
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 7 (2012), No. 4, pp. 477-543

DIRICHLET-NEUMANN KERNEL FOR

HYPERBOLIC-DISSIPATIVE SYSTEM IN HALF-SPACE

TAI-PING LIU1,a AND SHIH-HSIEN YU1,b

1Institute of Mathematics, Academia Sinica, Taipei.
aE-mail: liu@math.stanford.edu
2Department of Mathematics, National University of Singapore, Singapore.
bE-mail: matysh@nus.edu.sg

Dedicated to Raghu Varadhan on the occasion of his 70th Birthday.

Abstract

The purpose of the present paper is to initiate a systematic study of the relation

of the boundary values for hyperbolic-dissipative systems of partial differential equations.

We introduce a general framework for explicitly deriving the boundary kernel for the

Dirichlet-Neumann map. We first use the Laplace and Fourier transforms, and the stability

consideration to derive the Master Relationship, the Dirichlet-Neumann relation in the

transformed variables. New idea of Fourier-Laplace path and algebraic considerations are

introduced for the explicit inversion of Fourier-Laplace transforms. We illustrate the basic

ideas by carrying out the framework to models in the gas dynamics and the dissipative

wave equations.

1. Introduction

The present paper is to introduce a general approach for the study of

the relation of the boundary values for the solutions of hyperbolic-dissipative

systems of partial differential equations. We aim at establishing a new algo-

rithm for explicitly deriving the boundary kernel for the Dirichlet-Neumann

map. In [5], explicit computations have been carried out for the Dirichlet-

Neumann map for a system modeling the D’Alembert wave equation with
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viscosity. This helps to initiate the present effort of searching for a general

framework for general systems of the hyperbolic-dissipative system:

∂tu+
m
∑

j=1

Aj∂xju =
m
∑

j,i=1

Bji∂
2
xjxiu. (1.1)

The dependence variables are u = u(~x, t) ∈ Rn. The space variables are

~x ≡ (x1, x2, . . . , xm) ≡ (x1, x̂) ∈ Rm
+ , so that the boundary of the spatial

domain is

∂Rm
+ = {~x‖ : ~x‖ ≡ (0, x̂), x̂ = (x2, . . . , xm) ∈ R

m−1}. (1.2)

We are interested in the relation between the boundary value u(~x‖, t), t > 0,

and its normal derivatives ∂x1u(~x‖, t), t > 0. The coefficients Aj, Bij ∈
Mn(R) are n×n matrices in R and satisfy, for any (ω1, . . . , ωm) on the unit

sphere Sm−1 ≡ {~x ∈ Rm| |~x| = 1},

(Hyperbolicity) • All eigenvalues of

m
∑

j=1

ωjAj are real numbers,

(Dissipation) • The matrix

m
∑

i,j=1

ωiωjBji is a non-negative definite matrix.

For a number of the physically interesting models of the form (1.1), there

is a satisfactory theory for the initial value problem, cf. [1], ~x ∈ Rm, t ≥ 0,

and the Green’s function can be constructed explicitly, c.f. [8, 6, 2, 3, 4]. As is

well-known, the initial-boundary value problem can be solved explicitly only

for some particularly designed boundary value condition, for which there is

obvious symmetries to convert of the initial-boundary value problem to an

initial value problem. In the general situation, such sharp harmonic analytic

tools often fall short. Our focus is not on solving specific initial-boundary

value problems. Instead, our goal here is to look for new techniques for ex-

plicitly constructing the kernel relating the Dirichlet and Neumann values

on the boundary. The Dirichlet-Neumann kernel is of the same basic signif-

icance as the symbol for an differential operator, and the Green’s function

for an initial-boundary value problem can be readily constructed in terms of

the kernel. The study of the boundary relations would be useful also when

the boundary is virtual as in the numerical computations.
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In the following, we outline the basic steps for the proposed framework:

I. Green’s function, Fundamental Solution, and Dirichlet-Neumann

map.

The Green’s function for the initial value problem can be used to trans-

fer the initial information to the boundary datum, so that the solution has

certain homogeniety property in the direction normal to the boundary. The

fundamental solution G(~x, t), the Green’s function for the initial value prob-

lem for the system (1.1), is defined as















(

∂t +

m
∑

j=1

Aj∂xj −
m
∑

i,j=1

Bij∂
2
xixj

)

G(~x, t) = 0,

G(~x, 0) = δ(~x)In×n,

(1.3)

where In×n is the n×n identity matrix. Let G(~x, ~y, t) be the Green’s function

for a homogeneous initial-boundary value problem is defined as:























(

∂t +

m
∑

j=1

Aj∂xj −
m
∑

i,j=1

Bij∂
2
xixj

)

G = 0,

G(~x, ~y, t)|~x∈∂Rm
+
= 0,

G(~x, ~y, 0) = δ(~x)In×n.

(1.4)

Their difference

H(~x, ~y, t) ≡ G(~x, ~y, t)−G(~x− ~y, t)

satisfies






















(

∂t +
m
∑

j=1

Aj∂xj −
m
∑

i,j=1

Bij∂
2
xixj

)

H = 0,

H(~x, ~y, t)|~x∈∂Rm
+
= −G(~x, ~y, t)|~x∈∂Rm

+
,

H(~x, ~y, 0) = 0.

(1.5)

By integrating (1.5) times G and applying (1.3), one can represent H(~x, ~y, t)

in terms of the fundamental function G and the boundary values:

H(~x, ~y, t) =

∫ t

0

∫

∂Rm
+

G(~x−~z, t−τ)
(

A1H(~z, ~y, τ)−
m
∑

j=1

B1j∂x1H(~z, ~y, τ)
)

d~zdτ
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+

∫ t

0

∫

∂Rm
+

B11∂x1G(~x− ~z, t− τ)H(~z, ~y, τ)d~zdτ. (1.6)

This gives the representation of H(~x, ~y, t) in terms of the boundary Dirichlet

values H(~z, ~y, τ) and the Neumann values ∂x1H(~z, ~y, τ), ~z ∈ Rm
+ . On the

other hand, for a well-posed initial-boundary value problem, only some com-

bination of the Dirichlet and the Neumann boundary values are given. A

Dirichlet-Neumann relation would provide both the Dirichlet and the Neu-

mann boundary values and thereby the explicit representation of H(~x, ~y, t)

through (1.6) and consequently yields the explicit construction of the Green’s

function

G(~x, ~y, t) = H(~x, ~y, t) +G(~x− ~y, t).

In other words, the notion of the boundary relation is more basic than that

of the Green’s function for the initial-boundary value problem.

II. Laplace-Fourier transforms.

From the first step just outlined, for the study of the Dirichlet-Neumann

map, we may consider, for simplicity, the problem with zero initial values:















∂tu+

m
∑

j=1

Aj∂xju =

m
∑

j,i=1

Bji∂
2
xjxiu for x1 > 0,

u(~x, 0) ≡ 0.

(1.7)

The Fourier and Laplace transforms are used to convert the initial-boundary

value problem, with zero initial data, for a differential system into an alge-

braic, polynomial system. We note that this step and the next steps are

also standard procedure for the study of initial-boundary value problem.

As we are not confined to the study of the initial-boundary value problem,

the boundary value at the boundary x1 = 0 is not given. Nevertheless, it

is known that when B11 is a full rank matrix, for well-posedness, the full

boundary Dirichlet value can be given. In the general situation, there is no

theory to provide the well-posed boundary Dirichlet data for a given B11.

It is understood that the form of boundary data depends on the structure

of the equations under consideration. The second example on the compress-

ible Navier-Stokes equations in the present study amply illustrates this basic

point. As in standard analysis for half space problem, cf. [9], [7], we take
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Fourier transform F in the tangential directions x̂, with the transformed

variable ζ̂ = (ζ2, . . . , ζm). We then take the Laplace transform L with re-

spect to the time variable t, and finally another Laplace transform with

respect to the spatial direction x1 normal to the boundary:



















































v(x1, ζ̂ , t) = F [u](x1, ζ̂, t) ≡
∫

Rm−1 u(x
1, x̂, t)e−ix̂·ζ̂dx̂,

(Fourier transform in x̂),

V (x1, ζ̂ , s) = L[v](x1, ζ̂, s) ≡
∫∞
0 e−stv(x1, ζ̂, t)dt,

(Laplace transformation in t),

V̂ (ξ, ζ̂, s) = L[V ](ξ, ζ̂ , s) ≡
∫∞
0 e−ξx1

V (x1, ζ̂ , s)dx1,

(Laplace transform in x1).

(1.8)

The Dirichlet and Neumann values on the boundary are denoted by:











u0(x̂, t) ≡ u(~x, t)|x1=0 = u(~x‖, t); u0
x1(x̂, t) ≡

∂u

∂x1
(~x, t)

∣

∣

∣

x1=0
,

V 0(ζ̂ , s) ≡ V (0, ζ̂ , s); V 0
x1(ζ̂ , s) ≡

∂V

∂x1
(x1, ζ̂ , s)

∣

∣

∣

x1=0
.

(1.9)

To be consistent with the zero initial condition, the boundary value is taken

to be in the spaceV :

u0(~x‖, ·) ∈ V ≡ {g ∈ C∞(R+) ∩ L∞(R+)|g[n](0) = 0 for all n ∈ N ∪ {0}}.

Take the Fourier transform of the system (1.7) with respect to the tan-

gential variables x̂ to obtain a 1-D partial differential equation:

(∂t +A1∂x1 −B11∂
2
x1)v

=
(

i

m
∑

j=2

ζj(−Aj + (B1j +Bj1)∂x1)−
∑

2≤k,j≤m

ζkζ l
)

v, for x1, t>0. (1.10)

Next, we take the Laplace transform L, first with respect to the time

variable t and then with respect to the normal spatial direction x1, so that

the half space problem (1.7) turns to the following algebraic equations:

(

s+ ξA1 − ξ2B11 + i
m
∑

j=2

ζj(Aj − (B1j +Bj1)ξ) +
∑

2≤i,j≤m

ζ iζjBij

)

V̂ (ξ, ζ̂, s)
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= −B11V
0
x1(ζ̂ , s) +

(

A1 − ξB11 − i

m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s). (1.11)

The algebraic system (2.6) is solved for the transformed variable in terms of

the transformed boundary data:

V̂ (ξ, ζ̂, s)

=
(

s+ ξA1 − ξ2B11 + i

m
∑

j=2

ζj(Aj − (B1j +Bj1)ξ) +
∑

2≤i,j≤m

ζ iζjBij

)−1

·
(

−B11V
0
x1(ζ̂, s) +

(

A1 − ξB11 − i

m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s)
)

=
adj
(

s+ξA1−ξ2B11+i
∑m

j=2 ζ
j(Aj−(B1j+Bj1)ξ)+

∑

2≤i,j≤m ζ iζjBij

)

p(ξ; ζ̂, s)

·
(

−B11V
0
x1(ζ̂, s) +

(

A1 − ξB11 − i

m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s)
)

≡ soln(ξ, ζ̂, s;V 0, V 0
x1). (1.12)

III. The Dirichlet-Neumann map in the transformed variable, the

Master Relationship.

This step is to apply the stability, well-posedness analysis to identify the

symbol of differential operator in the direction normal to the boundary in

terms of that in the tangential direction.

One applies the Bromwich integral for the inversion of the Laplace trans-

form:














F (β) = L[f ](β) ≡
∫ ∞

0
e−βαf(α)dα,

f(α) = L
−1[F ](β) ≡ 1

2πi

∫

Re(β)=0
eαβF (β)dβ.

(1.13)

The entries in (1.12) are rational functions with the characteristic poly-



2012] DIRICHLET-NEUMANN KERNEL 483

nomial p(ξ; ζ̂, s) as the denominator

p(ξ; ζ̂, s) ≡ det
(

s+ξA1−ξ2B11+i

m
∑

j=2

ζj(Aj−(B1j+Bj1)ξ)+
∑

2≤i,j≤m

ζ iζjBij

)

.

(1.14)

For ζ̂ and s fixed, let ξ = λj(ζ̂ , s) be the roots of the characteristic polynomial

p(λj(ζ̂ , s); ζ̂ , s) = 0. (1.15)

Suppose that each root is simple. Then these roots represent poles for the

rational functions and the inverse Laplace transform in x1 is given as the

sum of residue at the poles by the Bromwich integral (1.13) for inverting the

Laplace transform in x1:

V̂ (x1, ζ̂, s) =
∑

p(λj ;ζ̂,s)=0

eλjx1
Res
ξ=λj

(soln(ξ, ζ̂, s;V 0, V 0
x1)). (1.16)

The standard well-posedness condition that limx1→∞ V (~x, t) = 0 yields a

system of algebraic equations on V 0 and V 0
x1 :

Res
ξ=λj

p(λj ;ζ̂,s)=0
Re(λj )>0

soln(ξ, ζ̂, s;V 0, V 0
x1) = 0. (1.17)

The relation (1.17) is called the Master Relationship. The Master Relation-

ship contains the vital information of the boundary behavior through the

symbol p(iξ; ζ̂ , σ) of the partial differential equations (1.1). The Master Re-

lationship is as basic as the symbol p(iξ; ζ̂ , s) of the system and is defined

in terms of it. The boundary behavior is encoded in the algebraic property

of the Master Relationship. The study of the algebraic property is one key

ingredient of the present theory and needs to be explored for each particular

system.

The Master Relationship (1.17) gives an implicit relation of the bound-

ary Dirichlet and Neumann values in the transformed variables (ζ̂, s) ∈
Rm−1 × R+. Denote the roots of the characteristic polynomial with pos-

itive real part by λj1 , . . . , λjl :

Re(λj1) > 0, . . . , Re(λjl) > 0.
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We rewrite the Master Relationship explicitly as Dirichlet-Neumann

map in terms of the roots of the characteristic polynomial:

V 0
x1(ζ̂ , s) = (Kij(ζ̂, s;λj1 , . . . , λjl))m×mV 0(ζ̂ , s), (1.18)

where the entries of matrix (Kij(ζ̂ , s;λj1 , . . . , λjl))m×m are rational functions

in λj1(ζ̂ , s), cdots, λjl(ζ̂ , s). The main effort is to invert the transforms for the

entries Kij, first the Laplace transform in s and then the Fourier transform

in ζ̂.

IV. Characteristic and non-characteristic interior wave operators.

If there is no branch point of the analytic function λj(ζ̂ , s) for any s

with Re(s) ≥ 0, then the inverse Laplace transform can be computed by

the Bromwich integral (1.13), and the kernel function Nij(ŷ, t) of Dirichlet-

Neumann map in the physical variables is given as:











Nij(ŷ, t) ≡ F−1
[ 1

2πi

∫

Re(s)=0
estKij(ζ̂ , s;λj1 , . . . , λjl)ds

]

(ŷ),

u0
x1(ŷ, t) =

∫ t
0

∫

Rm−1 Nij(ŷ − ~z, t− s)u0(~z, s)d~zds.

(1.19)

In general, the operator Nij is a differential operator in the distributional

sense and acts on functions defined in the tangential direction.

As p(iξ; ζ̂ , s) is the symbol of the system, its root λj represents wave

propagation for a whole space problem. We introduce the corresponding

Interior wave propagation operator on the boundary ∂Rm
+ as follow:

Lj(ŷ, t) ≡ F
−1
[ 1

2πi

∫

Re(s)=0
estλj(ζ̂ , s)ds

]

(ŷ), ŷ ∈ ∂Rm
+ , j = j1, . . . , jl.

(1.20)

Definition 1.1 (Characteristic and Non-Characteristic Interior Wave Op-

erators). A root λj is non-characteristic if and only if there exist κ1 and

κ2 > 0 such that the root λj(ζ̂ , s) is analytic in Re(s) ∈ (−κ1, 0) and any

|ζ̂| < κ0; otherwise, λj is characteristic. The corresponding operator Lj is

(non-)characteristic if and only if λj is (non-)characteristic.

For each non-characteristic λj , L
−1[λj ](ζ̂ , t, |ζ̂| ≪ 1 has a local in time,

exponentially decaying structure. Note here that the distinction is for |ζ̂|
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small, |ζ̂| < κ0, that is, for the long waves Fourier component in the tan-

gential directions. The short wave components automatically have localized

property. In general, the roots λj may have quite varying behavior in this

regard as ζ̂ varies. We will see that this notion of characteristic and non-

characteristic interior wave operators draw a clear distinction between 1-D

problems and multi-D problem. For example, for our second example of the

1-D compressible Navier-Stokes equation with a subsonic background veloc-

ity, the interiors wave operators are non-characteristic. On the other hand,

all interiors wave operators for 2-D problem in our third example are char-

acteristic. This has basic implication on the boundary wave propagation.

