mathematics, Suzhou University, Suzhou 215006, Jiangsu, People's Republic of China.
${ }^{2}$ Department of Mathematics, Changshu Institute of Technology, Changshu 215500, Jiangsu, People's Republic of China.
${ }^{b}$ E-mail: xun@cslg.edu.cn
IIII

Abstract

By using the method of differential subordination, we obtain some sufficient conditions for strongly p-valent starlikeness.

1. Introduction and Preliminaries

Let $f(z)$ and $g(z)$ be analytic in the unit disk $U=\{z:|z|<1\}$. The function $f(z)$ is subordinate to $g(z)$ in U, written $f(z) \prec g(z)$, if $g(z)$ is univalent in $U, f(0)=g(0)$ and $f(U) \subset g(U)$.

Let A_{p} denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in N=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in U. A function $f \in A_{p}$ is said to be p-valent starlike of order α in U if it satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>p \alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote this class by $S_{p}^{*}(\alpha)$. For $-1 \leq b<a \leq 1$ and $0<\beta \leq 1$, a function $f \in A_{p}$ is said to be in the class $S_{p}^{*}(\beta, a, b)$ if it

[^0]satisfies
\[

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec p\left(\frac{1+a z}{1+b z}\right)^{\beta} \tag{1.3}
\end{equation*}
$$

\]

It is easy to know that each function in the class $S_{p}^{*}(\beta, a, b)$ is p-valently starlike in U. Also we write

$$
S_{p}^{*}(\beta, 1,-1)=\widetilde{S}_{p}^{*}(\beta) \quad \text { and } \quad S_{p}^{*}(1, a, b)=S_{p}^{*}(a, b)
$$

Note that $S_{p}^{*}(1-2 \alpha,-1)=S_{p}^{*}(\alpha)(0 \leq \alpha<1)$ and $\widetilde{S}_{p}^{*}(\beta)(0<\beta \leq 1)$ is the class of strongly starlike p-valent functions of order β in U.

A number of results for strongly starlike functions in U have been obtained by several authors (see, e.g., [1, 3-11]). The object of the present paper is to derive some criteria for functions in the class A_{p} to be strongly starlike p-valent of order β in U.

To prove our results, we need the following lemma due to Miller and Mocanu [2].

Lemma 1.1. Let $g(z)$ be analytic and univalent in U and let $\theta(w)$ and $\varphi(w)$ be analytic in a domain D containing $g(U)$, with $\varphi(w) \neq 0$ when $w \in g(U)$. Set

$$
Q(z)=z g^{\prime}(z) \varphi(g(z)), \quad h(z)=\theta(g(z))+Q(z)
$$

and suppose that
(i) $Q(z)$ is starlike univalent in U, and
(ii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{\frac{\theta^{\prime}(g(z))}{\varphi(g(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0 \quad(z \in U)$.

If $p(z)$ is analytic in U, with $p(0)=g(0), p(U) \subset D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(g(z))+z g^{\prime}(z) \varphi(g(z))=h(z) \tag{1.4}
\end{equation*}
$$

then $p(z) \prec g(z)$ and $g(z)$ is the best dominant of (1.4).
Applying Lemma 1.1 we prove
Lemma 1.2. Let k and m be integers, $m \neq 0, \lambda$ be real, $-1 \leq b<a \leq$ $1,0<\beta \leq 1$ and suppose that one of the following conditions is satisfied:
(i) $\lambda m>0, \mu>0$ and $\max \{|k-1| \beta,|k| \beta,|m+k-1| \beta\} \leq 1$;
(ii) $\lambda m>0, \mu=0$ and $\max \{|k-1| \beta,|m+k-1| \beta\} \leq 1$;
(iii) $\lambda=0, \mu>0$ and $\max \{|k-1| \beta,|k| \beta\} \leq 1$;
(iv) $\lambda=\mu=0$ and $|k-1| \beta \leq 1$.