V. Laplace-Fourier paths for the characteristic interior wave oper-

ator.

A branch cut in the complex domain for the Laplace transformation of

the time variable gives rise to the spectrum of the full Fourier transformation

on the path along the cut. The notion of Fourier-Lapalce paths is a key

element of our analysis to convert the inverse Laplace transform into an

inverse Fourier transform, and so the symmetry is restored on this path

and the harmonic analysis techniques can be applied to yield exponentially

sharp wave structure for long wave component in a finite non-dissipative

wave region. This conversion is to go from the Fourier-Laplace variable

(ζ̂, s), through the new Fourier variable ζ1 for the Laplace variable s, to the

combined Fourier variables ~ζ = (ζ1, ζ̂). The new Fourier variable is defined

by iζ1 = λj(ζ̂ , s), with the resulting implicit relation s = σ(ζ1; ζ̂) = σj(ζ
1; ζ̂).

The correspondence is illustrated for the 2-D case, ~x = (x, y), ~ζ = (ζ1, ζ2),

in the following table.

The elementary waves are of the form α(s, ξ, ζ2)eξ(s)x+iζ2y because of

the assumed the zero initial data u|t=0 = 0.

The above two systems are related through the characteristic polynomial

p(ξ; ζ̂, s):

p(iζ1; ζ̂ , σ(ζ1; ζ̂)) = 0 = p(λj(ζ̂ , s); ζ̂ , s). (1.21)

We call

Γj ≡ {s =
∑

j

σj(ζ
1; ζ̂)|ζ1 ∈ R}
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half space problem whole space problem

D.E.















∂tu+A1∂xu

+A2∂yu−∆u=0

U |t=0 = 0

∂tu+A1∂xu

+A2∂yV −∆u = 0

Elementary form of

solution in transform

variables

α(s, ξ, ζ2)eξ(s)x+iζ
2y β(ζ1, ζ2)eσ(η)teiζ

1x+iζ2y

characteristic

equation

det((s−ξ2+|ζ2|2)I
+ξA1+iζ2A2)=0

det((σ(~ζ)+|~ζ|2)I
+iζ1A1+iζ2A2)=0,

~ζ=(ζ1, ζ2)

Independent transform

variables in

characteristic equation

(s, ζ2) (ζ1, ζ2)

the Laplace-Fourier path. The complex contour integral relates the inverse

Laplace transformation to a pre-inverse Fourier transformation:

∑

j

1

2πi

∫

Re(s)=0
est∂sλj(ζ̂ , s)ds =

1

2πi

∑

j

∫

Γj

est∂s(iζ
1)∂ζ1sdζ

1 +O(1)e−αt,

∑

j

1

2πi

∫

Γj

est∂s(iζ
1)∂ζ1sdζ

1 =
1

2π

∫ ∞

−∞
eσ(ζ

1;ζ̂)tdζ1

=
1

2π

∫ ∞

−∞
eix

1ζ1eσ(ζ
1;ζ̂)tdζ1|x1=0.

One can treat the variable ζ1 as an imaginary Fourier variable for the

direction normal to the tangent direction ∂Rm
+ . That this relation works

conveniently for ∂sλj and not for λj was implicitly hinted in our previous

work [5] on detailed computations for a specific example.

The introduction of the Laplace-Fourier path for the inverse Laplace

transformation is a major observation allowing one to take advantage of

existing tools such as harmonic analysis or other developed tools for the

whole space problem to obtain a sharp structure of Lj(ŷ, t).
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VI. Introduction of the recombination operators.

We need to obtain the kernel functions Nij(ŷ, t) in the physical domain

(ŷ, t), (1.19), from the transformed kernel Kij , (1.18), which is a rational

function

Kij(ζ̂ , s;λj1 , . . . , λjl) =
KN

ij (ζ̂ , s;λj1 , . . . , λjl)

KD
ij (ζ̂ , s;λj1 , . . . , λjl)

. (1.22)

The denominatorsKD
ij are polynomials in ζ̂, s, λj. As the roots λj has branch

cut, the denominators can obstruct the application of the complex contour

integral in inverting the Laplace transform. As it turns out this is related

to the rich wave phenomena around the boundary. For a non-characteristic

root λj, the contour can be away from the imaginary axis and avoiding the

branch cut. The characteristic roots are the main concern. Some algebraic

manipulation is needed to rewrite the rational function as:

Kij(ζ̂;λj1 , . . . , λjl) =
KN

ij (ζ̂;λj1 , . . . , λjl)Dij(ζ̂;λj1 , . . . , λjl)

KD
ij (ζ̂;λj1 , . . . , λjl)Dij(ζ̂;λj1 , . . . , λjl)

, (1.23)

so that the new denominators are free of characteristic roots λj . This allows

for the inversion of the transforms in the pointwise sense. The algebraic

manipulation varies from model to model, as it ultimately reflects the wave

propagation around the boundary.

VII. Long wave-short wave decomposition and energy estimates.

A weighted energy method in the direction normal to the boundary is

designed to study the exponentially localized wave structures of the short

wave component, for which the harmonic analysis sheds no light. The long-

short wave decomposition design has been used for the study of Green’s

functions for the initial value problems of systems with physical viscosity,

see [6, 4] and references therein. For the present study, the long-short wave

decomposition technique is necessary for the case of multi spatial dimensions.

For the short waves, the structure of λj(ζ̂ , s) for |ζ̂| ≫ 1, could be very

different from that of the long waves, |ζ̂| ≪ 1. Thus, for the general program

applicable to various different equations and systems, we propose a long
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wave-short wave decomposition to the solution V (~x‖, t) of (1.7) as follows:















I L[h] ≡ F−1,L[F [h]], I S [h] = h− I L[h],

F
−1,L[g](~x‖) ≡

1

(2π)m−1

∫

|ζ̂|<δ1

eiζ̂·~x‖g(ζ̂)dζ̂,
(1.24)

where δ1 is a constant determined by the size of the branch cut for λj(ζ̂ , s).

We illustrate this in the third example of dissipative wave equations in

two spatial dimensions. The inverse Laplace and Fourier transforms of the

long wave part of λj , and KN
ij Dij , K

D
ij Dij are studied by converting to the

combined inverse Fourier transform using their analytic properties and the

idea of Laplace-Fourier path. We then use the Hadamard solution of the

D’Alembert’s wave equation in 2-D to construct the long wave component

of I L[u(·, t)](~x‖) with |~x‖| < K0(1 + t) for some K0 > 1. The short wave

component of the solution and its structure outside a finite Mach number

region possess exponential decaying structures in both time and space vari-

ables. Though both the long and short waves structures are exponentially

small for |~x‖| > K0(1 + t), the transformation approach are too refined to

apply to the short wave part. Instead, we apply the weighted energy method

directly to the system (1.1) to assert the simple exponentially structure.

In Section 2, we will make precise the derivation of the Dirichlet-Neumann

relation in the transformed variables for general systems. We then choose

three examples to illustrate the basic ideas as stated above. The first exam-

ple is the Convected Heat Equation:







ut +Λux = uxx,

u(0, t) = 0.

We carry out for this simple example the process of Laplace-Laplace trans-

form, the stability criterion for obtaining the Master Relationship, and the

inversion of these transforms, Section 3. The second example is the Lin-

earized compressible Navier-Stokes equations in 1-D, with subsonic drifting

speed Λ ∈ (−1, 1):






ρt +Λρx + ux = 0,

ut +Λux + ρx = uxx.
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The Dirichlet-Neumann relation for this example depends crucially on the

sign of the speed Λ of the convection. In particular, the algebraic structure

of the Master Relationsship for a system without a full rank dissipative

matrix yields interesting boundary condition as function of Λ. This is done

in Section 4. The third example is System of Wave equations with dissipation

in 2-D, Λ ∈ (−1, 1).







ut + (Λ + 1)ux + vy = uxx + uyy,

vt + (Λ− 1)vx + uy = vxx + vyy,

u(0, y, t) = v(0, y, t) = 0.

(1.25)

This example illustrates the importance of the Laplace-Fourier path and the

short-long wave decomposition ideas, Section 5 and Section 6.

As an example, we now go to some details on the boundary relation

for (1.25). As just mentioned, the Laplace-Fourier path relates the half

space phenomena to the whole space phenomena. We consider first the

Green’s function, the fundamental solution G(x, y, t) of initial value problem

for (1.25):















Gt +

(

1 + Λ 0

0 −1 + Λ

)

Gx +

(

0 1

1 0

)

Gy = ∆2G, ~x ≡ (x, y),

G(~x, 0) = δ(~x)I,

where I is the 2× 2 identity matrix. The Green’s function can be computed

easily as the dissipative version of the Kirchhoff and Hadamard method of

descent for the wave equation. It is of the following shape:

G = (Gij)2×2,

|Gij(~x, t)| ≤ O(1)
1√
t
W2(~x− (Λt, 0), t; 2) for i 6= j,

|Gjj(~x, t) ≤ O(1)

(

1

t
+

1√
t

)

W2(~x− (Λt, 0), t), t; 2) for j = 1, 2,

(1.26)
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where W2 is defined by

W2(~x, t;D0) ≡











































1

t− |~x| for |~x| ≤ t−
√
D0t,

1

t3/4D
1/4
0

for ||~x| − t| ≤
√
D0t,

e
−

(|~x|−t)2

4D0t

t3/4D
1/4
0

for |~x| ≥ t+
√
D0t.

(1.27)

We now state the boundary relation for the system (1.25) for the

case when the boundary Dirichlet value u0(y, t) has bounded support. The

Dirichlet-Neumann kernel is a generalized function and so the relation con-

tains regular functions as well as generalized functions.

Theorem 1.2. Suppose that the boundary Dirichlet value u0(y, t) has unit

support around (y, t) = (0, 0). Then the Dirichlet-Neumann relation u0
x(y, t) =

Nu0(y, t) for the dissipative wave equations (1.25) is:

Niju
0(y, t) = O(1)

W(~x, t)

t
∗
~x

e
−

|~x|2

C(t)

t

∣

∣

∣

∣

∣

∣

x=−Λt

‖u0‖L∞
(y,t)

+O(1)e−
(y+t)

C

4
∑

|α|=0

‖∂α
(y,t)u

0‖L∞
(y,t)

, (i, j) 6= (2, 1),

(1.28)

∂yN21u
0(y, t) = O(1)

W(~x, t)

t
∗
~x

e
− |~x|2

C(t)

t

∣

∣

∣

∣

∣

∣

x=−Λt

‖u0‖L∞
(y,t)

+O(1)e−
(y+t)

C

4
∑

|α|=0

‖∂α
(y,t)u

0‖L∞
(y,t)

.

for some positive constant C and for t > 1.

The ideas in the present paper should prove useful for the study of

other hyperbolic-dissipative systems of physical interests. It would also be

interesting to consider the Boltzmann equation in the kinetic theory for

which the Green’s function has been constructed explicitly for the initial

value problem, [2], [3], [4]. These and possible applications are, however, left

to the future.
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2. Preliminaries

In this section, we will lay down the standard procedure for obtaining

the Dirichlet-Neumann map in the transformed variables for the problem

(1.7):















∂tu+

m
∑

j=1

Aj∂xju =

m
∑

j,i=1

Bji∂
2
xjxiu for (x1, . . . , xm) ∈ R

m
+ ,

u(~x, 0) ≡ 0.

(2.1)

We also prepare some basic knowledge for converting the map from the

transformed variables to the physical variables.

2.1. Transformations for half space problem

For a function f(t) defined for t ≥ 0, its Laplace transformation F (s)

and the inverse transformation, the Bromwich integral, are given as follows:















F (s) = L[f ](s) ≡
∫ ∞

0
e−stf(t)dt for s ∈ {z ∈ C|Re(s) ≥ 0},

f(t) = L
−1[F ](t) ≡ 1

2πi
lim
T→∞

∫ iT

−iT
estF (s)ds for t > 0.

(2.2)

Note that the Bromwich’s integral makes sense when the function f(s), de-

fined for s > 0, can be analytically extended to Re(s) > 0 and that the

Riemann integral converges over the imaginary axis.

One imposes a functional property for boundary values f for the con-

sistency with zero initial data, u(~x, 0) = 0, and for an applicable condition

for the Bromwich integral:

f ∈ V ≡ {g| L[g](s) exists for Re(s) > 0, g[n](0) = 0 for n ∈ N ∪ {0}}.
(2.3)

The independent variable s of F (s) can be analytically extended to a simply

connected subset of the complex plan.

With the functional property (2.3), one has the following properties

of the Laplace transformation. These properties are used to extract the
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distributional values of the inverse Laplace transform in the case when F (s)

has nonzero values at s = 0 or at s = ∞.

Lemma 2.1. For f and g ∈ V , their Laplace transformations F = L[f ] and

G = L[g] satisfy



































L[f [n]] = snF (s),

(−t)nf(t) = L−1
[

dn

dsnF
]

(t),

[f ∗ g](t) = L−1[F (s)G(s)],

L−1[F (s)G(s)](t) =
[

L−1
[

F (s)−F (0)
s

]

∗ g′
]

(t) + F (0)g(t).

(2.4)

Proof. The first three properties are standard. The last one is a consequence

of

L
−1[F (s)G(s)] = L

−1

[

F (s)− F (0)

s
sG(s) + F (0)G(s)

]

. ���

Lemma 2.2. Suppose that µ(t) is generalized function defined for t ≥ 0.

Then its Laplace transformation µ̂(s) = L[µ](s) satisfies

µ(t) +
1

t
L
−1

[

d

ds
µ̂(s)

]

= Cδ(t) for a constant C ∈ C.

Proof. This is a consequence of

L[t(µ+ Cδ)] = L[tµ] = − d

ds
L[µ] = − d

ds
µ̂(s) for constant C. ���

Definition 2.3. Let g ∈ C[0,∞].

Q[g](s) ≡ g(s)− g(0)

s
for s > 0.

When the function g(s) has sublinear growth in s as s → ∞, the quotient

Q[g](s) decays in s and is convenient for the inversion of the Laplace trans-

form by complex contour integration. More generally, if the function g(s)

has higher order of growth, one may need to consider the function Qn[g](s)

for some n > 1. We therefore will need to decompose a function into the

Taylor Series in the following sense.
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Proposition 2.4 (Taylor’s Series). For any g ∈ Cn[0,∞),

g(s) =

n−1
∑

l=0

g[l](0)

l!
sl + snQn[g](s) for s > 0.

Following (1.8), we first take the Fourier transformation F for the vari-

ables ~x‖ parallel to the boundary ∂Rm
+ , then the Laplace transform L in

time t, and finally the Laplace transform with the variable x1 normal to the

boundary to form the combined transform J:



























x̂ ≡ (x2, . . . , xm),

~x‖ ≡ (0, x̂), ,

~ζ ≡ (ζ1, . . . , ζm),

ζ̂ ≡ (ζ2, . . . , ζm),



























































v(x1, ζ̂ , t) ≡ F [u](x1, ζ̂ , t) ≡
∫

Rm−1

u(x1, x̂, t)e−ix̂·ζ̂dx̂,

v0(ζ̂ , t) ≡ F [u0](ζ̂ , t) ≡
∫

Rm−1

u0(x̂, t)e−ix̂·ζ̂dx̂,

V (x1, ζ̂ , s) ≡ L[F [u]](x1, ζ̂ , s) = L[v](x1, ζ̂ , s) ≡
∫ ∞

0
e−stv(x1, ζ̂, t)dt,

V 0(ζ̂ , s) ≡ L[v0](ζ̂ , s) ≡
∫ ∞

0
e−stv0(ζ̂ , t)dt,

V̂ (ξ, ζ̂, s) ≡ J[F [u]](ξ, ζ̂ , s) = L[V ](ξ, ζ̂, s) ≡
∫ ∞

0
e−ξx1

V (x1, ζ̂ , s)dx1.