If $p(z)$ is analytic in $U, p(0)=1$, and $p(z) \neq 0(z \in U$) when $m<0$ (with $\lambda<0), k>0$, and if

$$
\begin{equation*}
\lambda(p(z))^{m}+\mu p(z)+\frac{z p^{\prime}(z)}{(p(z))^{k}} \prec h(z), \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=\lambda\left(\frac{1+a z}{1+b z}\right)^{m \beta}+\mu\left(\frac{1+a z}{1+b z}\right)^{\beta}+\frac{\beta(a-b) z}{(1+a z)^{1+(k-1) \beta}(1+b z)^{1-(k-1) \beta}} \tag{1.6}
\end{equation*}
$$

is (close-to-convex) univalent in U, then

$$
p(z) \prec\left(\frac{1+a z}{1+b z}\right)^{\beta}
$$

and $\left(\frac{1+a z}{1+b z}\right)^{\beta}$ is the best dominant of (1.5).

Proof. We choose

$$
g(z)=\left(\frac{1+a z}{1+b z}\right)^{\beta}, \quad \theta(w)=\lambda w^{m}+\mu w, \quad \varphi(w)=\frac{1}{w^{k}}
$$

in Lemma 1.1. In view of $-1 \leq b<a \leq 1$ and $0<\beta \leq 1$, the function $g(z)$ is analytic and convex univalent in U (see [10]). Noting that

$$
\operatorname{Re} g(z)>\left(\frac{1-a}{1-b}\right)^{\beta} \geq 0 \quad(z \in U)
$$

the functions $\theta(w)$ and $\varphi(w)$ are analytic in $D=\{w: w \neq 0\}$ containing $g(U)$, with $\varphi(w) \neq 0$ when $w \in g(U)$.

Since $|k-1| \beta \leq 1$, the function

$$
Q(z)=z g^{\prime}(z) \varphi(g(z))=\frac{z g^{\prime}(z)}{(g(z))^{k}}=\frac{\beta(a-b) z}{(1+a z)^{1+(k-1) \beta}(1+b z)^{1-(k-1) \beta}}
$$

is starlike univalent in U because

$$
\begin{align*}
\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)} & =-1+(1+(k-1) \beta) \operatorname{Re} \frac{1}{1+a z}+(1-(k-1) \beta) \operatorname{Re} \frac{1}{1+b z} \\
& >-1+\frac{1+(k-1) \beta}{1+|a|}+\frac{1-(k-1) \beta}{1+|b|} \\
& \geq 0 \quad(z \in U) \tag{1.7}
\end{align*}
$$

Further we have

$$
\begin{aligned}
& \theta(g(z))+Q(z) \\
& \quad=\lambda\left(\frac{1+a z}{1+b z}\right)^{m \beta}+\mu\left(\frac{1+a z}{1+b z}\right)+\frac{\beta(a-b) z}{(1+a z)^{1+(k-1) \beta}(1+b z)^{1-(k-1) \beta}} \\
& \quad=h(z)
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{Q(z)}=\lambda m\left(\frac{1+a z}{1+b z}\right)^{(m+k-1) \beta}+\mu\left(\frac{1+a z}{1+b z}\right)^{k \beta}+\frac{z Q^{\prime}(z)}{Q(z)} \tag{1.8}
\end{equation*}
$$

If $|m+k-1| \beta \leq 1$, then

$$
\begin{equation*}
\left|\arg \left\{\left(\frac{1+a z}{1+b z}\right)^{(m+k-1) \beta}\right\}\right|<\frac{|m+k-1| \beta \pi}{2} \leq \frac{\pi}{2} \quad(z \in U) \tag{1.9}
\end{equation*}
$$

If $|k| \beta \leq 1$, then

$$
\begin{equation*}
\left|\arg \left\{\left(\frac{1+a z}{1+b z}\right)^{k \beta}\right\}\right|<\frac{|k| \beta \pi}{2} \leq \frac{\pi}{2} \quad(z \in U) \tag{1.10}
\end{equation*}
$$

Consequently, if one of the conditions (i)-(iv) is satisfied, then it follows from (1.7)-(1.10) that

$$
\begin{aligned}
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)} & =\lambda m \operatorname{Re}\left\{\left(\frac{1+a z}{1+b z}\right)^{(m+k-1) \beta}\right\}+\mu \operatorname{Re}\left\{\left(\frac{1+a z}{1+b z}\right)^{k \beta}\right\}+\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)} \\
& >0 \quad(z \in U)
\end{aligned}
$$

Thus $h(z)$ is (close-to-convex) univalent in U. The other conditions of Lemma 1.1 are seen to be satisfied. Therefore, by using Lemma 1.1, we conclude that $p(z) \prec g(z)$ and $g(z)$ is the best dominant of (1.5). The proof of Lemma 1.2 is completed.