(2.5)

The system (2.1) becomes a system of algebraic equations:

(

s+ξA1−ξ2B11+i

m
∑

j=2

ζj(Aj−(B1j+Bj1)ξ)+
∑

2≤i,j≤m

ζ iζjBij

)

V̂ (ξ, ζ̂, s)

= −B11V
0
x1(ζ̂ , s)−

(

A1 − ξB11 + i

m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s). (2.6)

This is the system for the transformed variables in terms of the boundary

Dirichlet and Neumann values, V 0 and V 0
x1 .
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2.2. Characteristic polynomial, Dirichlet-Neumann map, and the

Laplace-Fourier Path

From (2.6), the transformed function is then expressed as:

V̂ (ξ, ζ̂, s) = soln(ξ, ζ̂, s;V 0, V 0
x1),

soln(ξ; ζ̂, s;V 0, V 0
x1)

≡
adj
(

s+ξA1−ξ2B11+i
m
∑

j=2
ζj(Aj−(B1j+Bj1)ξ)+

∑

2≤i,j≤m
ζ iζjBij

)

det
(

s+ξA1−ξ2B11+i
m
∑

j=2
ζj(Aj−(B1j+Bj1)ξ)+

∑

2≤i,j≤m
ζ iζjBij

)

(

−B11V
0
x1(ζ̂ , s) +

(

A1 − ξB11 − i
m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s)
)

=

adj
(

s+ξA1−ξ2B11+i
m
∑

j=2
ζj(Aj−(B1j+Bj1)ξ)+

∑

2≤i,j≤m
ζ iζjBij

)

p(ξ; ζ̂ , s)
(

−B11V
0
x1(ζ̂ , s) +

(

A1 − ξB11 − i

m
∑

j=2

ζj(B1j +Bj1)
)

V 0(ζ̂ , s)
)

≡ B(ξ; ζ̂ , s;V 0, V 0
x1)

p(ξ; ζ̂ , s)
. (2.7)

Here the denominator is the degree n characteristic polynomial p(ξ; ζ̂ , s), of

degree n in the ξ variable:

p(ξ; ζ̂ , s)≡det
(

s+ξA1−ξ2B11+i

m
∑

j=2

ζj(Aj−(B1j+Bj1)ξ)+
∑

2≤i,j≤m

ζ iζjBij

)

.

(2.8)

Its roots are denoted by:

λj = λj(ζ̂ , s), j = 1, 2, . . . , n; p(λj; ζ̂ , s) = 0. (2.9)

Note that, p(iξ; ζ̂ , s) is the symbol of the system (1.1) for the whole space

~x ∈ Rm.

Assuming that the roots ξ = λj of the characteristic polynomial p(ξ; ζ̂ , s)

are simple, then applying the complex contour integral (1.13) to the system

(2.7), one yields its solution as the sum of the residues at the poles ξ =
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λj(ζ̂ , s), j = 1, 2, . . . , n,:

V (x1, ζ̂ , s) =

n
∑

j=1

eλjx1
Res
ξ=λj

(soln(ξ; ζ̂, s;V 0, V 0
x1))

=

n
∑

j=1

eλjx
1B(λj ; ζ̂ , s;V

0, V 0
x1)

p′(λj ; ζ̂ , s)
. (2.10)

The well-posedness of a differential equation requires the solution V to de-

cay to zero as x1 → ∞. This implies that at ξ = λj with Re(λj) > 0 the

residue of soln(ξ; ζ̂ , s;V 0, V 0
x1)) vanishes. Denote the roots of the character-

istic polynomial with positive real part by λj1 , . . . , λjl :

Re(λj1) > 0, . . . , Re(λjl) > 0.

The Master Relationship (1.17)

Res
ξ=λj

p(λj ;ζ̂,s)=0,s>0
Re(λj)>0

(soln(ξ; ζ̂ , s;V 0, V 0
x1)) = 0,

becomes

B(λj; ζ̂ , s;V
0, V 0

x1)
∣

∣

∣λj=λj(ζ̂,s), j=j1,...,jl,

p(λj ;ζ̂,s)=0,s>0,
Re(λj )>0.

= 0, (MR)

The Master Relationship (MR), the Dirichlet-Neumann relation in the

transformed variables can be rewritten in the form:

RV 0
x1(ζ̂ , s) = RK(ζ̂ , s;λ1, . . . , λl) · V 0(ζ̂, s). (2.11)

The constant matrix R may not be of full rank and depends on the structure

of the dissipation matrix Bij. The main task is to convert this Dirichlet-

Neumann relation in the transformed variables (ζ̂, s) to the physical variables

(ŷ, t) with exponentially sharp description.

The conversion of the transform variable using the Laplace-Fourier path

idea is applied to the characteristic roots λj(ζ̂ , s) according to Definition

1.1. A non-characteristic root λj(ζ̂ , s) gives rise to the spectrum gap and

one can replace the path integral along Re(s) = 0 uniformly by Re(s) = −ν0
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for some ν0 > 0 with respect to ζ̂ around 0. This results in an exponen-

tially decaying structure in time, e−ν0t, for the long wave part, |ζ̂| ≪ 1, in

L−1[λi(ζ̂ , s)](t). For a characteristic root λj(ζ̂, s), one substitutes the imag-

inary Fourier variable iζ1 = ξ into (1.15) so that s becomes a function of

s = σ(~ζ):

iζ1 = λj(ζ̂ , σ(~ζ)), (2.12)

where ~ζ = (ζ1, ζ2, . . . , ζm), ζ̂ = (ζ2, . . . , ζm). This function σ(~ζ) satisfies

0 = det
(

− i

m
∑

j=1

Ajζ
j −

m
∑

k,l=1

Bklζ
kζ l − σ(~ζ)Im×m

)

.

Thus, the function σ(~ζ) is the spectrum of the full Fourier transformation in

Rm of the operator −
m
∑

j=1

Aj∂xj +

m
∑

k,l=1

Bkl∂
2
xkxl . We will use the spectrum

σ(~ζ) to define the Laplace-Fourier path for the purpose of inverting the

operator L in the time variable.

Definition 2.5 (Laplace-Fourier Path). With a fixed ζ̂ = (ζ2, ζ3, . . . , ζm) ∈
Rm−1, the Laplace-Fourier path is defined by

s = σ(~ζ) ∈ C, ~ζ ≡ (ζ1, . . . , ζm), ζ1 ∈ R,

where σ(~ζ) is the spectrum defined by the implicit function 0 = p(iζ1; ζ̂ , σ(~ζ)).

Remark 2.6. The name of this path is given to mean a path in the Laplace

domain with the Fourier spectrum information.

The above procedures allow one to obtain the long wave component of

the operator F−1,L[L−1[λj(ζ̂ , s)](ŷ, t) in the wave region |ŷ| ≤ O(1)(1 + t).

Here F−1,L is the long wave component of the inverse Fourier transformation

defined in (1.24).

2.3. Basic operators for inverting the Dirichlet-Neumann kernel

Each entry Kij(ζ̂ , s;λ1, . . . , λl) in the matrix K relating the Dirichlet-

Neumann relation in the transformed variables, (2.11), is a rational function
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in (ζ̂, s;λ1, . . . , λl):

Kij(ζ̂, s;λ1, . . . , λl) =
KN

ij (ζ̂ , s;λ1, . . . , λl)

KD
ij (ζ̂ , s;λ1, . . . , λl)

,

for some polynomialsKD
ij andKN

ij . Recall that ξ = λi are roots of p(ξ; ζ̂ , s) =

0. In case the denominator KD
ij depends on some characteristic root λj , we

need to neutralize the singularity induced by λj in the denominator. This can

be done algebraically by multiplying some polynomial Dij(ζ̂ , s;λ1, . . . , λl):

Kij(ζ̂ , s;λ1, . . . , λl) =
KN

ij (ζ̂ , s;λ1, . . . , λl)Dij(ζ̂ , s;λ1, . . . , λl)

KD
ij (ζ̂ , s;λ1, . . . , λl)Dij(ζ̂ , s;λ1, . . . , λl)

,

so that the new denominator KD
ij (ζ̂ , s;λ1, . . . , λl)Dij(ζ̂ , s;λ1, . . . , λl) is in-

dependent of all the characteristic roots. Thus, the product has a non-

characteristic divisor and one can have an exponential sharp decaying esti-

mate in t for the long-wave operator F−1,L[L−1[1/(DijK
D
ij )]]. The new nu-

merator KN
ij (ζ̂ , s;λ1, . . . , λl)Dij(ζ̂ , s;λ1, . . . , λl) is a polynomial of the char-

acteristic roots with analytic functions and non-characteristic roots as coef-

ficients. Thus the focus is then on inverting the characteristic roots λj :

Lj(ŷ, t) ≡ F
−1,L[L−1[λj ]](ŷ, t), j = 1, 2, . . . , l.

In general one can obtain the structure of Lj(ŷ, t) only in some wave region

|ŷ| ≤ O(1)(1 + t). For some physical examples, a characteristic root λj(ζ̂ , s)

can be analytically extended from s > 0 to Re(s) ≥ 0 only when |ζ̂| is small.

Since the product KN
ij Dij is a polynomial of λj, j = 1, 2, . . . , l, the

operator KN
ij (∂x̂, ∂t;L1, . . . ,Ll)∗Dij(∂x̂, ∂t;L1, . . . ,Ll) can be obtained from

the operators Li, and the long wave component I I , (1.24), of the Dirichlet-

Neumann map N is given by

I
L[RN](ŷ, t) ≡ I

L[KN
ij (∂x̂, ∂t;L1, . . . ,Ll)] ∗ I

L[Dij(∂x̂, ∂t;L1, . . . ,Ll)]

∗I L
F

−1,L[L−1[1/(DijK
D
ij )](ŷ, t). (2.13)

In the region |ŷ| ≥ O(1)(1+ t) away from the domain of influence of the

associated inviscid system, there is only the diffusion effects of the system
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and the operator N has only localized, exponentially decaying terms. This

can be studied by the weighted energy method.

3. Convected Heat Equation

Consider the 1-D heat equation with a positive drifting speed Λ > 0:























ut + Λux = uxx, x, t ≥ 0,

u(0, t) = u0(t), u0 ∈ V ,

u(x, 0) = 0.

(3.1)

The fundamental solution G for the initial value problem is given in terms

of the heat kernel H(x, t):











Gt + ΛGx = Gxx, G(x, 0) = δ(x),

G(x, t) = H(x− Λt, t), H(x, t) =
1√
4πt

e−
x2

4t .
(3.2)

As the spatial dimension is one, there is no spatial direction parallel to

the boundary and we don’t need to take the Fourier transform. Let U(x, s)

be the Laplace transform of u(x, t) in the time variable t, and Û(ξ, s) its

Laplace transform in the space variable x. The boundary values are denoted

as u0 = u0(t), u0x = u0x(t), U0 = U0(s), U0
x = U0

x(s) as in (1.9). The

algebraic equation for the Laplace-Laplace transform Û(ξ, s) is

(s+ Λξ − ξ2)Û = (Λ− ξ)U0(s)− U0
x(s). (3.3)

The characteristic polynomial p(ξ, s)

p(ξ, s) = s+Λξ − ξ2,

has two roots

λ1(s) =
1

2
[Λ−

√

Λ2 + 4s < 0 < λ2(s)] =
1

2
[Λ +

√

Λ2 + 4s], for s > 0.
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We have

Û(ξ, s) = soln(ξ, s;U0, U0
x) =

(Λ− ξ)U0(s)− U0
x(s)

p(ξ, s)

=
U0
x(s)− (Λ− ξ)U0(s)

(ξ − λ1(s))(ξ − λ1(s))

=
U0
x(s)− U0(s)(Λ− λ1(s))√

Λ2 + 4s(ξ − λ1(s))
+

U0
x(s)− U0(s)(Λ− λ2(s))√

Λ2 + 4s(ξ − λ2(s))
. (3.4)

Invert the Laplace transform for x to obtain

U(x, s)=
U0
x(s)−U0(s)(Λ− λ1(s))√

Λ2+4s
eλ1(s))x+

U0
x(s)−U0(s)(Λ−λ1(s))√

Λ2+4s
eλ2(s))x.

The well-posedness condition requires that the coefficient of the exponential

growing term eλ2(s)x should be zero:

U0
x(s)− U0(s)(Λ− λ1(s))√

Λ2 + 4s
=

U0
x(s)− 1

2U
0(s)

(

Λ−
√
Λ2 + 4s

)

√
Λ2 + 4s

= 0. (3.5)

This gives the Master Relationship, (MR):

U0
x(s)−

1

2
U0(s)(Λ−

√

Λ2 + 4s, or,

U0
x(s) =

1

2
U0(s)

(

Λ−
√

Λ2 + 4s
)

= − s

Λ/2 +
√

s+ Λ2/4)
U0(s). (3.6)

Since u0 ∈ V , from (2.4) the inverse Laplace transformation of the operator

−(s/(Λ +
√

s+ Λ2/4)) on V is

− 1

2πi

∫ i∞

−i∞
est

(

1

Λ/2 +
√

s+ Λ2/4

)

ds ∗ ∂t

= −
(

e−
Λ2t
4

(

1√
4πt

− ΛeΛ
2tErfc

(

Λ
√
t
)

))

∗ ∂t, (3.7)

where

Erfc(u) ≡
∫ ∞

u
2
e−x2

√
π
dx.

This gives the following theorem:

Theorem 3.1. The kernel function N(t) of the Dirichlet-Neumann map for
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(3.1) is

N(t) = −
(

e−
Λ2t
4

(

1√
4πt

− ΛeΛ
2tErfc

(

Λ
√
t
)

))

∗ ∂t. (3.8)

Thus the Dirichlet-Neumann relation is

u0x(t)=−
∫ t

0
e−

Λ2(t−τ)
4

(

1
√

4π(t−τ)
−ΛeΛ

2(t−τ)Erfc
(

Λ
√

(t−τ)
)

)

∂τu
0(τ)dτ.

(3.9)

4. Compressible Navier-Stokes Equations

Consider the isentropic compressible Navier-Stokes equations in one

space dimension

{

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p(ρ))x = (µvx)x.
(4.1)

Here ρ, v, p(ρ) are the density, velocity, and pressure, respectively. The

first equation, the continuity equation, has no dissipation. The second,

the momentum equation, has the dissipation term (µux)x, with the vis-

cosity coefficient µ > 0. Thus this system is not uniformly parabolic and is

hyperbolic-parabolic. This is typical of many physical models of which (4.1)

is the simplest. The inviscid model µ = 0 is the isentropic Euler equations:

{

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p(ρ))x = 0.
(4.2)

The characteristic speeds for the Euler equations are v − c and v+ c, where

c is the sound speed given by

c2 = p′(ρ).

Linearize the Navier-Stokes equations around a constant state (ρ0, v0). We

normalize the viscosity µ and the sound speed c0 =
√

p′(ρ0) to be unity and

take the base state to be (ρ0, v0) = (1,Λ). For notational simplicity, the

perturbed variables are still written as (ρ, v) so that the linearized system
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becomes
{

ρt +Λρx + vx = 0,

vt + ρx + Λvx = vxx,
(4.3)

which is also written in the matrix form, and as before, the initial values are

taken to be zero,



































ut +

(

Λ 1

1 Λ

)

ux =

(

0 0

0 1

)

uxx,

u ≡
(

ρ

v

)

,

u(x, 0) = 0.

(4.4)

The background velocity Λ is restricted to

Λ ∈ (−1, 1).

As the sound speed c has been normalized to be one, the above restriction

means that the flow is subsonic. This is the interesting case, as the super-

sonic flows can be studied easily by weighted energy method, with up to

exponentially in time accuracy. Also the well-posed boundary condition for

the supersonic flows are straightforward and not considered here.

The Green’s function for the initial value problem for (4.3) has been

explicitly constructed in [8]. In fact, in one space dimension, the Green’s

function for general hyperbolic-parabolic in one space dimension has also

been constructed in [6].

Following (1.8), we will denote the Laplace transform in t by U and the

subsequent Laplace transform in x by Û :

U(x, s) ≡
∫ ∞

0
e−stu(x, t)dt, Û(ξ, s) ≡

∫ ∞

0
e−ξxu(x, s)dx. (4.5)

The transformed system of (4.4) is

sÛ +

(

Λ 1

1 Λ

)

(ξÛ + U0) =

(

0 0

0 1

)

(ξ2Û + U0
x − ξU0), (4.6)
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or
(

Λξ + s ξ

ξ −ξ2 +Λξ + s

)

Û =

(

0 0

0 1

)

U0
x −

(

Λ+ ξ 1

1 Λ + ξ

)

U0. (4.7)

Thus characteristic polynomial p(ξ, s) for this system is

p(ξ, s) = det

(

Λξ + s ξ

ξ −ξ2 + Λξ + s

)

= s2 + 2sΛξ + (Λ2 − 1− s)ξ2 − Λξ3.

(4.8)

For this polynomial, there is a root ξ ∼ O(1)s as s → 0. Thus, one can

ignore the terms sξ2 and −Λξ3 in p(ξ, s) = 0 as s → 0 for the purpose

of approximating the root ξ ∼ O(1)s as s → 0. Thus we consider the

polynomial

p0(ξ, s) ≡ s2 + 2sΛξ − (1− Λ2)ξ2,

with two roots ξ = s/(1 − Λ) and ξ = −s/(1 + Λ). These two roots give

the asymptotic behavior of the roots of p(ξ, s) = 0 as s → 0. Since the

product of the three roots of p(ξ, s) = 0 in ξ is s2/Λ, ξ → −(1 − Λ2)/Λ is

the asymptotic behavior of the third root of p(ξ, s) = 0 as s → 0:



















λ1(s) = −s/(1 + Λ) +O(1)s2,

λ2(s) = s/(1− Λ) +O(1)s2,

λ3(s) = −1− Λ2

Λ
+O(1)s.

Write

λ3(s) ≡ −1− Λ2

Λ
+ α,

and α satisfies

p2(α, s) ≡ α3 −
(

2Λ2 − sΛ2 − 2Λ4
)

Λ3
α2 −

(

−Λ+ 2sΛ + 2Λ3 − Λ5
)

Λ3
α

−−s+ s2Λ2 + sΛ4

Λ3
= 0.
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The function p2(α, s) satisfies







p2(0, 0) = 0

∂

∂α
p2(0, 0) =

(1− Λ2)2

Λ2
6= 0 for |Λ| 6= 1.

Thus, the implicit function theorem applies to define an analytic root λ3(s) =

−(1− Λ2)/Λ + α(s) around s = 0 with α(0) = 0.

Next, one can use the Euclid’s algorithm to find equation of the branch

point of p(ξ, s) = 0. The necessary condition p(ξ, s) = pξ(ξ, s) = 0 for the

branch point (ξ, s) yields

s(4s3 + s2
(

12 + Λ2
)

+ 4s
(

3 + 5Λ2
)

+ 4
(

−1 + Λ2
)2
) = 0.

Since λ3(s) is analytic around s = 0, this and the above yield that the

possible branch point for λ3(s) are the roots of

4s3 + s2
(

12 + Λ2
)

+ 4s
(

3 + 5Λ2
)

+ 4
(

−1 + Λ2
)2

= 0. (4.9)

The following lemma is immediate from this expression.

Lemma 4.1. For Λ ∈ (−1, 1), there exists a positive constant Cb > 0 such

that the roots s of the polynomial in (4.9) satisfies

Re[s] < −(1− |Λ|)/Cb < 0.

This lemma yields that λ3(s) is analytic in the region Re(s) > −(1 −
|Λ|)/Cb and, by iterating p2(α, s), its asymptotic around s = 0 is

λ3(s) =
−1 + Λ2

Λ
+

s
(

1 + Λ2
)

Λ (−1 + Λ2)
+

s2
(

−1− 4Λ2 − Λ4
)

Λ (−1 + Λ2)3
+O(1)s3. (4.10)

With this asymptotic of λ3(s), one can factor out (ξ − λ3(s)) from p(ξ, s) to

obtain:

p3(ξ, s) ≡ p(ξ, s)

−Λ(ξ−λ3)
= ξ2+

(

λ3+
1

Λ
+

s

Λ
−Λ

)

ξ+λ2
3−2s+

λ3

Λ
+
λ3s

Λ
−λ3Λ

=
s2
(

O(1)s+
(

−1+Λ2
)4 (−1−2Λ2+Λ4

)

)

Λ2 (−1+Λ2)6
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−
s
(

O(1)s − 2Λ2
(

−1 + Λ2
)2
)

ξ

Λ (−1 + Λ2)3
+ ξ2. (4.11)

For the roots of p3(ξ, s) in ξ, one can rescale ξ = sβ so that the polynomial

for β is given by



































P3(β, s) = 0,

P3(β, s) ≡ β2 −

(

O(1)s − 2Λ2
(

−1 + Λ2
)2
)

Λ (−1 + Λ2)3
β

+
O(1)s +

(

−1 + Λ2
)4 (−1− 2Λ2 + Λ4

)

Λ2 (−1 + Λ2)6
.

This shows the roots β = β(s) of P3(β, s) = 0 are analytic around s = 0;

and one has the asymptotic of β(s) as follows:

β(s) = 1/(−Λ± 1) +O(1)s.

The above for λ3 and β together yield the following lemma.

Lemma 4.2. Let |Λ| ∈ (0, 1), then there are three analytic roots ξ = λ(s) of

p(ξ, s) = 0 for s ∈ {Re(s) > −(1− |Λ|)/Cb}, satisfying, for |s| ≪ 1,



























λ1(s) = − s
(1+Λ) +O(1)s2,

λ2(s) =
s

(1−Λ) +O(1)s2,

λ3(s) = −1− Λ2

Λ
+

s
(

1 + Λ2
)

Λ (−1 + Λ2)
+O(1)s2.

(4.12)

Here, the function O(1) is an analytic function in the region Re(s) > −(1−
|Λ|)/Cb.

The behavior of the eigenvalues near s = ∞ will also be needed. First,

it is easy to see that, for s > 0, the eigenvalues cannot have zero real part

and so

Re(λ1(s)) < 0, Re(λ2(s)) > 0, Re(λ3(s)) < 0, for s > 0. (4.13)
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Set

z =
1

ξ
, σ =

1

s
,

and write the characteristic polynomial (4.8) as

p = s2ξ3[z3 + 2Λσz2 + (Λ2 − 1)σ2z − σz − Λσ2] ≡ s2ξ3p̃(z, σ).

All the roots of the polynomial p̃(z, σ) are zero at σ = 0. There is a root

with linear leading term. Set

z = Aσ +O(1)σ2

and

p̃(z, σ) = σ2(−A− Λ) +O(1)σ3,

and so A = −Λ. This yields a root with negative real part. As we know

from (4.13) that λ1 is the only eigenvalue with negative real part, and so the

above yields

λ1(s) = − 1

Λ
s+O(1), as s → ∞. (4.14)

Straightforward calculations show that

p̃(z, σ)

z − (Aσ +O(1)σ2)
= z2 + (Λσ +O(1)σ2)z − σ +O(1)σ2.

The roots of this polynomial is therefore of the form O(1)σ+O(1)
√
σ. This

yields

λ2(s), λ3(s) = O(1)
√
s, as s → ∞. (4.15)

We now construct the Dirichlet-Neumann relation according to the fol-

lowing three cases:

Case 1. Λ ∈ (0, 1).

The characteristic polynomial p(ξ, s) has only one root ξ = λ2(s) with

the property Re(λ2(s)) > 0 for s > 0. For this root λ = sβ, the function β
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is a root of P3(β, s) = 0. The Dirichlet-Neumann map is

(

0 0

0 1

)

U0
x(s) =

(

K11 K12

K21 K22

)

U0(s), (4.16)

where

(

K11(s) K12(s)

K21(s) K22(s)

)

≡
(

0 0

s
s+λ2Λ

sΛ−(λ2)2Λ+λ2(−1−s+Λ2)
s+λ2Λ

)

.

In component form, this becomes

V 0
x =

s

s+ λ2Λ
P 0 +

sΛ− (λ2)
2Λ + λ2

(

−1− s+ Λ2
)

s+ λ2Λ
V 0, (4.17)

where

P ≡ Lρ, V ≡ Lv.

Proposition 4.3. The functions

s

s+ Λλ2
and

sΛ− (λ2)
2Λ + λ2

(

−1− s+ Λ2
)

s+ λ2Λ

are analytic in the region Re(s) > −(1− |Λ|)/Cb.

Proof. By Lemma 4.2, the function λ(s) is analytic in the region Re(s) >

−(1 − |Λ|)/Cb and {s + λΛ = 0} ∩ {p(λ, s) = 0} around (λ, s) = (0, 0).

The possible poles of the functions are at s = 0. Then, the asymptotic

of λ2 in Lemma 4.2 results in the analyticity of the functions s/(s + Λλ2)

and (sΛ − λ2Λ + λ2

(

−1− s+Λ2
)

)/(s + λ2Λ) around s = 0. Thus the

pole is removable and both functions are analytic in the region Re(s) >

−(1− |Λ|)/Cb. ���

One expands s/(s+Λλ2) at s = 0, lims→0 s/(s+Λλ2) = 1/(1+Λλ2(0)) =

1− Λ, as follows

s

s+ Λλ2
= 1− Λ+ s Q

[

s

s+ Λλ2

]

(s). (4.18)
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From (4.15), λ2 grows at the rate of
√
s as s → ∞ and so

Q

[

s

s+ Λλ2

]

(s) =
s

s+Λλ2
− 1 + Λ

s
= O(1)

1

s
as s → ∞. (4.19)

Thus, by Lemmas 2.4 the inverse Laplace transformation L−1[(s/(s+ λ2Λ))

L[u0]](t) is

L
−1
[ s

s+λ2Λ
L[u0]

]

(t) =

∫ t

0
L
−1 [Q [s/(s+λ2Λ)]] (t−τ)∂τu

0(τ)dτ+(1−Λ)u0(t)

(4.20)

Since Q[s/(s + λ2Λ)] is analytic in the domain Re(s) > −(1 − |Λ|)/Cb, the

path integral of the Bromwich integral along Re(s) = 0 is the same as along

Re(s) = −(1 − |Λ|)/Cb. Thus from (4.19) there exist constants C0, C1 > 0

such that

∣

∣

∣L
−1[

s

s+ λ2Λ
L[u0]](t)− (1− Λ)u0(t)

∣

∣

∣ ≤ C1

∫ t

0

e
− t−τ

C0

√
t− τ

|∂τu0(τ)|dτ. (4.21)

Actually, from (4.19) one has the weaker singularity of 1/ log(t − τ) rather

than the singularity of 1/
√
t− τ on the right hand side of (4.22). We only

need the integrability of the singularity around t = τ so that the integral rep-

resents the localized effect of the boundary values. Thus we put in 1/
√
t− τ

for the notational uniformity. Similarly, we have

∣

∣

∣L
−1
[sΛ− (λ2)

2Λ + λ2

(

−1− s+ Λ2
)

s+ λ2Λ
L[u0]

]

(t)− (Λ− 1)u0(t)
∣

∣

∣

≤ C1

∫ t

0

e
− t−τ

C0√
t− τ

|∂τu0(τ)|dτ. (4.22)

We have from (4.17), (4.21), and (4.22) the following Dirichlet-Neumann

relation for the compressible Navier-Stokes equations in the present case of

0 < Λ < 1.

Theorem 4.4. For the case of positive subsonic evaporation, 0 < Λ < 1,

there exists C0 > 0 such that for (ρ0, v0) ∈ V

v0x(t) = (1−Λ)ρ0(t)−(1−Λ)v0(t)+O(1)

∫ t

0

e
− t−τ

C0

√
t− τ

(|∂τρ0(τ)|+ |∂τv0(τ)|)dτ.
(4.23)
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Remark 4.5. The relation (4.23) gives, within locally and exponentially

decaying accuracy, the explicit expression of the Neumann value for the

velocity in terms of the Dirichlet values of both density and velocity. From

the continuity equation ρt + Λρx + vx = 0 in (4.3) the Neumann value for

the density is given in terms of the Dirichlet values also:

ρ0x(t) = − 1

Λ
∂tρ

0(t)− 1− Λ

Λ
ρ0(t) +

1− Λ

Λ
v0(t)

+O(1)

∫ t

0

e
− t−τ

C0√
t− τ

(|∂τρ0(τ)|+ |∂τv0(τ)|)dτ. (4.24)

This way of using the continuity equation does not work for the case solid

wall, Λ = 0, in Case 2. Although it also works for Case 3 of condensa-

tion, −1 < Λ < 0; the situation is quite different from the present case of

evaporation.

Case 2. Λ = 0.

In this case, we write the system in the original (ρ, u)-coordinate:

{

ρt + vx = 0,

vt + ρx = vxx,

ρ(x, 0) = v(x, 0) ≡ 0.

(4.25)

The first equation gives

sP (x, s) + Vx(x, s) = 0,

in particular, their boundary values satisfy

sP 0(s) + V 0
x (s) = 0. (4.26)

For this case, the characteristic polynomial degenerates to

p(ξ, s) = s2 − ξ2 − sξ2,

and has only one root λ = s/
√
s+ 1 with Re(λ) > 0 for s > 0. Following the

above procedure and use (4.26) to eliminate P from the Dirichlet-Neumann

relation for the transformed variable, we obtain the relation for V = L[v]
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alone:

V 0
x (s) = − s√

1 + s
V (s). (4.27)

This yields the Dirichlet-Neumann kernel

N22(t) = −∂t

(

1

2πi

∫

Re(s)=0
est

1√
1 + s

ds

)

= −∂t

(

e−t

√
πt

)

. (4.28)

Theorem 4.6. When Λ = 0, The Dirichlet-Neumann relation for the system

(4.25) is

v0x(t) = −
∫ t

0
∂t

(

e−(t−τ)

√

π(t− τ)

)

v0(τ)dτ. (4.29)

Remark 4.7. The boundary value for the density can be recovered from

the system (4.25):

ρ0(t) = −
∫ t

0
v0x(τ)dτ =

∫ t

0

∫ τ

0
∂τ

(

e−(τ−s)

√

π(τ − s)

)

v0(s)dsdτ. (4.30)

Thus the only one boundary value is needed for a well-posed initial-boundary

value problem. This is different from the other two cases.

Case 3. Λ ∈ (−1, 0).

The analysis for this case is similar to Case 1, Λ ∈ (0, 1). For s > 0,

two roots have positive real part, Re(λj) > 0, j = 2, 3, and so the boundary

relation (4.16) holds for j = 2, 3 :







(s + λ2Λ)V
0
x = sLP 0 + (sΛ− (λ2)

2Λ+ λ2(−1− s+ Λ2))V 0,

(s + λ3Λ)V
0
x = sLP 0 + (sΛ− (λ3)

2Λ+ λ3(−1− s+ Λ2))V 0.
(4.31)

This leads to

V 0
x =

−(λ2 + λ3) + (−1− s+ Λ2)

Λ
V 0

= −
(

λ2 + s

sΛ

)

sV 0 +
(−1 + Λ2 + λ3)

Λ
V 0

≡ A(s)sL[ub] +
(−1 + Λ2 + λ3)

Λ
L[ub]. (4.32)
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Apply similar computations as those for (4.23), one has the following theo-

rem:

Theorem 4.8. There exists C0 > 0 such that

v0x(t) =
(−1 + Λ)(1 + Λ)2

Λ2
v0(t) +

2− Λ

(−1 + Λ)Λ
∂tv

0(t)

+O(1)

∫ t

0

e
− t−τ

C0

√
t− τ

(|∂τv0(τ)|+ |∂2
τ v

0(τ)|)dτ. (4.33)

Remark 4.9. From (4.31), one can represent the boundary values for the

density in terms of that of the velocity. Thus only one boundary value is

needed for the well-posedness of the initial-boundary value problem. Note

also from (4.33) that the Neumann value for the velocity depends not only

on the first differential, but also on the second differential of the velocity.

5. A Viscous System in 2-D

We next study the multi-dimensional wave propagation, ~x ∈ Rm, m ≥ 2.

We will consider in two space dimensions, m = 2, ~x = (x, y), the viscous

wave equations in half space, x ≥ 0, y ∈ R, (x, y) ∈ R2
+ :

ut +

(

1 + Λ 0

0 −1 + Λ

)

ux +

(

0 1

1 0

)

uy = ∆2u, u ∈ R
2, x, t > 0, y ∈ R.

(5.1)

As before, the boundary value u0(y, ·) ≡ u(0, y, ·) is V -valued function, with

V ≡ {g ∈ C∞(R+)|∂n
t g(0) = 0 for n ∈ {0} ∪ N}.

This system is the D’Alembert’s wave equation in 2-D with an artificial

viscosity. The inviscid first order operator, after the Galilean transformation

x → x− Λt, is the 2-D D’Alembert wave equation:

(

∂t +

(

1 0

0 −1

)

∂x +

(

0 1

1 0

)

∂y

)

W (x, y, t) = 0, (5.2)

or the standard D’Alembert wave equation in 2-D with the wave speed one:

(∂2
t −∆2)w = 0. (5.3)
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Here the speed Λ of the wave center is assumed to be subsonic:

−1 < Λ < 1. (5.4)

Consider the Green’s function, the fundamental solution G(x, y, t) of initial

value problem for the wave equation:















Gt +

(

1 + Λ 0

0 −1 + Λ

)

Gx +

(

0 1

1 0

)

Gy = ∆2G, ~x ≡ (x, y),

G(~x, 0) = δ(~x)I,

(5.5)

where I is the 2 × 2 identity matrix. Its Fourier transformations of Ĝ(~x, t)

can be computed easily and explicitly:

Ŵ(~ζ, t) ≡
∫

R2

e−i~ζ·~x
W(~x, t)d~x, ; ~ζ = (ζ1, ζ2),

(5.6)

Ĝ(~ζ, t) = e−|~ζ|2t−iΛζ1t





cos(t|~ζ|)− i sin(t|~ζ |)ζ1

|~ζ|
− i sin(t|~ζ|)ζ2

|~ζ|

− i sin(t|~ζ|)ζ2

|~ζ|
cos(t|~ζ|) + i sin(t|~ζ|)ζ1

|~ζ|



 .