2. Main Results

Theorem 2.1. Let $-1 \leq b<a \leq 1$ and $\lambda \geq 0$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\left(\frac{\lambda}{p}-1\right) \frac{z f^{\prime}(z)}{f(z)}-\lambda\right|<\frac{a-b}{1+|b|}\left(\lambda+\frac{1}{1+|a|}\right) \quad(z \in U), \tag{2.1}
\end{equation*}
$$

then $f \in S_{p}^{*}(a, b)$.
Proof. For $f \in A_{p}$ satisfying $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$, the function

$$
p(z)=\frac{z f^{\prime}(z)}{p f(z)}
$$

is analytic in U with $p(0)=1$ and $p(z) \neq 0(z \in U)$. By taking

$$
k=m=\beta=1, \quad \lambda \geq 0 \quad \text { and } \quad \mu=0
$$

in Lemma 1.2, (1.5) and (1.6) become

$$
\begin{align*}
\lambda p(z)+\frac{z p^{\prime}(z)}{p(z)} & =1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\left(\frac{\lambda}{p}-1\right) \frac{z f^{\prime}(z)}{f(z)} \\
& \prec \frac{(a-b) z}{1+b z}\left(\lambda+\frac{1}{1+a z}\right)+\lambda \\
& =h(z) . \tag{2.2}
\end{align*}
$$

Since $h(z)-\lambda$ is univalent in $U, h(0)=\lambda$, and

$$
|h(z)-\lambda| \geq\left|\frac{(a-b) z}{1+b z}\right| \operatorname{Re}\left(\lambda+\frac{1}{1+a z}\right) \geq \frac{a-b}{1+|b|}\left(\lambda+\frac{1}{1+|a|}\right)
$$

for $|z|=1\left(z \neq-\frac{1}{a},-\frac{1}{b}\right)$, it follows from (2.1) that the subordination (2.2) holds. Hence an application of Lemma 1.2 yields

$$
p(z) \prec \frac{1+a z}{1+b z},
$$

that is, $f \in S_{p}^{*}(a, b)$.
Remark 2.1. If we let $a=1, b=0$ and $\lambda=\frac{p}{\alpha}(\alpha>0)$, then Theorem 2.1 reduces to the result of Yang [12, Theorem 2].

Theorem 2.2. Let m be an integer, $m \neq 0, \lambda m \geq 0$ and $0<\beta<\frac{1}{|m|}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right|<B \quad(z \in U) \tag{2.3}
\end{equation*}
$$

where

$$
B=\sqrt{x_{0}^{m \beta}\left(\lambda^{2}+\frac{\beta^{2}}{4}\left(x_{0}+\frac{1}{x_{0}}+2\right)\right)}>|\lambda| \quad(\lambda \text { real })
$$

and x_{0} is the positive root of the equation

$$
\begin{equation*}
\beta(1+m \beta) x^{2}+2 m\left(2 \lambda^{2}+\beta^{2}\right) x-\beta(1-m \beta)=0 \tag{2.4}
\end{equation*}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the bound B in (2.3) is the largest number such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec p\left(\frac{1-z}{1+z}\right)^{\beta} \tag{2.5}
\end{equation*}
$$

Proof. Let m be an integer, $m \neq 0$, and define

$$
p(z)=\frac{p f(z)}{z f^{\prime}(z)}
$$

where $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$. Then $p(z)$ is analytic in $U, p(0)=1, p(z) \neq 0(z \in U)$, and

$$
\begin{equation*}
\lambda(p(z))^{m}+\frac{z p^{\prime}(z)}{(p(z))^{1-m}}=\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(\lambda+\frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)(z \in U) \tag{2.6}
\end{equation*}
$$