From (5.6), the entries of the fundamental function consist of Sine transfor-

mation, Cosine transformation, Galilean translation, and heat kernel. Ex-

cept for the heat kernel, the Fourier transform of the fundamental solution

for the wave equation (5.3) also consists of these transforms. As the wave

equation (5.3) has been solved explicitly by Hadamard’s method of descent,

we have the following structure of G(~x, t), Theorem 6.4:

G = (Gij)2×2,

|Gij(~x, t)| ≤ O(1)
1√
t
W2(~x− (Λt, 0), t; 2) for i 6= j,

|Gjj(~x, t) ≤ O(1)

(

1

t
+

1√
t

)

W2(~x− (Λt, 0), t), t; 2) for j = 1, 2,

(5.7)
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where W2 is defined by

W2(~x, t;D0) ≡











































1

t− |~x| for |~x| ≤ t−
√
D0t,

1

t3/4D
1/4
0

for ||~x| − t| ≤
√
D0t,

e
− (|~x|−t)2

4D0t

t3/4D
1/4
0

for |~x| ≥ t+
√
D0t.

(5.8)

Unlike the first two examples with one spacial dimension, we now have

two spacial diemsnsions and need to take the Fourier transform with respect

to the tangential direction y first. We adopt the notations of (1.8), and, for

simplicity, in the 2-D case here we also use ~x = (x, y), η ≡ ζ2, ~ζ = (ζ1, ζ2):































































































v(x, ζ2, t) = v(x, η, t) = F [u](x, η, t)≡
∫

Rm−1 u(x, y, t)e
−iyηdy,

V (x, ζ2, s) = V (x, η, s) = L[v](x, η, s)≡
∫∞
0 e−stv(x, η, t)dt,

Laplace transformation for t,

V̂ (ξ, ζ2, s) = V̂ (ξ, η, s) = L[V ](ξ, η, s)≡
∫∞
0 e−ξxV (x, η, s)dx,

Laplace transformation for x,

u0(y, t)≡u(0, y, t), v0(ζ2, t)≡v(0, ζ2, t), V 0(ζ2, s)≡V (0, ζ2, s),

boundary Dirichlet values,

u0
x(y, t)≡ux(0, y, t), v0

x(ζ
2, t)≡vx(0, ζ

2, t), V 0
x (ζ

2, s)≡Vx(0, ζ
2, s),

boundary Neumann values.

(5.9)

These variables satisfy:

vt +

(

1 + Λ 0

0 −1 + Λ

)

vx +

(

0 iη

iη 0

)

v = vxx − η2v, (5.10)

sV +

(

1 + Λ 0

0 −1 + Λ

)

Vx +

(

0 iη

iη 0

)

V = Vxx − η2V, (5.11)
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(

s+ (1 + Λ)ξ − ξ2 + |η|2 iη

iη s+ (−1 + Λ)ξ − ξ2 + |η2|2

)

V̂ (ξ, η, s)

=

(

(1 + Λ− ξ) 0

0 (−1 + Λ− ξ)

)

V 0(η, s)− V 0
x (η, s). (5.12)

Thus the characteristic polynomial p(ξ; η, s) is

p(ξ; η, s) = det

(

s+ (1 + Λ)ξ − ξ2 + |η|2 iη

iη s+ (−1 + Λ)ξ − ξ2 + |η|2

)

= s2 + |η|2 + 2s|η|2 + |η|4 +
(

2sΛ+ 2|η|2Λ
)

ξ

+
(

−1− 2s− 2|η|2 + Λ2
)

ξ2 − 2Λξ3 + ξ4. (5.13)

The characteristic polynomial p(ξ; η, s) is a degree 4 polynomial in ξ. Its

four roots λj(η, s), j = 1, . . . , 4 can be computed explicitly when η = 0 and

Λ ∈ (0, 1):






















































λ1(0, s) =
Λ + 1 +

√

(Λ + 1)2 + 4s

2
,

λ2(0, s) =
Λ− 1 +

√

(Λ− 1)2 + 4s

2
,

λ3(0, s) =
Λ + 1−

√

(Λ + 1)2 + 4s

2
,

λ4(0, s) =
Λ− 1−

√

(Λ− 1)2 + 4s

2
.

(5.14)

Thus for s > 0, Λ ∈ (0, 1),

λ1(0, s) > λ2(0, s) > 0 > λ3(0, s) > λ4(0, s).

It is easy to check that any root λj(η, s), 1 ≤ j ≤ 4, of the characteristic

polynomial p(ξ; η, s) has the property that, for any s > 0 and real η, its

real part does not vanish and therefore maintains their signs. Thus, for any

s > 0 and real η,

Re(λ1(η, s)), Re(λ2(η, s)) > 0 > Re(λ3(η, s)), Re(λ4(η, s)).

Thus we may follow the same procedure as in Section 2 from (2.7) to (2.11)

with (j1, j2) = (1, 2). After straightforward computations, the Master Re-
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lationship (MR), the Dirichlet-Neumann relations in the transformed vari-

ables, is given in terms of λ1 and λ2 as follows:

V 0
x1(η, s) =

(

K11 K12

K21 K22

)

V 0(η, s), (5.15)















































K11 ≡ −1− s− |η|2 − Λ2 + 2λ1 + λ2
1 + 2λ2 + λ1λ2 + λ2

2

1− Λ + λ1 + λ2
,

K12 ≡ − iη

1− Λ+ λ1 + λ2
,

K21 ≡ − i
(

s+ |η|2 + (−1 + Λ)λ1 − λ2
1

) (

s+ |η|2 + (−1 + Λ)λ2 − λ2
2

)

η (1− Λ+ λ1 + λ2)
,

K22 ≡ −−1 + s+ |η|2 + 2Λ− Λ2 + (−1 + Λ)λ2 + λ1 (−1 + Λ + λ2)

(1− Λ+ λ1 + λ2)
.

(5.16)

5.1. Laplace-Fourier paths and roots for the characteristic poly-

nomial

The eigenvalues λi = λi(η, s), i = 1, 2, 3, 4, are defined in terms of

the Laplace variable s > 0 and Fourier variable η ∈ R. For the inversion

of the Laplace transform using the Bromwich integral (1.13), one needs to

have an analytic extension of the Laplace variable s ∈ R+ to a simply con-

nected subset containing Re(s) = 0 of C. As we will see, the study of the

analytic extension can be done only for |η| small. At η = 0 we have ex-

plicit formula of λi(0, s), (5.14). It is easy to see that both λ1(0, s) and

λ4(0, s) are analytic in the domains U1 ≡ C\(−∞,−(1 + Λ)2/4) and the

domain U4 ≡ C\(−∞,−(1 − Λ)2/4) respectively as illustrated in Figure a.

Moreover, since both λ1(0, s) and λ4(0, s) are distinct from each other and

other eigenvalues, both λ1(η, s) and λ4(η, s), |η| small, are also analytic in

the domains around U1 and U4 respectively. In particular, for |η| small, the

eigenvalues λ1(η, s) and λ4(η, s) have spectral gap and are non-characteristic

according to Definition 1.1.

The situation is different for the eigenvalues λ2(η, s) and λ3(η, s), as

their values coincide and are zero for (η, s) = (0, 0), (5.14). For η = 0,

(ξ̄, s̄) = (0, 0) is a removable branch point for both λ2 and λ3 and λ1(0, s)

and λ4(0, s) can also be analytically extended to the domain U4. However,
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Figure a

for η 6= 0, the qualitative structure of the non-removable branch points

changes and (ξ̄, 0̄) = (0, 0) branches into two points. To study this, we first

consider the general study of the branch points (η, s) at which λi(η, s) is not

differentiable in s. As λi is defined implicitly by p(λi; η, s) = 0, we have

∂sλi = −∂sp(λi; η, s)/∂ξp(λi; η, s). The necessary condition for the branch

point at η = 0 is
{

p(ξ̄, 0, s̄) = 0,

pξ(ξ̄, 0, s̄) = 0.
(5.17)

The solutions are

(ξ̄, s̄) ∈
{(

Λ+ 1

2
,−(Λ + 1)2

4

)

, (0, 0),

(

Λ− 1

2
,−(Λ− 1)2

4

)}

. (5.18)

Thus, (ξ, s) = (0, 0) is the only possible characteristic branching point for |η|
small. For η 6= 0, there is no simple explicit expression for the eigenvalues.

To analyze the two branch points bifurcating from (ξ̄, s̄) = (0, 0), we consider

an implicit expression for the roots. For the case Λ = 0, studied in [5], the

roots of the characteristic polynomial have explicit expression. Motivated

by this, we replace Λξ in the right hand side of (5.13) by Λλ :

p(ξ; η, s) = s2 + |η|2 + 2s|η|2 + |η|4 + 2sΛλ+ 2|η|2Λλ+ (−1− 2s− 2|η|2)ξ2

+Λ2λ2 − 2Λλξ2 + ξ4 = 0,

for roots ξ = λ of the characteristic polynomial. From this we obtain the
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implicit expression of the root ξ = λ:

λ(η, s) = ±

√

(

√

(s+ Λλ(η, s) +
1

4
)− 1

2
)2 + |η|2. (5.19)

With this expression, one considers branch cut for the outer square root

along the negative real axis. In other words, the right hand side of (5.19) is

a pure imaginary number, denoted by the new variable iζ1, ζ1 ∈ R:

iζ1 = ±

√

(

√

(s +Λiζ1 +
1

4
)− 1

2
)2 + |η|2

=

√

(

√

(s+ Λiζ1 +
1

4
)− 1

2
)2 + |ζ2|2, (5.20)

recalling that we have written, for simplicity, η = ζ2. The equation (5.20)

can be solved explicitly for s:

s = s±(ζ
1; ζ2) ≡ −(|ζ1|2 + |ζ2|2)± i

√

|ζ1|2 + |ζ2|2 − iΛζ1

= −|~ζ|2 ± i|~ζ| − iΛζ1, (5.21)

and we define the path Γζ2

± :

Γζ2

+ ≡ {s+(ζ1; ζ2)|ζ1 ∈ R}, Γζ2

− ≡ {s−(ζ1; ζ2)|ζ1 ∈ R}.

Here, the paths Γζ2

± are named as the Laplace-Fourier path, due to the fact

that the function s±(ζ
1; ζ2) also satisfies

p(iζ1; ζ2, s±) = 0.

It turns out that s±(ζ
1; ζ2) is the spectrum of the Fourier transformation of

(5.1) with respect to the wave number (iζ1, iζ2):

s±(ζ
1; ζ2) = σ(~ζ).

The known structure for λi(0, s) allows us to carry out the perturbation

analysis of possible branch points for |ζ2| ≪ 1. The condition |ζ2| ≪ 1

is necessary for study of the spectral information in the Laplace-Frourier

analysis. This is because there does exist a branch point in Re(s) > 0 when
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ζ2 is not small. Computational result based on p = pξ = 0, c.f. (5.17),

shows that branch point does appear in the region Re(s) > 0 for the case of

(Λ, ζ2) = (1/2, 1/2), Figure b.

Figure b

Thus the size |ζ2| of the Fourier variable needs to be restricted to be

sufficiently small so that all branch points reside in the domain Re(s) < 0.

In other words, we are forced to have the long-short waves decomposition in

our analysis. The analysis for the short waves, |η| not small, will be done

later using the energy method, and not the Laplace-Fourier path method

presented here.

Consider a small δ−neighborhood of the path zero, Γδ
0:

Γδ
0 ≡ {s0(x)|x ∈ R},

s0(x) ≡



























x+ 2δ − (1− |Λ|2)
4

+ iδ for x < −δ,

−(1− |Λ|2)
4

+ δ − ix for x ∈ (−δ, δ),

−x+ 2δ − (1− |Λ|2)
4

− iδ for x > δ.

The region is designed to bound the branch points, with small perturbation

of |ζ|2, around (ξ̄, s̄) = ((Λ+1)/2,−(Λ+1)2/4) and (ξ̄, s̄) = ((Λ−1)/2,−(Λ−
1)2/4) for ζ2 = 0, (5.18). The following lemmas in this subsection follow from

the above discussions, we omit their proofs.

Lemma 5.1. There exist δ0 > 0 and δ1 > 0 such that for all |ζ2| < δ1 the

branch points of (ξ̄, s̄) of p(ξ, ζ2, s) = 0 can not occur on Γδ0
0 .
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The paths Γζ2

± and Γδ0
0 give complete branch cuts for λ2(ζ

2, s) and

λ3(ζ
3, s) in s for each given small ζ2, |ζ2| ≤ δ0; and the path Γδ0

0 gives

the branch cut for λ1(ζ
2, s) and λ4(ζ

2, s) as illustrated in Figure c.

Figure c

Definition 5.2. With δ0 and δ1 given by Lemma 5.1, for each given ζ2

satisfying |ζ2| < δ1 one denotes:

V
δ0,ζ2

1 : the connected component of C\(Γ+ ∪ Γδ0
0 ∪ Γ−) connecting R+.

V
δ0,ζ2

2 : the connected component of C\Γδ0
0 connecting R+.

Lemma 5.3. Suppose that Λ 6= 0. Then, there exist δ0 and δ1 > 0 such that

for any |ζ2| < δ1 the roots of the characteristic polynomial p(ξ; ζ2, s) branch-

ing from (5.14) have the property that λ2(ζ
2, s) and λ3(ζ

2, s) are analytic for

s ∈ V
δ0,ζ2

1 ; and λ1(ζ
2, s) and λ4(ζ

2, s) are analytic for s ∈ V
δ0,ζ2

2 . On the

paths Γζ2

± , the root λ3(ζ
2, s) satisfies

{

λ3(ζ
2, s+(ζ

1; ζ2)) = λ3(ζ
2, s−(ζ

1; ζ2)) = iζ1,

s±(ζ
1; ζ2) ≡ i(−Λζ1 ±

√

|ζ1|2 + |ζ2|2)− (|ζ1|2 + |ζ2|2).
(5.22)

Furthermore, with ζ2 fixed, the asymptotics of the roots λi, i = 2, 3,

satisfy

lim
s→±∞
Re(s)=0

λj(ζ
2, s)√
s

=

{

1 for j = 1, 2,

−1 for j = 3, 4.
(5.23)

Remark 5.4. Since λ3(ζ
2, s) is an exponent of a solution of the inverse

Laplace transformation, eλ3x with respect to x-variable, on Γζ2

± the expo-

nent satisfies λ3(ζ
2, σ±(ζ

1; ζ2)) = iζ1 and the solution becomes eλ3x =
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eiζ
1x. Thus, one can consider the parameter ζ1 of the parametric curve

s = s±(ζ
1; ζ2) as an imaginary Fourier variable for x-direction, the direc-

tion of the normal to the boundary.

Since there is no branch point in V
δ0,ζ2

2 for |ζ2| < δ1, it follows by the

definition that

{

λ2, λ3 : characteristic,

λ1, λ4 : non-characteristic when |Λ| < 1.
(5.24)

Definition 5.5. Lj(y, t): the interior wave operators is defined as

Lj(y, t) ≡ F
−1[L−1[λj ]](y, t), j = 1, 2, 3, 4. (5.25)

Lj is defined as a characteristic operator if and only if λj is characteristic.

As before, the operators Lj(y, t) are generalized functions due to the

non-decaying property of the roots λj(ζ
2, s) as |s| → ∞. For small t, we

form the decaying quotient Q[λj(ζ
2, s)] = [λj(ζ

2, s)−λj(ζ
2, 0)]/s, Definition

2.3, to decompose Lj(y, t) into compositions of differential operators and

integral operators, (2.4),

λj(ζ
2, s) = s Q[λj(ζ

2, ·)] + λj(ζ
2, 0).

Lemma 5.6. The interior wave operators Lj(y, t) on V satisfies

Lj = F
−1
[

L
−1
[

Q[λj(ζ
2, s)]

]]

∗
t
∂t + F

−1[λj(ζ
2, 0)]δ(t) for j = 1, · · · , 4.

(5.26)

The operators ∗
t
is the convolution operators respect t variable.

The above lemma is similar to Lemma 2.2. For large t, we form instead

the function ∂sλj . As we will see the inverse transform of this decaying

function can be computed by the Laplace-Fourier path and gives explicit

description of Lj(y, t) for large t.

Lemma 5.7. There exists a function C(ζ2) such that the interior wave

operator Lj(y, t) satisfies

Lj = −1

t
F

−1[L−1[∂sλj]] + F
−1[C(ζ2)]δ(t). (5.27)
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5.2. Kernel functions for interior wave operators

With Lemmas 5.6 and 5.7, we now estimate the pointwise structure of

the following functions:

L
−1
[

Q[λj(ζ
2, s)]

]

, L−1[∂sλj ].

First we study the non-characteristic interior wave operators Lj, j = 1, 4.

Lemma 5.8 (Non-characteristic root). For Λ ∈ (−1, 1) there exist β0 > 0

and δ1 > 0 such that for (ζ2, s) in {s| − β0 < Re(s) < 0} ∩ {ζ2||ζ2| < δ1},
the roots λj(ζ

2, s), j = 1, 4, are analytic in s and satisfy

|Q[λj(ζ
2, s)](s)| =

∣

∣

∣

∣

λj(ζ
2, s)− λj(ζ

2, 0)

s

∣

∣

∣

∣

≤ O(1)
√

1 + |s|
,

|∂sλj(ζ
2, s)| ≤ O(1)

√

1 + |s|
.

(5.28)

Proof. This follows from the perturbation, for |ζ1| ≪ 1, of (5.14). ���

Theorem 5.9 (Global estimates for non-characteristic operators). For Λ ∈
(−1, 1) there exist positive constants C and δ1 such that the non-characteristic

roots λ1 and λ4 satisfy for |ζ2| < δ1

∣

∣L
−1
[

Q[λj(ζ
2, s)]

]

(t)
∣

∣ = O(1)
e−t/C

√
t

(5.29)

∣

∣L
−1
[

∂sλj(ζ
2, s)

]

(t)
∣

∣ = O(1)
e−t/C

√
t

. (5.30)

Proof. For the function F−1[L−1[Q[λj(ζ
2, s)]]](y, t), we have, by the fact

that λ1 and λ4 are analytic in s ∈ V
δ0,ζ2

2 and that (5.28) holds,

∣

∣

∣

∣

∣

∫

Re(s)=0
est

λj(ζ
2, s)−λj(ζ

2, 0)

s
ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Re(s)=−β0

est
λj(ζ

2, s)−λj(ζ
2, 0)

s
ds

∣

∣

∣

∣

∣

≤ O(1)
e−t/C

√
t

. (5.31)

Similarly, one has (5.30). ���
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We now come to one of the main parts of the present analysis, the study

of using the Laplace-Fourier path to relate the characteristic interior wave

operators L2 and L3 to the solution of D’Alembert wave equation.

Lemma 5.10. For each given Λ with |Λ| < 1, Λ 6= 0, there exist positive

constants C and δ1 such that for |ζ2| < δ1 the characteristic roots λj(ζ
2, s),

j = 2, 3, satisfy

∣

∣

∣

∣

L
−1[∂sλ3](ζ

2, t) + sign(Λ)
1

π

∫ ∞

−∞
e−iΛζ1t−|~ζ|2t cos(|~ζ| t)dζ1

∣

∣

∣

∣

= O(1)
e−t/C

√
t

, (5.32)

∣

∣

∣

∣

L
−1[∂sλ2](ζ

2, t)− sign(Λ)
1

π

∫ ∞

−∞
e−iΛζ1t−|~ζ|2t cos(|~ζ| t)dζ1

∣

∣

∣

∣

= O(1)
e−t/C

√
t

. (5.33)

Proof. We only consider the case Λ > 0; other cases are similar. By the

Cauchy’s integral formula for the analytic function estλ3(ζ
2, s) in s ∈ V

δ0,ζ2

1 ,

one has

L
−1[∂sλ3(ζ

2, s)](t) = −
∫

Γζ2

− +Γ
δ0
0 +Γζ2

+

est∂sλ3(ζ
2, s)ds, (5.34)

by taking the limit of

lim
κ0,T→∞

∮

∂Dκ0,T

est∂sλ3ds = 0,

where Dκ0,T is the complex domain illustrated in Figure c. The sum of two

path integrals on the Laplace-Fourier paths, Γζ2

± ≡ {s = s±(ζ
1; ζ2)|ζ1 ∈ R},

s±(ζ
1; ζ2) ≡ i(−Λζ1 ± |~ζ|)− |~ζ|2,

can be parametrized by ζ1. From the property λ3 = iζ1 on the Laplace-

Fourier path, we have the key observation

∂sλ3
ds

dζ1
=

d(iζ1)

ds

ds

dζ1
= i. (5.35)
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This results in
∫

Γζ2

− +Γζ2

+

est∂sλ3(s, ζ
2)ds

=

∫ ∞

−∞
es−(ζ1;ζ2)t∂sλ3(s, ζ

2)
ds

dζ1
dζ1 +

∫ ∞

−∞
es+(ζ1;ζ2)t∂sλ3(s, ζ

2)
ds

dζ1
dζ1

= i

∫ ∞

−∞
(es−(ζ1;ζ2)t + es+(ζ1;ζ2)t)idζ1

= 2i

∫ ∞

−∞
e−iΛζ1t−|~ζ|2t cos(|~ζ|t)dζ1. (5.36)

We have |∂sλj(ζ
2, s)| ≤ O(1)/

√

1 + |s| on Γδ0,ζ2

0 for |ζ2| ≪ 1 and

supRe(Γδ0,ζ2

0 ) < −(1− Λ)2/4 + δ0, and so

∣

∣

∣

∣

∣

∫

Γ
δ0,ζ

2

0

est∂sλ3(ζ
2, s)ds

∣

∣

∣

∣

∣

≤ O(1)
e−t/C

√
t

. (5.37)

This proves (5.32). From λ2 + λ3 = 2Λ − λ1 − λ4 and that both λ1 and λ4

are non-characteristic, we conclude (5.33) from (5.30) and (5.32). ���

The following lemma will be used for local in time estimates later.

Lemma 5.11. For Λ ∈ (−1, 1)\{0} and |ζ2| ≪ 1, i = 2, 3,

∣

∣L
−1
[

Q[λi(ζ
2, s)]

]

(ζ2, t)
∣

∣ = O(1)
(

| log(t)|+ | log(|ζ2|)|
)

e−|ζ2|2t+O(1)
e−t/C

√
t

.

(5.38)

Proof. Again we only consider the case Λ > 0. We only need to show the

case for i = 3; and use the property λ2+λ3 = 2Λ−λ1−λ4 again to conclude

the case for i = 2.

Similar to (5.34) and (5.37),

L
−1

[

λ3(ζ
2, s)− λ3(ζ

2, 0)

s

]

(ζ2, t)

=
1

2πi

(

∫

Γ
δ0,ζ

2

0

+

∫

Γζ2

+ +Γζ2

−

)

est
λ3(ζ

2, s)− λ3(ζ
2, 0)

s
ds. (5.39)

One defines

G±(ζ
2, t) ≡

∫

Γζ2

+ +Γζ2

−

est

s
λ3(ζ

2, s)ds.
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From the definition of s±(ζ
1; ζ2) and Γζ2

± , one has

G±(ζ
2, t) =

∫

R

L±(ζ
2, ζ1, t)dζ1, (5.40)

where










































L+(ζ
1, ζ2, t)≡

e−t|~ζ|2(ζ1+2i|~ζ |ζ1−|~ζ|Λ)(cos(t(|~ζ| − ζ1Λ)) + i sin(t(|~ζ|−ζ1Λ)))

|~ζ|(|~ζ|+i|~ζ |2−ζ1Λ)
,

L−(ζ
1, ζ2, t)≡

e−t|~ζ|2(ζ1−2i|~ζ |ζ1+|~ζ|Λ)(cos(t(|~ζ|−ζ1Λ))− i sin(t(|~ζ |−ζ1Λ)))

|~ζ|(|~ζ|−i|~ζ|2+ζ1Λ)
.

(5.41)

By straightforwardly evaluating the integral

∫

R

L±(ζ
1, ζ2, t)dζ1 =

(

∫

|ζ1|<2|ζ2|
+

∫

|ζ1|>2|ζ2|

)

L±(ζ
1, ζ2, t)dζ1,

one has that

|G±(ζ
2, t)| ≤ O(1)

(

| log(t)|+ | log(|ζ2|)|
)

e−|ζ2|2t.

This, (5.39), and (5.37) yield (5.38). ���

5.3. The recombination operator for L−1[1/(1 − Λ+ λ1 + λ2)].

We now invert the transforms for the expression of the Dirichlet-Neumann

relation (5.16). In that expression, the matrix Kij have the common divisor

of 1/(1 − Λ + λ1 + λ2). As the roots λj , j = 1, . . . , 4, are not analytic,

the divisor has the undesirable singularity. There is the standard algebraic

method of regularizing this through multiplying the symmetric factors of

1/(1− Λ + λ1 + λ2) to form the symmetric expression

1

1− Λ + λ1 + λ2
=

Π(j,k)6=(1,2)(1− Λ + λj + λk)

g(λ1, λ2, λ3, λ4)
, g(λ1, λ2, λ3, λ4)

≡ Π4
j,k=1(1− Λ+ λj + λk), (5.42)

so that new denominator, the polynomial g is invariant under the permu-
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tation of the roots. A basic theorem in algebra says that the polynomial

g is a polynomial of the coefficients of the characteristic polynomial p and

thereby analytic. However, this overall symmetrization may be redundant,

as it creates too big a polynomial and the denominator g may becomes zero

in some domain under consideration of the contour integrations. Instead, we

notice that the roots λ1, λ4 are non-characteristic, (5.24), and so give rise to

local operator. Thus the symmetrization should be minimal and needs only

to aim at converting the divisor into a polynomial in λ2 with coefficients

rational functions of λ1 and λ4. This way the divisor becomes a polynomial

in λ2 over a ring spanned by analytic functions in s ∈ V
δ0,ζ2

2 . We start with

the first two symmetric expressions:



















λ1 + λ2 + λ3 + λ4 = 2Λ,

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ3λ4

= (λ1 + λ4)(λ2 + λ3) + λ1λ4 + λ2λ3 = 1 + 2s+ 2η2 − Λ2.

Thus we have

{

λ2 + λ3 = 2Λ− (λ1 + λ4),

λ2λ3 = −1− 2s− 2η2 + Λ2 − 2Λλ1 + λ2
1 − 2Λλ4 + λ1λ4 + λ2

4.

With this, one can regularize the rational function 1/(1 − Λ + λ1 + λ2) as

following

1

(1− Λ+ λ1 + λ2)
=

(1− Λ + λ1 + λ3)

(1− Λ+ λ1 + λ2)(1− Λ+ λ1 + λ3)

=
(1 + Λ− λ4)

λ2
1 + λ2

4 − (−1 + Λ)λ1 − (1 + Λ)λ4 − 2 (s+ η2)

− 1

λ2
1 + λ2

4 − (−1 + Λ)λ1 − (1 + Λ)λ4 − 2 (s+ η2)
λ2

≡ A (ζ2, s) + B(ζ2, s)λ2. (5.43)

Lemma 5.12. For Λ ∈ (−1, 1), s ∈ V
δ0,ζ2

2 and |ζ2| ≪ 1 the roots λ1, λ2,

and λ3 satisfy (1− Λ+ λ1 + λ2)(1− Λ+ λ1 + λ3) 6= 0.

Proof. Under the condition |ζ2| ≪ 1, the roots λj(ζ
2, s) are approximations
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to λj(0, s). One has that

Re
(

(1− Λ+ λ1 + λ2)(1− Λ + λ1 + λ3)|ζ2=0

)

= 2 +Re
(

√

(Λ + 1)2 + 4s +
√

(Λ− 1)2 + 4s
)

≥ 2 for s ∈ V
δ1,ζ2

2 .

With this gap and |λi(ζ
2, s)− λi(0, s)| = O(1)|ζ2|/

√

1 + |s|, this proves this
lemma. ���

Lemma 5.13. The coefficients A and B given in (5.43) are analytic func-

tions in V
δ1,ζ2

2 . Moreover, Kij in (5.16) can be uniquely separated into:







Kij = Aij + Bijλ2 for (i, j) 6= (2, 1),

K21 =
A21 + B21λ2

ζ2
,

(5.44)

with the coefficients Aij and Bij analytic in s ∈ V
δ0,ζ2

2 .

Proof. Lemma 5.12 concludes that the meromorphic functions A and B

defined on V δ1,ζ2 contain no pole. This proves the first statement of the

lemma. The second statement follows immediately from the first and the

form of Kij in (5.16). ���

From (5.14), it is easy to show that, for |η| ≪ 1,

A (η, s) 7−→
s→±∞

(

−√
s/2 −iη/4

is− 1
2 i
(

η2 − Λ
)√

s −√
s/2

)

,

B(η, s) 7−→
s→±∞

(

−1/2 0

−i
√
s −1/2

)

.

(5.45)

With the asymptotic of Aij(η, s) and Bij(η, s) as s → ±i∞ and the analytic

property in s ∈ V
δ0,ζ2

2 (the spectrum gap property), one has the following

decomposition for A and B.



























b12(η, s) ≡ B12(η, s),

a12(η, s) ≡ A21(η, s) +
iη
4 ,

b11(η, s) ≡ B11(η, s) +
1
2 ,

b22(η, s) ≡ B22(η, s) +
1
2 ,



























a11(η, s) ≡ Q[A11(η, s)],

a22(η, s) ≡ Q[A22(η, s)],

b21(η, s) ≡ Q[B21(η, s)],

a21(η, s) ≡ Q[A21(η, s)− i s].

(5.46)
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Or, we have

(

A11 = A11(0) + a11s A12 = a12 − iη
4

A21 = A21(0) + a21s+ is A22 = A22(0) + a22s

)

, (5.47)

and
(

B11 = b11 − 1
2 B12 = b12

B21 = B21(0) + b21s B22 = b22 − 1
2

)

, (5.48)

for functions aij and bij satisfying, for |η| ≪ 1,







lim
s→±i∞

aij(η, s) = 0,

lim
s→±i∞

bij(η, s) = 0.
(5.49)

The last decaying property makes it possible to evaluate the inverse Laplace

transform of the non-characteristic aij , bij by the contour integration. Thus

the above decomposes the operators into into compositions of differential

operators and integral operators according to Section 2, (2.4). The integral

operators have the kernels as regular functions. We formulate this as a

theorem.

Theorem 5.14. There exist δ0, δ1 > 0, and C > 0 such that for all |ζ2| < δ1
the operators Aij and Bij satisfy



























































L
−1[Aij(ζ

2, s)] = Aij(ζ
2, 0)δ(t) + L

−1 [aij ] ∗
t
∂t for (i, j) = (1, 1), (2, 2)

L−1[A12(ζ
2, s)] = − iη

4
δ(t) + L

−1 [a12]

L
−1[A21(ζ

2, s)] = iδ′(t) + A21(ζ
2, 0)δ(t) + L

−1 [a21] ∗
t
∂t,

L
−1[B12(ζ

2, s)] = L
−1 [b12] ,

L
−1[Bij(ζ

2, s)] = −1

2
δ(t) + L

−1 [bij] for (i, j) = (1, 1), (2, 2),

L−1
[

B21(ζ
2, s)

]

= B2,1(ζ
2, 0)δ(t) + L−1[b21] ∗

t
∂t,

(5.50)

and for i = 0, 1

|∂i
ζ2L

−1[a11]|, |∂i
ζ2L

−1[a22]|, |∂i
ζ2L

−1[a21]|, |∂i
ζ2L

−1[b21]| ≤O(1)
e−t/C

√
t

,(5.51)

|∂i
ζ2L

−1[a12]|, |∂i
ζ2L

−1[b12]|, |∂i
ζ2L

−1[b11]|, |∂i
ζ2L

−1[b22]| ≤O(1)e−t/C .(5.52)
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5.4. Composition with characteristic operator and Long Wave-

Short Wave decomposition

From (5.44) and Theorem 5.14, it remains to study the following kernel

functions of the integral operators in t-variable with small wave number ζ2

for the purpose of obtaining F−1[L−1[Kij ]](y, t):

l2(ζ
2, t) ≡ L

−1
[

Q[λ2(ζ
2, s)]

]

,

l
s
2(ζ

2, t) ≡ L
−1
[

∂sλ2(ζ
2, s)

]

.
(5.53)

The operators l2 and l
s
2 are related to characteristic roots. The other opera-

tors aij and bij are regular in the sense that the operator is an inverse Laplace

transformation of some analytic function defined in the domain s ∈ V
δ0,ζ2

2 .