Putting

$$
k=1-m, \quad a=1, \quad b=-1, \quad \lambda m \geq 0, \quad \mu=0 \text { and } 0<\beta \leq \frac{1}{|m|}
$$

in Lemma 1.2 and using (2.6), we find that if

$$
\begin{equation*}
\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(\lambda+\frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \prec h(z) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=\lambda\left(\frac{1+z}{1-z}\right)^{m \beta}+\frac{2 \beta z}{(1+z)^{1-m \beta}(1-z)^{1+m \beta}} \tag{2.8}
\end{equation*}
$$

is (close-to-convex) univalent in U, then

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta},
$$

which gives that $f \in \widetilde{S}_{p}^{*}(\beta)$.
Letting $0<\theta<\pi$ and $x=\cot ^{2} \frac{\theta}{2}>0$, we deduce from (2.8) that

$$
\begin{aligned}
\left|h\left(e^{i \theta}\right)\right|^{2} & =\left|\frac{1+e^{i \theta}}{1-e^{i \theta}}\right|^{2 m \beta}\left|\lambda+\frac{2 \beta e^{i \theta}}{1-e^{2 i \theta}}\right|^{2} \\
& =x^{m \beta}\left(\lambda^{2}+\frac{\beta^{2}}{4}\left(x+\frac{1}{x}+2\right)\right)=g(x) \quad(\text { say })
\end{aligned}
$$

and

$$
\begin{equation*}
g^{\prime}(x)=\frac{\beta}{4} x^{m \beta-2}\left(\beta(1+m \beta) x^{2}+2 m\left(2 \lambda^{2}+\beta^{2}\right) x-\beta(1-m \beta)\right) \quad(x>0) . \tag{2.9}
\end{equation*}
$$

Since $0<\beta<\frac{1}{|m|}$, it follows from (2.9) that the function $g(x)$ takes its minimum value at x_{0}, where x_{0} is the positive root of the equation

$$
\beta(1+m \beta) x^{2}+2 m\left(2 \lambda^{2}+\beta^{2}\right) x-\beta(1-m \beta)=0
$$

Thus, in view of $h\left(e^{-i \theta}\right)=\overline{h\left(e^{i \theta}\right)}(0<\theta<\pi)$, we have

$$
\begin{align*}
\inf _{|z|=1(z \neq \pm 1)}|h(z)| & =\min _{0<\theta<\pi}\left|h\left(e^{i \theta}\right)\right| \\
& =\sqrt{x_{0}^{m \beta}\left(\lambda^{2}+\frac{\beta^{2}}{4}\left(x_{0}+\frac{1}{x_{0}}+2\right)\right)}=B, \tag{2.10}
\end{align*}
$$

which implies that $h(U)$ contains the disk $|w|<B$ for $|h(0)|=|\lambda|<B$. Hence, if the condition (2.3) is satisfied, then the subordination (2.7) holds and thus $f \in \widetilde{S}_{p}^{*}(\beta)$.

For the function

$$
\begin{equation*}
f(z)=z^{p} \exp \left\{p \int_{0}^{z} \frac{1}{t}\left(\left(\frac{1-t}{1+t}\right)^{\beta}-1\right) d t\right\} \in A_{p} \tag{2.11}
\end{equation*}
$$

we find after some computations that $f \in \widetilde{S}_{p}^{*}(\beta)$ and that

$$
\begin{equation*}
\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(\lambda+\frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)=h(z) . \tag{2.12}
\end{equation*}
$$

Furthermore we conclude from (2.10) and (2.12) that the bound B in (2.3) is the largest number such that (2.5) holds true. The proof of the theorem is completed.
Corollary 2.1. Let m be an integer, $m \neq 0,0<\beta<\frac{1}{|m|}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right|<B_{m} \quad(z \in U) \tag{2.13}
\end{equation*}
$$

where

$$
B_{m}=\frac{\beta}{\sqrt{(1+m \beta)^{1+m \beta}(1-m \beta)^{1-m \beta}}}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the bound B_{m} in (2.13) is the largest number such that (2.5) holds true.