Thus, one has the following proposition from the expression of aij , bij. In

the following analysis, for the local in time estimates, we will use (5.38).

Proposition 5.15. There exist δ1 > 0 and C > 0 such that















∫

|ζ2|<δ1

(|L−1[aij ](ζ
2, t)|+ |L−1[bij](ζ

2, t)|)dζ2 ≤ δ1C
e−t/C

√
t

,
∫

|ζ2|<δ1

|l2(ζ2, t)|dζ2 ≤ δ1C
1√
t
for t ∈ (0, 1).

(5.54)

For any boundary value v0(ζ2, t) with v0(ζ2, ·) ∈ V and transformed

value V 0(ζ2, s) = L[v0](ζ2, s), (5.9), the identities (5.50) can be rewritten as

follows:

Case 1. For A11, A22, and B21:















L
−1[AijV

0](t) = Aij(ζ
2, 0)v0(ζ2, t) +

∫ t

0
aij(ζ

2, τ)∂τv
0(ζ2, t− τ)dτ,

L
−1[BijV

0](t) = Bij(ζ
2, 0)v0(ζ2, t) +

∫ t

0
bij(ζ

2, τ)∂τv
0(ζ2, t− τ)dτ.

(5.55)

Case 2. For A21.

L
−1[A21V

0](t) = A21(ζ
2, 0)v0(ζ2, t)− i∂tv

0(ζ2, t)

+

∫ t

0
a21(ζ

2, τ)∂τv
0(ζ2, t− τ)dτ. (5.56)
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Case 3. For A12, B11, B22.















L
−1[A12V

0](t) = −i
ζ2

4
v0(ζ2, t) +

∫ t

0
a12(ζ

2, τ)v0(ζ2, t− τ)dτ,

L
−1[BijV

0](t) = −1

2
v0(ζ2, t) +

∫ t

0
bij(ζ

2, τ)v0(ζ2, t− τ)dτ,

(5.57)

Case 4. For B12.

L
−1[BijV

0](t) =

∫ t

0
bij(ζ

2, τ)v0(ζ2, t− τ)dτ. (5.58)

When an operator U ∈ V convolves with the characteristic root λ2(ζ
2, s),

we need to decompose L−1[λ2] into generalized and regular functions as in

Lemma 5.6 and Lemma 5.7:

L
−1[λ2] ∗ U(t)

=

(

∫ max(t−1,t/2)

0
+

∫ t

max(t−1,t/2)

)

L
−1[λ2](t− τ)U(τ)dτ

=

∫ max(t−1,t/2)

0

(

−L−1[∂sλ2](t− τ)

t− τ
+ C(ζ2)δ(t − τ)

)

U(τ)dτ

+

∫ t

max(t−1,t/2)
L
−1

[

λ2(s, ζ
2)− λ2(0, ζ

2)

s

]

(t− τ)U ′(τ)dτ + λ2(0, ζ
2)U(t)

=

∫ max(t−1,t/2)

0
−L−1[∂sλ2](t− τ)

t− τ
U(τ)dτ

+

∫ t

max(t−1,t/2)
L
−1

[

λ2(s, ζ
2)− λ2(0, ζ

2)

s

]

(t−τ)U ′(τ)dτ+λ2(0, ζ
2)U(t).

(5.59)

From this we have:

Case 1. For (i, j) = (2, 1).

L
−1[λ2(ζ

2, s)BijV
0](t)

= −
∫ max(t−1,t/2)

0

l
s
2(ζ

2, t− τ)

t− τ

(

Bij(ζ
2, 0)v0(ζ2, τ)

+

∫ τ

0
L
−1[bij](ζ

2, σ)∂σv
0(ζ2, τ − σ)dσ

)

dτ
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+

∫ t

max(t−1,t/2)
l2(ζ

2, t− τ)
(

Bij(ζ
2, 0)v0(ζ2, τ)

+

∫ τ

0
L
−1[bij ](ζ

2, σ)∂σv
0(ζ2, τ − σ)dσ

)

dτ

+λ2(ζ
2, 0)

(

Bij(ζ
2, 0)v0(ζ2, t) +

∫ t

0
L
−1[bij](ζ

2, σ)∂σv
0(ζ2, t− σ)dσ

)

.

(5.60)

Case 2. (i, j) = (1, 1), (2, 2)

L
−1[λ2(ζ

2, s)BijV
0](t)

= −
∫ max(t−1,t/2)

0

l
s
2(ζ

2, t− τ)

t− τ

(

− v0(ζ2, τ)/2

+

∫ τ

0
L
−1[bij](ζ

2, σ)v0(ζ2, τ − σ)dσ
)

dτ

+

∫ t

max(t−1,t/2)
l2(ζ

2, t− τ)
(

− v0(τ, ζ2)/2

+

∫ τ

0
L
−1[bij](ζ

2, σ)v0(ζ2, τ − σ)dσ
)

dτ

+λ2(ζ
2, 0)

(

−v0(ζ2, t)/2 +

∫ t

0
L
−1[bij ](ζ

2, σ)v0(ζ2, t− σ)dσ

)

. (5.61)

Case 3. (i, j) = (1, 2)

L
−1[λ2(ζ

2, s)BijV
0](t)

= −
∫ max(t−1,t/2)

0

l
s
2(ζ

2, t− τ)

t− τ

(∫ τ

0
L
−1[bij](ζ

2, σ)v0(ζ2, τ − σ)dσ

)

dτ

+

∫ t

max(t−1,t/2)
l2(ζ

2, t− τ)

(∫ τ

0
L
−1[bij ](ζ

2, σ)v0(ζ2, τ − σ)dσ

)

dτ

+λ2(ζ
2, 0)

(
∫ t

0
L
−1[bij ](ζ

2, σ)v0(ζ2, t− σ)dσ

)

. (5.62)

Let χ the characteristic function:

χ(η) =

{

1 if |η| < δ1,

0 else.
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The long wave-short wave decomposition is defined through the Fourier

transformation as follows:



















































g = I
L[g] + I

S [g],

F
−1 ≡ F

−1,L + F
−1,S ,

F−1,L[h](y) ≡ F
−1,S [hχ](y) =

1

2π

∫

|η|<δ1

eiηyh(η)dη,

F
−1,S [h](y) ≡ F

−1,S [h(1 − χ)](y) =
1

2π

∫

|η|>δ1

eiηyh(η)dη,

I L[g](y) ≡ F
−1,L[F [g]](y), (Long wave component)

I S[g](y) ≡ F
−1,S [F [g]](y), (Short wave component)

where the positive constant δ1 is chosen with the property that, for any

|ζ2| < δ1 there is no branch point for the functions inside V
δ0,ζ2

2 .

Lemma 5.16. There exist δ1 > 0 and C > 0 such that for any given V -

valued function v0(y, ·),

Case 1. (i, j) 6= (2, 1).

∥

∥

∥I
L[Nijv

0](y, t) +

∫ max(t−1,t/2)

0
F

−1,L
[

l
s
2(ζ

2, t− τ)L−1[bij ](ζ
2, t− τ)

t− τ

]

(y) ∗
y
v0(y, τ)dτ

∥

∥

∥

L∞
y

≤ O(1) max
τ∈(max(t−1,t/2),t)

|ζ2|<δ1

|F [v0](ζ2, τ)|

+

∫ t

0

e−(t−τ)/C

√
t− τ

‖I L[∂τv
0](y, τ)‖L∞

y
dτ. (5.63)

Case 2. (i, j) = (2, 1).

∥

∥

∥I
L[Nijv

0](y, t) +

∫ max(t−1,t/2)

0
F

−1,L
[

l
s
2(ζ

2, t− τ)L−1[b21](ζ
2, t− τ)

ζ2(t− τ)

]

·(y) ∗
y
v0(y, τ)dτ

∥

∥

∥

L∞
y

≤ O(1) max
τ∈(max(t−1,t/2),t)

|ζ2|<δ1

|F [v0](ζ2, τ)|

+

∫ t

0

e−(t−τ)/C

√
t− τ

‖I L[∂τv
0](y, τ)‖L∞

y
dτ. (5.64)
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Proof. Since the operator I L is a projection operator,

F
−1,L[ls2(ζ, t− τ)L−1[bij ](ζ

2, t− τ)F [v0](ζ2, τ)]

= F
−1
[

χ
(

ζ2
)

l
s
2(ζ, t− τ)L−1[bij ](ζ

2, t− τ)F [v0](ζ2, τ)
]

= F
−1
[

χ
(

ζ2
)

l
s
2(ζ, t− τ)L−1[bij ](ζ

2, t− τ)
]

(y) ∗
y
v0(y, τ)

= F
−1,L[ls2(ζ, t− τ)L−1[bij](ζ

2, t− τ)](y) ∗
y
v0(y, τ). (5.65)

Then, by (5.54), (5.60) and (5.61), the lemma follows. ���

Re-organize the operator χ(η)ls2(η, t− τ)L−1[bij(η, τ)], using (5.33),

(5.51), (5.52), and one has

χ(η)ls2(η, t− τ)L−1[bij(η, τ)]

=
1

π

∫

R

e−iΛκ(t−τ) cos(
√

κ2+η2(t−τ))
(

e−(t−τ)(κ2+η2)
L
−1[bij](η, τ)

)

χ(η)dκ

+O(1)χ(η)e−t/C . (5.66)

One also has that

∫

R

eiyη
∫

R

e−iΛκ(t−τ) cos(
√

κ2+η2(t−τ))
(

e−(t−τ)(κ2+η2)
L
−1[bij ](η, τ)

)

χ(η)dκdη

= 4π2
F

−1
2

[

e−iΛκ(t−τ) cos(
√

κ2 + η2(t− τ))
]

∗
(x,y)

F
−1
2

[(

e−(t−τ)(κ2+η2)
L
−1[bij ](η, τ)

)

χ(η)
]

∣

∣

∣

∣

x=0

, (5.67)

where F2 is the 2-dimensional Fourier transformation with the Fourier vari-

ables (κ, η). By (5.51), (5.52) and the analyticity of L−1[bij ] in η, one can

show that

F
−1
2

[(

e−(t−τ)(κ2+η2)
L
−1[bij](η, τ)

)

χ(η)
]

≤ O(1)























e
− x2+y2

C(t−τ)
− τ

C

1 + t− τ
for |x|+ |y| < 8(t− τ) + 1 ,

e−t/C

1 + t− τ
else.

(5.68)
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Lemma 5.17. For |y| ≤ 4(1 + t) and t ≥ 1, there exists C > 0 such that

∣

∣

∣

∣

∣

∫ max(t−1,t/2)

0

1

t− τ
F

−1,L
[

l
s
2(ζ

2, t− τ)L−1[bij](ζ
2, τ)

]

(y)

∣

∣

∣

∣

∣

= O(1) W(~x, t) ∗
~x

e−
|~x|2

Ct

t

∣

∣

∣

∣

∣

∣

~x=(−Λt,y)

, (5.69)

∣

∣F
−1,L

[

l
s
2(ζ

2, t)Bij(ζ
2, 0)

]

(y)
∣

∣ = O(1) W(~x, t) ∗
~x

e−
|~x|2

Ct

t

∣

∣

∣

∣

∣

∣

~x=(−Λt,y)

.(5.70)

where W(~x, t) is the solution of initial value problem of the D’Alembert wave

equation in 2-D:














Wtt −Wxx −Wyy = 0,

W(x, y, 0) = δ(x, y),

Wt(x, y, 0) = 0.

Proof. We show (5.69) only, since the proofs for (5.69) and (5.70) are sim-

ilar.

The function U(x, y, t) ≡ cos
(

√

κ2 + η2 t
)

e−iΛκt is the Fourier transforma-

tion of the D’Alembert’s wave equation in 2-D:















((∂t − Λ∂x)
2 −∆)U(x, y, t) = 0,

U(x, y, 0) = δ(x, y),

Ut(x, y, 0) = −Λ∂xδ(x, y)

.

Thus, the function U(x, y, t) can be identified with U(x, y, t) = W(x−Λt, y, t)

and so
∫

R

eiyη
∫

R

e−iΛκ(t−τ) cos(
√

κ2+η2(t−τ))
(

e−(t−τ)(κ2+η2)
L
−1[bij](η, τ)

)

χ(η)dκdη

= 4π2
W(x− Λ(t− τ), y, t− τ)

∗
(x,y)

F
−1
2

[(

e−(t−τ)(κ2+η2)
L
−1[bij ](η, τ)

)

χ(η)
]

∣

∣

∣

∣

x=0

. (5.71)

By (5.68) and (5.71), the lemma follows. ���
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Theorem 5.18 (Wave in finite Mach number region). For |y| < 3t there

exist C > 0 such that, for any given V -valued function v0(y, ·),

|∂yI L[N21v
0](y, t)| +

∑

(i,j)6=(2,1)

|I L[Nijv
0](y, t)|

= O(1)

∫ max(t/2,t−1)

0

(|W|(~x, t− τ)

t− τ
∗
~x

e
− |~x|2

C(t−τ)

t− τ

∣

∣

∣

∣

∣

∣

~x=(−Λ(t−τ),y)

)

∗
y
|v0|(y, τ)dτ

+O(1) max
τ∈(max(t−1,t/2),t)

|ζ2|<δ1

|F [v0](ζ2, τ)|

+

∫ t

0
e−(t−τ)/C

(

‖I L[∂τv
0](y, τ)‖L∞

y
+ ‖I L[v0](y, τ)‖L∞

y

)

dτ. (5.72)

Proof. This theorem is a consequence of Lemmas 5.16 and 5.17. Note that

there is a factor of η in the denominator of K21, (5.16), and this accounts

for the partial differentiation with respect to y in the first term of (5.72). ���

Remark 5.19. For simplicity, we may consider the input function v0(y, t)

to have unit compact support in (y, t) around (0, 0). In this case, (5.72) can

be simplified to, for t > 1, and some C > 0,

|I L[Nijv
0](y, t)| = O(1)

W|(~x, t)
t

∗
~x

e
− |~x|2

C(t)

t

∣

∣

∣

∣

∣

∣

x=−Λt

‖v0‖L∞
(y,t)

+O(1)e−
(y+t)

C

(

‖∂tv0‖L∞
(y,t)

+ ‖v0‖L∞
(y,t)

)

, (i, j) 6= (2, 1). (5.73)

6. The Global Structure

In Theorem 5.18 we have established the long wave structure of Nijv
0(y,

t) in a finite Mach number region |y| < 3t. In this section we will establish the

global exponential time decaying structure of the short wave component and

the global exponential decaying structure in the space variable outside the

finite Mach number region using directly the structure of differential equation

through simple, standard energy estimates. These structures are obtained

as part of the solution, and not given in terms of the inverse Laplace-Fourier

process for the components Nijv
0, (1.19). Only by considering the whole
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system (5.1) we can obtain the exact correlation between components and

the natural cancellations between them to yield the sharp estimates. The

component-wise approach could work if the Laplace transformation approach

works. However, the diagram in Figure c indicates the existence of a branch

point in Re(s) > 0. This prevents the Laplace transformation approach

through the complex analysis to work when wave number is large, i.e. |ζ2| ≫
1.

6.1. Global exponential decay of the short wave component

Lemma 6.1. The Neumann value v0
x(ζ

2, t) of (5.1) satisfies

|v0
x(ζ

2, t)|2 = O(1)

∫ t

0

(

|ζ2|2 + 1

|ζ2|2
)

(

(1 + |ζ2|2)|v0(ζ2, τ)|2

+|∂τv0(ζ2, τ)|2
)

e−|ζ2|2(t−τ)dτ

+O(1)

∫ t

0

1 + |ζ2|2
|ζ2|2

(

(1 + |ζ2|2)|∂τv0(ζ2, τ)|2

+|∂2
τv

0(ζ2, τ)|2
)

e−|ζ2|2(t−τ)dτ

+O(1)

∫ t

0

1 + |ζ2|2
|ζ2|2

(

(1 + |ζ2|2)|∂2
τv

0(ζ2, τ)|2

+|∂3
τv

0(ζ2, τ)|2
)

e−|ζ2|2(t−τ)dτ. (6.1)

Proof. We break this proof into two parts. The first part is the interior

energy estimates and the second one is the boundary gradient estimates.

Interior Estimates

We start with the system (5.10):

(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 iζ2

iζ2 |ζ2|2

)

− ∂2
x

)

v = 0. (6.2)

Now, one extracts the boundary value by subtracting v0(ζ2, t)e−x from v to

result in:

U(x, ζ2, t) ≡ v(x, ζ2, t)− v0(ζ2, t)e−x, (6.3)
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

























(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 iζ2

iζ2 |ζ2|2

)

− ∂2
x

)

U = S(x, ζ2, t),

U(0, ζ2, t) = 0,

U(x, ζ2, 0) = 0,

(6.4)

where the inhomogeneous term S(x, ζ2, t) is given by

S(x, ζ2, t) ≡ −e−x

(

∂t +

(

−2− Λ+ |ζ2|2 iζ2

iζ2 −Λ+ |ζ2|2

))

v0(ζ2, t). (6.5)

We now perform the energy estimate, starting with

∫ ∞

0
Ūt

(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 iζ2

iζ2 |ζ2|2

)

− ∂2
x

)

Udx

+

∫ ∞

0
Ut

(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 −iζ2

−iζ2 |ζ2|2

)

− ∂2
x

)

Ūdx

= 2

∫ ∞

0
Re(ŪtS)dx, (6.6)

to yield

d

dt

∫ ∞

0
|U|2dx+

∫ ∞

0
2|ζ2|2|U|2 + 2|∂xU|2dx

= 2

∫ ∞

0
Re(UtS)dx ≤

∫ ∞

0

(

|ζ2|2|U|2 + |S|2
|ζ2|2

)

dx. (6.7)

This leads to

d

dt

∫ ∞

0
|U|2dx+

∫ ∞

0
|ζ2|2|U|2 + 2|∂xU|2dx ≤

∫ ∞

0

|S|2
|ζ2|2 dx, (6.8)

and

∫ ∞

0
|U(x, τ)|2dx

∣

∣

∣

∣

τ=t

+

∫ t

0

∫ ∞

0
e−|ζ2|2(t−τ)|∂xU(x, τ)|2dxdτ

≤
∫ t

0

∫ ∞

0
e−|ζ2|2(t−τ) |S|2

|ζ2|2 dxdτ. (6.9)
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Similarly, one has that

∫ ∞

0
|∂l

tU(x, τ)|2dx
∣

∣

∣

∣

τ=t

+

∫ t

0

∫ ∞

0
e−|ζ2|2(t−τ)|∂x∂l

tU(x, τ)|2dxdτ

≤
∫ t

0

∫ ∞

0
e−|ζ2|2(t−τ) |∂l

tS|2
|ζ2|2 dxdτ, (6.10)

for l ≥ 0.

Boundary Gradient Estimate

By the zero boundary value (6.3), U(0, ζ2, t) = 0,

∫ ∞

0
Ūt
x

(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 iζ2

iζ2 |ζ2|2

)

− ∂2
x

)

Udx

+

∫ ∞

0
Ut
x

(

∂t +

(

1 + Λ 0

0 −1 + Λ

)

∂x +

(

|ζ2|2 −iζ2

−iζ2 |ζ2|2

)

− ∂2
x

)

Ūdx

= 2

∫ ∞

0
Re(Ūt

xS)dx. (6.11)

This yields

1

2
|Ux(0, ζ

2, t)|2+
∫ ∞

0
(Re

(

Ūt
xUt

)

+|ζ2|2|U|2)dx ≤
∫ ∞

0
|Ux|2+|S|2dx. (6.12)

This, (6.9), and (6.10) with l = 1 result in

1

2

∫ t

0
|Ux(0, ζ

2, τ)|2e−|ζ2|2(t−τ)dτ

≤
∫ t

0

∫

R

(

|Ut|2 + |ζ2|2|U|2 + |Ux|2 + |S|2
)

e−|ζ2|2(t−τ)dxdτ

≤ 8

∫ t

0

∫

R

((

1 +
1

|ζ2|2
)

|S|2 + 1

|ζ2|2 |St|2
)

e−|ζ2|2(t−τ)dxdτ. (6.13)

Similarly, one has

1

2

∫ t

0
|∂tUx(0, ζ

2, τ)|2e−|ζ2|2(t−τ)dτ

≤ 8

∫ t

0

∫

R

((

1 +
1

|ζ2|2
)

|St|2 +
1

|ζ2|2 |Stt|2
)

e−|ζ2|2(t−τ)dxdτ. (6.14)
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From (6.13) and (6.14),

|Ux(0, ζ
2, t)|2 ≤ O(1)

∫ t

0

∫

R

((

|ζ2|2 + 1

|ζ2|2
)

|S|2 + 1 + |ζ2|2
|ζ2|2 |St|2

+
1 + |ζ2|2
|ζ2|2 |Stt|2

)

e−|ζ2|2(t−τ)dxdτ. (6.15)

By substituting (6.5) into (6.15), the lemma follows. ���

6.2. Global time pointwise structure outside a finite Mach number

region

For |y| > 3(1 + t), one uses the direct structure of the differential equa-

tion. Similar to the estimate for the short wave component, one subtracts

u0(y, t)e−x from u(x, y, t):

Ũ(x, y, t) ≡ u(x, y, t)− u0(y, t)e−x,

then (5.1) becomes















∂tŨ+ (A1∂x +A2∂y) Ũ−∆2Ũ = S(x, y, t) for x > 0,

Ũ(y, t) = 0,

Ũ(~x, 0) ≡ 0,

(6.16)

where

A1 ≡
(

1 + Λ 0

0 −1 + Λ

)

, A2 ≡
(

0 1

1 0

)

,

S(x, y, t) ≡
(

−∂t +A1 + I −A2∂y + ∂2
y

)

u0(y, t)e−x.

One considers the following weighted energy estimates:

∫ ∞

0

∫

R

Ũ ·
(

∂tŨ+ (A1∂x +A2∂y) Ũ−∆2Ũ
)

eα(y−βt)dydx

=

∫ ∞

0

∫

R

Ũ · Seα(y−βt)dydx. (6.17)
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This leads to

d

dt

∫ ∞

0

∫

R

1

2
Ũ · Ũeα(y−βt)dydx

+

∫ ∞

0

∫

R





α

2
Ũ ·





β − α −1

−1 β − α



 Ũ+ |Ũx|2 + |Ũy|2


 eα(y−βt)dydx

≤
∫ ∞

0

∫

R

|S(x, y, t)||Ũ(x, y, t)|eα(y−βt)dydx. (6.18)

Assume that

β > α+ 1, α > 0,

then (6.18) yields

d

dt

∫ ∞

0

∫

R

1

2
Ũ · Ũeα(y−βt)dydx

+

∫ ∞

0

∫

R

(

α(β − α− 1)

4
|Ũ|2 + |Ũx|2 + |Ũy|2

)

eα(y−βt)dydx

≤
∫ ∞

0

∫

R

8

α(β − α− 1)
|S(x, y, t)|2eα(y−βt)dydx, (6.19)

and so

∫ ∞

0

∫

R

1

2
|Ũ(x, y, τ)|2eα(y−βτ)dydx

∣

∣

∣

∣

τ=t

+

∫ t

0

∫ ∞

0

∫

R

(|Ũx|2 + |Ũy|2)eα(y−βτ)−
α(β−α−1)

4
(t−τ)dydxdτ

≤
∫ t

0

∫ ∞

0

∫

R

8

α(β − α− 1)
|S(x, y, τ)|2eα(y−βτ)−

α(β−α−1)
4

(t−τ)dydxdτ. (6.20)

Similarly, one has

∫ ∞

0

∫

R

1

2
|∂̄γŨ(x, y, τ)|2eα(y−βτ)dydx

∣

∣

∣

∣

τ=t

+

∫ t

0

∫ ∞

0

∫

R

(|∂̄γŨx|2 + |∂̄γŨy|2)eα(y−βτ)−
α(β−α−1)

4
(t−τ)dydxdτ
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≤
∫ t

0

∫ ∞

0

∫

R

8

α(β − α− 1)
|∂̄γS(x, y, τ)|2eα(y−βτ)−

α(β−α−1)
4

(t−τ)dydxdτ. (6.21)

where the operator ∂̄γ is a differential operator in the space (y, t) ∈ R×R+:

∂̄γ = ∂γ1
t ∂γ2

y , |γ| = γ1 + γ2. (6.22)

Next we consider the following:

∫ t

0

∫ ∞

0

∫

R

Ũx ·
(

∂τ Ũ+ (A1∂x +A2∂y)Ũ−∆2Ũ
)

eα(y−βτ)−
α(β−α−1)

4
(t−τ)dydxdτ

=

∫ t

0

∫ ∞

0

∫

R

Ũx · Seα(y−βτ)−
α(β−α−1)

4
(t−τ)dydxdτ. (6.23)

This yields that

1

2

∫ t

0

∫

R

|Ũx(0, y, t)|2eα(y−βτ)−α(β−α−1)
4

(t−τ)dydτ

+

∫ t

0

∫ ∞

0

∫

R

(

Ũt · Ũx + Ũx ·
(

α 1

1 α

)

Ũy

)

eα(y−βτ)−
α(β−α−1)

4
(t−τ)dxdydτ

≤
∫ t

0

∫ ∞

0

∫

R

(

|Ũx|2 + |S|2
)

eα(y−βτ)−α(β−α−1)
4

(t−τ)dydxdτ. (6.24)

This, (6.20), and (6.21) with ∂̄γ = ∂t together result in

1

2

∫ t

0

∫

R

|Ũx(0, y, t)|2eα(y−βτ)−α(β−α−1)
4

(t−τ)dydτ

≤ O(1)

∫ t

0

∫ ∞

0

∫

R

(

|Sτ |2 + |S|2
)

eα(y−βτ)−
α(β−α−1)

4
(t−τ)dydxdτ. (6.25)

The same procedure will give the higher order energy estimate

1

2

∫ t

0

∫

R

|∂̄γŨx(0, y, t)|2eα(y−βτ)−α(β−α−1)
4

(t−τ)dydτ

≤ O(1)

∫ t

0

∫ ∞

0

∫

R

(

|∂̄γSτ |2 + |∂̄γS|2
)

eα(y−βτ)−α(β−α−1)
4

(t−τ)dydxdτ. (6.26)

From (6.25) and (6.26) with |γ| ≥ 2, one has the pointwise estimates by the



540 TAI-PING LIU AND SHIH-HSIEN YU [December

Sobolev’s inequality, for (y, t) ∈ R× R+:

sup
(y,t)∈R×R+

|Ũx(0, y, t)|e
α(y−βt)

2
+α(β−α−1)t

8

≤ O(1)
(

∫ t

0

∫ ∞

0

∫

R

(

∑

|γ|≤2

|∂̄γSτ |2+|∂̄γS|2
)

eα(y−βτ)+
α(β−α−1)

4
τdydxdτ

)1/2
.(6.27)

Thus, for y > 2βt,

|Ũx(0, y, t)| ≤ O(1)e−
α|y|
4

−
α(β−α−1)t

8

·
(

∫ t

0

∫ ∞

0

∫

R

(

∑

|γ|≤2

|∂̄γSτ |2 + |∂̄γS|2
)

eα(y−βτ)+α(β−α−1)
4

τdydxdτ
)1/2

. (6.28)

Similarly, one has, for y < −2βt

|Ũx(0, y, t)| ≤ O(1)e−
α|y|
4

−
α(β−α−1)t

8

·
(

∫ t

0

∫ ∞

0

∫

R

(

∑

|γ|≤2

|∂̄γSτ |2 + |∂̄γS|2
)

e−α(y+βτ)+α(β−α−1)
4

τdydxdτ
)1/2

. (6.29)

From (6.28) and (6.29), one has the following lemma for wave structure in

|y| ≥ 2β with β > 3/2:

Lemma 6.2. For a given β > 3/2 there exists α > 0 with β − α− 1 > 0 so

that for any |y| > 2β the Neumann value u0
x(y, t) ∈ R2 satisfies

|u0
x(y, t)| ≤ O(1)e−

α|y|
4

−
α(β−α−1)t

8 ·
(

∫ t

0

∫

R

(

∑

|γ|≤4

|∂̄γu0(y, τ)|2
)

×e−α(y+βτ)+
α(β−α−1)

4
τdydτ

)1/2
, (6.30)

where ∂̄γ is the differential operator on (y, t) ∈ R× R+ defined in (6.22).

Remark 6.3. We have thus obtained the global wave structure for the

boundary relation. Note that the smoothness requirement in the last lemma

is higher. We state this for the case when the input function has compact

support as in Theorem 1.2:

|I L[Niju
0](y, t)| = O(1)

W|(~x, t)
t

∗
~x

e
− |~x|2

C(t)

t

∣

∣

∣

∣

∣

∣

x=−Λt

‖u0‖L∞
(y,t)
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+O(1)e−
(y+t)

C

4
∑

|α|=0

‖∂̄αu0‖L∞
(y,t)

. (6.31)

6.3. Sine-Cosine transformation and Wave equations

Consider the wave equation in m + 1 dimensional space with initial

datum U0 and U1:














∂2
t U = ∆mU,

U(~x, 0) = U0(~x),

∂tU(~x, 0) = U1(~x).

(6.32)

The solution of U(~x, t) in Fourier variable ~η ∈ Rm is

Û(ζ̂ , t) = cos(|~η|t)Û0(~η) +
sin(|~η|t)

|~η| Û1(~η).

This identifies t sin(|~η|t)/|~η| as the Fourier transformation of the solution of

U(~x, t) for (6.32) with U0(~x) ≡ 0 and U1(~x) = δ(~x).

Theorem 6.4. Let m ∈ N and D0 be a given positive number. Then, for any

~x ∈ Rm, the inverse Fourier transformation of e−D0|~η|t sin(|~η|t)/|~η| satisfies:

Case 1. m = 3

F
−1

[

e−D0|~η|2t sin(|~η|t)
|~η|

]

(~x) =
1

4πt

∫

ŷ∈R3

|ŷ−~x|=t

e
−

|ŷ|2

4D0t

(4D0πt)3/2
dS (6.33)

and
∣

∣

∣

∣

F
−1

[

e−D0|~η|2t sin(|~η|t)
|~η|

]

(~x)

∣

∣

∣

∣

≤ O(1)W3(~x, t;D0), (6.34)

∣

∣

∣

∣

F
−1

[

e−D0|~η|2t i|ζ2|j sin(|~η|t)
|~η|

]

(~x)

∣

∣

∣

∣

≤ O(1)
1√
D0t

W3(~x, t; 2D0)

for j = 1, 2, 3, (6.35)
∣

∣

∣F
−1
[

e−D0|~η|2t cos(|~η|t)
]

(~x)
∣

∣

∣ ≤ O(1)

(

1

D0
+1

)

1

t
W3(~x, t; 2D0)(6.36)
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where

W3(~x, t;D0) ≡























1

t3/2
√
D0

for ||~x| − t| ≤
√

D0t,

e
−

(|~x|−t)2

4tD0

t3/2
√
D0

for ||~x| − t| ≥
√

D0t.

(6.37)

Case 2. m = 2.
∣

∣

∣

∣

F
−1

[

e−D0|~η|2t sin(|~η|t)
|~η|

]

(~x)

∣

∣

∣

∣

≤O(1)W2(~x, t;D00), (6.38)

∣

∣

∣

∣

F
−1

[

i|ζ2|je−D0|~η|2t sin(|~η|t)
|~η|

]

(~x)

∣

∣

∣

∣

≤O(1)
1√
D0t

W2(~x, t;D00), (6.39)

∣

∣

∣
F

−1
[

e−D0|~η|2t cos(|~η|t)
]

(~x)
∣

∣

∣
≤O(1)

(

1

D0
+ 1

)

1

t
W2(~x, t;D00), (6.40)

where

W2(~x, t;D0) ≡







































1

t− |~x| for |~x| ≤ t−
√
D0t,

1

t3/4D
1/4
0

for ||~x| − t| ≤
√
D0t,

e
− (|~x|−t)2

4D0t

t3/4D
1/4
0

for |~x| ≥ t+
√
D0t.

(6.41)

Proof. The inverse transformation in (6.33) is a convolution of the in-

verse of e−D0|~η|2 and the solution of the wave equation. The solution of

the wave equation in 3-D can be expressed by the Kirchhoff’s formula.

Thus the identity (6.33) follows as the convolution of the heat kernel in R3,

e
− |~x|2

4D0t/
√

(4D0πt)3 = F−1[e−D0|~η|2t](~x) and the Kirchhoff solution. With

(6.33), it is straightforward to obtain (6.34). (6.35) follows from the esti-

mate, |F−1(|ζ2|je−D0|~η|2)| ≤ O(1)e
−

|~η|2

8D0t /(D0t)
2. For (6.36), one uses the

property cos(|~η|t) = d
dt sin(|~η|t)/|~η|.

For the 2-D case, it is a consequence of the identity (6.33) and the

Hadamard’s method of descend. ���
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