Proof. Putting $\lambda=0$ in Theorem [2.2, we get

$$
x_{0}=\frac{1-m \beta}{1+m \beta}
$$

and

$$
B=\frac{\beta}{\sqrt{(1+m \beta)^{1+m \beta}(1-m \beta)^{1-m \beta}}}>0 .
$$

Therefore Corollary 2.1 follows immediately from Theorem 2.2,
Remark 2.2. Nunokawa et al. [4, Main theorem] proved that if $f \in A_{1}$ is univalent in U and satisfies

$$
\begin{equation*}
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}}-1\right|<B_{1} \quad(z \in U) \tag{2.14}
\end{equation*}
$$

where

$$
B_{1}=\frac{\beta}{\sqrt{(1+\beta)^{1+\beta}(1-\beta)^{1-\beta}}} \quad(0<\beta<1)
$$

then $f \in \widetilde{S}_{1}^{*}(\beta)$.

Obviously Corollary 2.1 with $p=m=1$ yields the above result obtained by Nunokawa et al. [4] using another method. Furthermore we have shown that the bound B_{1} in (2.14) is the largest number such that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1-z}{1+z}\right)^{\beta} .
$$

Theorem 2.3. Let $m \in N, \lambda>0$ and $0<\beta \leq \frac{1}{m}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{align*}
& \left|\arg \left\{\left(\frac{p f(z)}{z f^{\prime}(z)}\right)^{m}\left(\lambda+\frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)\right\}\right| \\
& \quad<\frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda}(z \in U), \tag{2.15}
\end{align*}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the bound $\frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda}$ in (2.15) is the largest number such that (2.5) holds true.

Proof. Let

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{m \beta}\left(\lambda+\frac{2 \beta z}{1-z^{2}}\right) \quad(z \in U)
$$

for $m \in N, \lambda>0$ and $0<\beta \leq \frac{1}{m}$. Then $h(0)=\lambda>0$ and

$$
h\left(e^{i \theta}\right)=\left(\cot \frac{\theta}{2}\right)^{m \beta} e^{\frac{m \beta \pi}{2} i}\left(\lambda+\frac{\beta i}{2}\left(\cot \frac{\theta}{2}+\tan \frac{\theta}{2}\right)\right) \quad(0<\theta<\pi) .
$$

From this we have

$$
\begin{aligned}
\arg h\left(e^{i \theta}\right) & =\frac{m \beta \pi}{2}+\arctan \left(\frac{\beta}{2 \lambda}\left(\cot \frac{\theta}{2}+\tan \frac{\theta}{2}\right)\right) \\
& \geq \frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda} \quad(0<\theta<\pi),
\end{aligned}
$$

which, in view of $h\left(e^{-i \theta}\right)=\overline{h\left(e^{i \theta}\right)}$, implies that

$$
\inf _{|z|=1(z \neq \pm 1)}|\arg h(z)|=\frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda} .
$$

Thus $h(U)$ contains the sector

$$
|\arg w|<\frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda} .
$$

The remaining part of the proof of the theorem is similar to that in the proof of Theorem 2.2 and so we omit it. Also the function $f(z)$ defined by (2.11) shows that the bound in (2.15) is the largest number such that (2.5) holds true.

Setting $m=\lambda=1$, Theorem 2.3 reduces to the following:
Corollary 2.2. Let $0<\beta \leq 1$. If $f \in A_{p}$ satisfies $f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left(1-\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}\right)\right|<\frac{\beta \pi}{2}+\arctan \beta \quad(z \in U) \tag{2.16}
\end{equation*}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the bound $\frac{\beta \pi}{2}+\arctan \beta$ in (2.16) is the largest number such that (2.5) holds true.

If we let

$$
0<\beta<\frac{1}{m} \quad \text { and } \quad \frac{m \beta \pi}{2}+\arctan \frac{\beta}{\lambda}=\frac{\pi}{2}
$$

then Theorem 2.3 yields
Corollary 2.3. Let $m \in N$ and $0<\beta<\frac{1}{m}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq$ $0(0<|z|<1)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{m}\left(\beta \tan \frac{m \beta \pi}{2}+\frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)\right\}>0 \quad(z \in U) \tag{2.17}
\end{equation*}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the result is sharp.
Theorem 2.4. Let $m \in N$ and $0<\beta<\frac{1}{m}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq 0$ $(0<|z|<1)$ and

$$
\begin{equation*}
\left|\lambda\left(\frac{z f^{\prime}(z)}{p f(z)}\right)^{m}+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}-\rho\right|<\rho \quad(z \in U) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\beta \tan \left(\frac{(1+m \beta) \pi}{4}\right) \quad \text { and } \quad 0<\lambda<2 \rho \tag{2.19}
\end{equation*}
$$

then $f \in \widetilde{S}_{p}^{*}(\beta)$.

Proof. By taking

$$
k=1, \quad m \in N, \quad a=1, \quad b=-1, \quad \lambda>0, \quad \mu=0, \quad 0<\beta<\frac{1}{m}
$$

and

$$
p(z)=\frac{z f^{\prime}(z)}{p f(z)}
$$

in Lemma 1.2, we see that if

$$
\begin{equation*}
\lambda(p(z))^{m}+\frac{z p^{\prime}(z)}{p(z)}=\lambda\left(\frac{z f^{\prime}(z)}{p f(z)}\right)^{m}+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \prec h(z) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=\lambda\left(\frac{1+z}{1-z}\right)^{m \beta}+\frac{2 \beta z}{1-z^{2}} \tag{2.21}
\end{equation*}
$$

is (close-to-convex) univalent in U, then $f \in \widetilde{S}_{p}^{*}(\beta)$.
Letting $0<\theta<\pi$ and $x=\cot \frac{\theta}{2}>0$, it follows from (2.21) that $h\left(e^{i \theta}\right)=\lambda\left(\frac{1+e^{i \theta}}{1-e^{i \theta}}\right)^{m \beta}+\frac{2 \beta e^{i \theta}}{1-e^{2 i \theta}}$

$$
=\lambda x^{m \beta} \cos \frac{m \beta \pi}{2}+i\left(\lambda x^{m \beta} \sin \frac{m \beta \pi}{2}+\frac{\beta}{2}\left(x+\frac{1}{x}\right)\right) \quad(x>0) .
$$

Further we deduce that for $x>0$,

$$
\begin{aligned}
0 & <\operatorname{Re} \frac{1}{h\left(e^{i \theta}\right)}=\frac{\lambda x^{m \beta} \cos \frac{m \beta \pi}{2}}{\left(\lambda x^{m \beta} \cos \frac{m \beta \pi}{2}\right)^{2}+\left(\lambda x^{m \beta} \sin \frac{m \beta \pi}{2}+\frac{\beta}{2}\left(x+\frac{1}{x}\right)\right)^{2}} \\
& \leq \frac{\lambda x^{m \beta} \cos \frac{m \beta \pi}{2}}{\left(\lambda x^{m \beta} \cos \frac{m \beta \pi}{2}\right)^{2}+\left(\lambda x^{m \beta} \sin \frac{m \beta \pi}{2}+\beta\right)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\lambda \cos \frac{m \beta \pi}{2}}{\left(\lambda^{2} x^{m \beta}+\beta^{2} x^{-m \beta}\right)+2 \lambda \beta \sin \frac{m \beta \pi}{2}} \\
& \leq \frac{\cos \frac{m \beta \pi}{2}}{2 \beta\left(1+\sin \frac{m \beta \pi}{2}\right)}=\frac{1}{2 \rho} \quad(0<\theta<\pi) \tag{2.22}
\end{align*}
$$

where ρ is given by (2.19). Noting that $h\left(e^{-i \theta}\right)=\overline{h\left(e^{i \theta}\right)}(0<\theta<\pi)$, (2.22) leads to

$$
\begin{equation*}
\left|h\left(e^{i \theta}\right)-\rho\right|^{2}-\rho^{2}=\left|h\left(e^{i \theta}\right)\right|^{2}\left(1-2 \rho \operatorname{Re} \frac{1}{h\left(e^{i \theta}\right)}\right) \geq 0 \quad(0<|\theta|<\pi) \tag{2.23}
\end{equation*}
$$

In view of $0<h(0)=\lambda<2 \rho,(2.23)$ implies that

$$
\{w:|w-\rho|<\rho\} \subset h(U)
$$

Consequently, if the condition (2.18) is satisfied, then the subordination (2.20) holds, and so $f \in \widetilde{S}_{p}^{*}(\beta)$.

Corollary 2.4. Let $m \in N$ and $0<\beta<\frac{1}{m}$. If $f \in A_{p}$ satisfies $f(z) f^{\prime}(z) \neq$ $0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\beta\left(\frac{z f^{\prime}(z)}{p f(z)}\right)^{m}+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}-\rho\right|<\rho \quad(z \in U), \tag{2.24}
\end{equation*}
$$

where ρ is given as in Theorem [2.4, then $f \in \widetilde{S}_{p}^{*}(\beta)$ and the bound in (2.24) is the largest number such that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p\left(\frac{1+z}{1-z}\right)^{\beta}
$$

Proof. Note that $0<\beta<\rho$. Putting $\lambda=\beta$ in Theorem 2.4 and using (2.24), it follows that $f \in \widetilde{S}_{p}^{*}(\beta)$.

For the function

$$
f(z)=z^{p} \exp \left\{p \int_{0}^{z} \frac{1}{t}\left(\left(\frac{1+t}{1-t}\right)^{\beta}-1\right) d t\right\} \in A_{p}
$$

it is easy to verify that $f \in \widetilde{S}_{p}^{*}(\beta)$,
$\beta\left(\frac{z f^{\prime}(z)}{p f(z)}\right)^{m}+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}=\beta\left(\left(\frac{1+z}{1-z}\right)^{m \beta}+\frac{2 z}{1-z^{2}}\right)=h_{1}(z)$ (say)
and

$$
\begin{align*}
\lim _{z \rightarrow i}\left|h_{1}(z)-\rho\right| & =\beta\left|e^{\frac{m \beta \pi}{2} i}+i-\tan \left(\frac{(1+m \beta) \pi}{4}\right)\right| \\
& =\beta \tan \left(\frac{(1+m \beta) \pi}{4}\right) \\
& =\rho . \tag{2.25}
\end{align*}
$$

The proof of Corollary 2.4 is completed.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 10871094 11171045) and Natural Science Foundation of Universities of Jiangsu Province (Grant No. 08KJB110001).

References

1. J.-L. Liu, The noor integral and strongly starlike functions, J. Math. Anal. Appl., 216(2001), 441-447.
2. S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32(1985), 185-195.
3. M. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl., 212(1997), 98-106.
4. M. Nunokawa, S. Owa, H. Saitoh and N. Takahashi, On a strongly starlikeness criterion, Bull. Inst. Math. Acad. Sinica 31(2003), 195-199.
5. M. Obradović and S. B. Joshi, On certain classes of strongly starlike functions, Taiwan. J. Math., 2(1998), 297-302.
6. M. Obradović and S. Owa, Some sufficient conditions for strongly starlikeness, Internat. J. Math. Math. Sci., 24(2000), 643-647.
7. S. Ponnusamy and V. Singh, Criteria for strongly starlike functions, Complex Variables Theory Appl., 34(1997), 267-291.
8. V. Ravichandran and S. S. Kumar, On sufficient conditions for starlikeness, Southeast Asian Bull. Math., 29(2005), 773-783.
9. H. M. Srivastava, Ding-Gong Yang and N-Eng Xu, Subordinations for Multivalent Analytic Functions Associated with the Dziok-Srivastava Operator, Integral Transform. Spec. Funct., 20(2009), 581-606.
10. N-Eng Xu and Ding-Gong Yang, An application of differential subordinations and some criteria for starlikeness, Indian J. Pure Appl. Math., 36(2005), 541-556.
11. N-Eng Xu and Ding-Gong Yang, Some criteria for starlikeness and strongly starlikeness, Bull. Korean Math. Soc., 42(2005), 579-590.
12. Ding-Gong Yang, On a criterion for multivalently starlikeness, Taiwan. J. Math., 1(1997), 143-148.

[^0]: Received April 4, 2010 and in revised form August 17, 2010.
 AMS Subject Classification: 30C45.
 Key words and phrases: p-valent function, starlike function, strongly starlike function, subordination.

